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1 Introduction

The reader should be familiar with OpenACC 2.5. This report proposes a solution to the
deep copy problem. It has two parts. The first is a small but important change in behavior
for the current OpenACC data clauses to allow manual top-down deep copy. The second
is a small set of declarative directives to define true deep copy behavior for a whole data
structure. While this report is proposed as an alternative to OpenACC technical report
TR-14-1: Complex Data Management, most of the ideas here originated in that report.

This document is intended for both OpenACC users and implementers. One of the main
goals is to get feedback to refine the proposal. To promote feedback, the document includes
a number of explicit questions.

1.1 Required and Desired capabilities

As an example, we look at one complex data structure from the ICON climate code, devel-
oped by the German Weather Service (DWD) and the Max Planck Institute for Meteorology
(MPI-M), seen in Figures and In addition to what is shown here, the member diag
contains more than 80 allocatable or pointer array members, metrics contains another 80
allocatable or pointer array members, and each element of the array prog has additional
array members.

This section very briefly describes capabilities that we believe are needed to support such
hierarchical, dynamically allocated data structures. In all cases, the access mechanisms to
reach an object in device memory after the deep copy should be the same as to reach the
corresponding original object on the host.

Member shapes A Fortran allocatable and pointer member is either a scalar object, mean-
ing the pointee is not indexed, or an array object and includes a descriptor that gives (at a
minimum) the lower bound, extent and stride for each dimension of the array. In C/C++,
a pointer member is just a pointer. The compiler can’t tell if the pointee is a scalar or
vector object, and can’t tell how big the vector is. The exceptions are in C++, where a
reference is just a pointer to a scalar and the this pointer is similarly a pointer to a scalar
object. So, for C/C++, we need a directive to provide the size for a pointer member. The
size may be an expression, and the elements in the expression may (and often will) involve
other members of the same struct/class, or may be constant, or may even involve global
variables. We can envision cases where the size is stored in a parent struct of the struct
containing the pointer member, but this could be hard to describe.
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type t_nh_state

'array of prognostic states at different timelevels

type(t_nh_prog), allocatable :: prog(:) !< shape: (timelevels)
type(t_var_list), allocatable :: prog_list(:) !< shape: (timelevels)
type(t_nh_diag) :: diag

type(t_var_list) :: diag_list

type (t_nh_ref) :: ref

type(t_var_list) i ref_list

type(t_nh_metrics) :: metrics

type(t_var_list) :: metrics_list

type(t_var_list), allocatable :: tracer_list(:) !< shape: (timelevels)

end type t_nh_state

type(t_nh_state), allocatable :: p_nh_state(:)

Figure 1.1: ICON data structure

Full deep copy We want an option so that when processing a data clause for the base of a
hierarchical data structure, all pointer members are themselves recursively processed in the
same way. This has been shown to be useful for real applications. The runtime cost can be
quite high, but it simplifies program development by deferring data movement minimization
to a subsequent tuning phase.

Selective members For some applications, full deep copy is not appropriate. In fact, some
applications go through phases, where different subsets of the hierarchical data structure
type should be moved to and from the device. To support that, we need a way to support
a partial deep copy. This document proposes named policies, with a way to specify what
behavior to take for different structures given a named policy, and to specify what policy
to use at a data clause.

Selective direction The current data clauses imply a direction (create, copyin, copyout,
etc.). We can envision cases where some parts of a deep structure are input only, or need
not be initialized, independent of other parts of the structure. This could be achieved using

p_nh_state (:)%metrics¥%rayleigh_w(:)
p_nh_state (:)%metrics¥rayleigh_vn(:)

p_nh_state (:)%diagkvn_ie(:,:,:)
p_nh_state (:)%diaghvt (:,:,:)
p_nh_state (:)%diagkdvn_ie_ubc(:,:)
p_nh_state (:)%diaghe_kinh(:,:,:)
p_nh_state (:)%diagfw_concorr_c(:,:,:)
p_nh_state (:)%prog(:)%vn(:,:,:)

Figure 1.2: ICON device members
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update directives, but that reduces readability and modularity.

Mutable deep copy We have seen cases where a deep structure on the device is not created
or copied all at once; instead, it is copied in pieces. It may be copied top-down, from the
root, then to the children, then the grandchildren, and so on. Conversely, it may be copied
bottom-up, from the leaves to the parents and then the grandparents. Supporting both
top-down and bottom-up means the runtime must recognize when a child is created on the
device and update the pointers to that child, and recognize what children are already present
when a parent is created on the device. In both cases, the runtime must dynamically attach
an object to a new parent or attach a new object to an existing parent, and to detach
an object from a parent being deleted or detach an object being deleted from a parent.
The attach operation must update a pointer from the parent to the child, and the detach
operation should restore the pointer in the parent to match the value in the corresponding
host pointer.

Convenient syntax We should allow the simplest possible syntax for partial deep copy,
and define how and when one object gets attached to or detached from another.

Question 1.1: This document assumes that the layout of objects (struct, class, derived
type) will be the same in host and device memory. Changing the layout, statically or dy-
namically, is another challenging and important topic. At this time, we are not considering
data layout changes. In the longer term, we see three possibilities for layout control:

e Define a method to statically control data layout on both host and device. The layouts
would match when compiled with OpenACC enabled, but may not be the same as
when compiled without OpenACC.

e Define a method to control data layout on the device. This would require dynamically
changing the layout when transferring data between the two and would complicate
code generation as well.

e Define a method to control data layout dynamically on the host as well as on the
device. This would move the data layout changes to the host and simplify the data
transfers, but could make for hard-to-find data layout bugs.

How important is data layout control? Are there some simple but useful motivating exam-
ples?



OpenACC™ Deep Copy Attach and Detach

float* x;
#pragma acc declare create(x)

void sub(int n, float* y, float a){
x = (float*)malloc(sizeof (float)*n);
#pragma acc enter data create(x[0:n])
#pragma acc parallel loop copyin(y[0:n]) firstprivate(a)
for (i=0;i<n;++i) sub2(y,i,a);

}

#pragma acc routine seq

void sub2(float* y, int i, float a){
x[i] = y[ilx*a;

}

Figure 2.1: Simple motivating example

2 Simple Directives and API routines for
Manual Deep Copy

This chapter proposes new behavior for existing OpenACC directives and data clauses to
support manual deep copy with the existing directives, by adding new attach and detach
behavior.

In C and C++, the shape of a pointer is the length of the array to which it points. If it
points to a scalar, the length is one. For Fortran, the shape of an allocatable or pointer
array is defined by the internal Fortran array descriptor.

2.1 Scalar Pointer

The initial motivating example is shown in Figure The enter data create(x[0:n])
will allocate an array of n floats on the device. However, x is a global variable, and the
declare create(x) directive creates a static, global pointer x in device memory as well
as in system memory. The reference to x in the procedure sub2 on the device will use the
pointer value in the global pointer x in device memory. How will that pointer get filled in?

It is natural that the enter data create should fill in the pointer x, since the base pointer
in host memory corresponds to a base pointer that lives in the device memory. Generalizing
this, any time a data clause causes memory allocation in device memory, if the base pointer
to that memory is also present in device memory, that device copy of the base pointer
should get updated. This is the attach operation. So, when data is created on the device,
it is attached to the corresponding pointer, if the pointer is also present on the device. If
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typedef struct points{
float* x;
float* y;
float* z;
int n;
float coef, direction;
}points;

void sub(int n, float* y){

points p;

#pragma acc data create(p)

{
p.n = n;
p.-x = (float*)malloc(sizeof (float)x*n);
p.y = (float*)malloc(sizeof (float)*n);
p-z = (float*)malloc(sizeof (float)*n);

#pragma acc update device(p.n)
#pragma acc data copyin(p.x[0:n],p.y[0:n])
{

#pragma acc parallel loop
for (i=0;i<p.n;++i) p.x[i] += p.y[il;

Figure 2.2: Struct definition

the base pointer is not present, the attach is skipped.

We will also define an APT routine acc_attach that can be used to implement the attach
operation directly. Many users have asked that all API routines have directive analogs, and
vice versa; to that end, we will also propose an attach directive or data clause.

Question 2.1:  We could require the programmer to insert a separate directive to perform
the attach operation. However, we expect programmers will want the attach more often
than not. Is this true? The cost of the attach will be an 8-byte update; optimizing that
update may be important for performance.

Question 2.2: The attach operation could be a problem if we have a machine where some
memory is shared between host and device, and other memory is not. Suppose, in the above
example, the pointer x lives in shared memory but the array allocated on the device for
x[0:n] is in device-private memory. Attaching the array to the shared pointer x would
overwrite the host pointer value, and not attaching the array would make the device array
inaccessible through the base pointer. Is this likely to be an important situation to handle?

2.2 Simple Struct

Now let’s consider a C struct, used as a scalar struct, as shown in Figure

At the first data construct, only the struct p is allocated in device memory. At the update
construct, the value of p.n on the host is copied to the device. At the second data construct,
the arrays p.x and p.y are allocated on the device, and because p is already present, the




OpenACC™ Deep Copy Attach and Detach

points p;
p.-n = n;
p.-x = (floatx*)malloc(sizeof (float)*n);
p.y = (float*)malloc(sizeof (float)=*n);
p-z = (floatx*)malloc(sizeof (float)*n);

#pragma acc data copyin(p.x[0:n],p.y[0:n])
{
#pragma acc data create(p)

{

Figure 2.3: Building the structure bottom-up.

points* p;

/* allocate array pl[:] */
#pragma acc enter data copyin(p[0:n])
for(i=0; i<n; ++i){
/* allocate plil.x[:1, plil.y[:1 =/
#pragma acc enter data create(pl[i].x[0:p[il.n],pl[i].y[0:p[i]l.n])

Figure 2.4: Simple array-of-struct example

device pointers p.x and p.y on the device will get attached.

In this case, the directive does both the allocate and attach because the base structure p
is already present on the device. If we inverted the data constructs, as in Figure the
attach would not automatically happen. In this second example, the data copyin of the
p-x and p.y arrays would not get attached to p at the first data construct, because p is not
yet present on the device. At the second data construct, p is created on the device, and
at that point doing the attach operation would require that the implementation check each
pointer in the object to see if it were present, and to attach if so. Supporting that requires
that the implementation knows the data layout of the struct, which the compiler does but
the runtime typically does not. One of the advantages of having true deep copy behavior is
that the data layout will have to be exposed at runtime, so even bottom-up data creation
can end up with the data objects properly attached.

Question 2.3: This second example is typically called bottom-up data structure creation,
where the root of the structure is at the top. How important is the automatic attach for
bottom-up manual deep copy?

2.3 Array of Struct

A dynamically allocated array of struct, where each struct has one or more pointers to
dynamically allocated arrays, can also be supported with these simple directives. However,
this can be tedious, because each element of the parent array must be handled separately;
see Figure
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2.4 Detach

Just as the allocate of a child member on the device must also attach to a parent pointer
that is present on the device, the deallocate of a child member must detach from the parent
pointer. A detach operation restores the value of the pointer so it matches the value in host
memory.

We are proposing an API routine acc_detach that would do the detach operation as well,
and also a detach directive or clause.

Question 2.4: As proposed here, the detach operation restores the value of the host
pointer. There are three other possibilities. One is to set the device pointer to NULL;
this has the same overhead as restoring the value, but allows the device code to check for
NULL. A second possibility is to leave the stale address in the device pointer; this avoids
the overhead of setting the pointer value. A third possibility is to save the original value
from before the attach, and restore that original value; since we expect that in most cases,
the pointer on the host will not change, restoring the value from the host pointer will be safe
and efficient. If the host pointer had changed, then there is already a mismatch between
host and device data. Should we consider any of these other options? Would the user want
to control these? If so, what should the default be? And how would you propose to spell
the control of alternate options?

2.5 Capabilities

Here we evaluate the simple directives and API routines against the required and desired
capabilities from Section

e Member shapes: Each directive can specify a shape for the member, each data API
call similarly gives a shape (byte count) for the member. Unfortunately, there is no
way in this proposal to declare at one point the desired shape for a member.

e Full deep copy: A full deep copy could be implemented manually, but it could be
quite tedious. The main reason for having true deep copy, as in the next section, is
to simplify the program.

e Convenient syntax: These directives have relatively simple and straightforward syn-

tax, a natural extension to the behavior of existing data clauses.

e Selective members: The simple directives and API calls allow (in fact, require) a user
to specify which members should be copied.

e Selective direction: Similarly, the simple directives and API calls allow (require) a
user to specify the data direction for each member independently.

e Mutable deep copy: As shown earlier, top-down (parent first, then child) mutable
deep copy is easily implemented when the attach operation is part of the data clause
behavior. Bottom-up (child, then parent) mutable deep copy can also be implemented,
but would require extra acc_attach API routine calls or extra attach directives

10
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after creating the parent to then attach the parent structure pointers to the member
pointers.

2.6 Open Issues

None of the simple directives proposed in this section would fix the update problem. In the
last array-of-structs example, an update of the host copy of the array p from the device, or
an update of the device copy of p from the host, would either overwrite the host pointers to
plil .x and p[i] .y with their device pointer values, or vice versa. There is simply no way
to fix this without the data layout information needed for a true deep copy implementation.

There are still open problems when there are multiple pointers to the same block of data.
Sometimes this is intrinsic in the data structure, but other times this is simply using con-
venience pointers to temporarily point to some other part of the data structure. We have
some work to do here.

None of the simple directives in this section try to address the problem for a system with
partially shared memory, where the device and host share some memory but not all memory.

We have not yet explored the case where the device code modifies the pointer. In that case,
it may be useful to have a reverse attach operation, that takes the device pointer value,
resolves the host address, and updates the host pointer accordingly. In general, allowing
changes on both host and device can be problematic, and we need to be clear what must
be supported; we probably need some experimentation to help with this.

Question 2.5: Comments and feedback on this section? Comments and feedback on the
proposals in this whole chapter?

11
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3 Directives for True Deep Copy

This chapter proposes new directives, clauses and behavior for true deep copy, meaning
with a single data clause (copy(a)), a user can specify copying a structure or array of
structures, where the structure has dynamically allocated member arrays, some of which
might themselves be arrays of structures that have dynamically allocated member arrays,
and so forth. To support this, the compiler and runtime need to know:

e Which members are pointers or dynamically allocated arrays. This is known by the
compiler.

e The sizes of these arrays. Array shapes are intrinsic for Fortran allocatable and pointer
arrays. We propose a shape directive for C and C++ pointers.

e Whether to recurse for all such members or only a subset. We propose include and
exclude clauses to support the selective member capability.

e Whether to move data in each direction for all members or only subsets in each
direction. We propose in, out, inout and create clauses to support the selective
direction capability.

e What to do if members are already present. We propose handling mutable deep copy
by processing each member pointer or dynamically allocated array individually.

3.1 Policies

This document uses the concept of policies. For each data type, there is an unnamed default
policy. There may be other named policies as well. A policy can have several deep copy
attributes, including member selection, member direction and member shapes.

This document introduces a policy directive. This is a declarative directive that would
normally appear in the declaration of a datatype (Fortran derived type, C struct, C++
class) to define behavior for objects of that type.

3.1.1 Default policies

An open question is whether the default behavior should be shallow copy or deep copy for
hierarchical data structures. There are good arguments for either choice. One argument in
favor of shallow copy default is that it matches current behavior, so current programs will
not change behavior. One argument in favor of deep copy default is that it is more likely to
be desired, and limits the amount of new syntax a user would need to learn. This document
proposes the default to be deep copy for all shaped members, as defined later. In Fortran,

12
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this means all allocatable and pointer members would, by default, be processed for all data
or update directives. The default behavior may be changed by declaring attributes for the
default unnamed policy on the policy directive.

Question 3.1: What do you think the default should be: deep or shallow? If deep, should
there be a directive or clause for a shallow copy that doesn’t require adding a new policy?
If shallow, how would you suggest specifying a deep copy? Would you want different default
policies in different programs, or different parts of the same program, or for different data
structures?

3.1.2 Pointer Shapes

The member shapes for Fortran allocatable arrays and array pointers is explicit in the array
descriptor. For C and C++, this document proposes a shape clause to the policy directive,
which specifies the shape (length) of a pointer member. The shape may be an expression,
involving other struct members, constants, global variables, or even function calls.

Question 3.2: Do you think we should add a global shape directive for C/C++ pointers?

3.1.3 Member Selection

We propose that by default, all shaped members get processed.

To override this default, this document proposes clauses to the policy directive. An
exclude clause specifies which members to exclude, and an include clause specifies a list
of members to include (and no others). The two clauses are mutually exclusive: you can
specify exclude, meaning include all shaped members not explicitly excluded, or specify
include, meaning exclude all members not explicitly included, but not both. The reason
for allowing either exclude or include is some data structures have many members, and
we expect most users will want to either exclude most or include most members, and we
want to minimize the typing.

Question 3.3: Do you have alternate name suggestions for exclude or include? We want
include to mean include-only.

Question 3.4: We disallow both include and exclude in the same datatype. Is there an
example where you might want both? What should it mean?

3.1.4 Direction Selection
This document proposes that when a hierarchical data structure appears in a data clause,

each member is treated as appearing in the same clause. In the example in Figure [2.4
a clause copy(p[0:n]) would implicitly also imply copy(p[i]:x[*]), copy(p[i]:y[*])

13
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and copy (p[i]:z[*]) for all values of i and where * is the shape defined for that member.
To allow for direction selection, a policy directive can have in, out, inout and create
clauses. These attributes affect whether data is copied from host to device, or device to
host, at entry to or exit from a data construct, at an enter data or exit data directive,
or at an update directive.

Question 3.5: This is a very important decision. What data movement behavior do you
want or need in your hierarchical data structure?

Question 3.6: A different name than create might be better, since create really has
nothing to do with data motion. We want something that means the opposite of inout,
but none doesn’t really give a hint as to none of what. Do you have a suggestion?

Question 3.7: There is discussion about allowing the present clause here, which would
mean the target needs to already be present and it would be a runtime error if the data
were not present. There was also discussion about a present_or_not or nocreate clause,
which would translate the pointer if it is present, but leave it untranslated with no runtime
error if the data is not present. Do you see these as useful?

Question 3.8: Another open question is how to traverse the hierarchical structure when the
parent is already present. Should the implementation recurse to the present object and check
that any subobjects are likewise present (deep present), or assume that a present object is
complete? This document proposes that deep copy means deep, and the implementation
should ensure that the entire requested structure is present on the device. This decision
does impact performance.

3.1.5 Mutable Deep Copy

This document proposes handling mutable deep copy by processing each child object as if
it appeared in a separate clause, including the updates of the appropriate reference counts.

Top-down Deep Copy

A top-down deep copy can be done as in the previous chapter, manually. For a true top-
down deep copy, a user might want to copyin one data structure with one policy, then
copyin the same data structure with a different policy that adds some new children. If
we think that is important, that settles the deep present question raised just above. Even
though the parent is present, the runtime must traverse all the children that apply to this
policy to make them present as well.

14
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template<class _Tp, class _Alloc> class _Vector_base{
public:

protected:

_Tp*x _start;

_Tp*x _finish;

_Tp* _end_of_storage;

};

Figure 3.1: Prototype C++ vector class

Bottom-up Deep Copy

Bottom-up deep copy becomes natural, because the parent will find the already-present
children when the runtime traverses to those children. Those children would get their
present counts updated for this construct.

Question 3.9: Another question is what about a child that is present, but is excluded
from the current policy? Does that pointer get translated or not?

3.1.6 Relative Pointers

In many cases, a pointer member does not point to separate data, but into data that another
pointer already addresses. The C++ wvector class is a classic example, shown in Figure 3.1
In this case, _start points to the actual allocated data. The _end_of_storage pointer
points to the first word beyond the allocated data, so it should not be followed at all. The
_finish pointer could point somewhere into the middle of allocated data, or have the same
value as _end_of_storage. Similarly, ragged arrays in C are often really pointers into the
middle of a long vector of data. It would be easier and faster to move the long vector all
at once, then simply translate the pointers into that data. Pointer translation differs from
simply treating the translated pointers as present data. First, pointer translation allows
for a pointer to invalid data, as with _end_of _storage in the vector class above. Second,
pointer translation doesn’t affect the reference counts for the target data. This document
proposes syntax for pointer translation in C and C++.

3.2 Policy directive

Summary The policy directive is used to give attributes to the unnamed default policy or
to a named policy of a user-defined type. The policy directive may appear in the definition
of a user-defined type (without a type name) to apply to members of that data type. It
may appear outside the definition of a user-defined type specification by including the type
name in a type clause, in which case it can apply to (public) members of the named data

type.

15
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Syntax In C and C++, the syntax of the policy directive is
#pragma acc policy [( policy-name )] [clause-list] new-line
In Fortran the syntax of the policy directive is:
$acc policy [( policy-name )| [clause-list]
where clause is one of the following:

shape ( member-shape-list )

exclude( member-name-list )

include ( [<policy-name>)member-name-list )
in( [<policy-name>|member-name-list )
out ( [<policy-name>]member-name-list )
inout ( [<policy-name>|member-name-list )
create ( [<policy-name>|member-name-list )
type ( type-specification )

More than one policy directive may appear in a struct, class or derived type declaration, or
may appear with the same struct or class type name. When two or more policy directives
appear with no name or with the same name, they are treated as if all the clauses appear on
one directive. The shape clause is only valid in C or C+4. A pointer member of a struct
or class may only appear in one shape clause for that data type for any named policy, or
for the unnamed default policy.

3.2.1 shape clause

The shape clause defines the size of a pointer member, or that the pointer member should
be translated relative to another member. A member-shape is one of

member-name [shape-expression]
member-name [@member-name]
member-name [@]

In the first case, the named member is declared to have a size equal to the given shape-
expression whenever an object of this data type appears directly or indirectly in a data
clause, and the named member pointer is not NULL. The shape-expression may involve
constants, other members of this struct or class datatype, member functions of this class,
or any variables visible at the point where this directive appears.

16
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Question 3.10: How complex an expression is needed for the shape? Will it need to
support class member functions?

In the second case, the named member is declared to be a pointer that is an offset from
the sibling member. When the named member is translated, the translated value will have
the same offset to the translated sibling member as the original value has from the original
sibling member. The translated value may not point to valid device data.

In the third case, the named member is declared to be a pointer that is offset from some
other, unnamed pointer that is present on the device. In that case, if the named member
value is not NULL and the data at the pointer is present on the device, the translated value
will be the address of the device copy of the pointer.

If the shape clause appears on a policy directive with no policy name, the shape applies
to any policy for this datatype unless the same member is explicitly shaped for that policy.
If the shape clause appears on a policy directive with a policy name, the shape applies
only to that named policy.

Question 3.11: Should there be an explicit policy(default)? Should there be a policy (*)
for clauses that apply to all policies?

3.2.2 Member Selection and Direction Clauses

For any datatype and any policy, the default behavior will be to process every shaped
member in the user-defined type, and recursively in every member that is itself a user-
defined type. The include and exclude clauses override the default. Fortran allocatable
arrays and array pointers are always shaped. C and C++ pointers are shaped only when
they appear in a shape clause. The default data direction for all objects is the direction
specified in the data clause:

directive clause data movement
data copy in and out

data copyin in

data copyout out

data create none

update device in

update self, host out

The in, out, inout and create direction clauses override the defaults.

A member-name may be the name of a dynamically allocated member of the user-defined
type, or the name of a member of a user-defined type that has dynamically allocated mem-
bers or submembers. For all but the exclude clause, a member-name may be (in C or
C++) a member-shape. If a member-shape appears in a selection or direction clause, the
given shape is used for this policy only, including the unnamed policy.

For all but the exclude clause, a policy-name may appear in the clause. If so, then the
members named in the clause will be processed according to the policy-name. If no policy

17



OpenACC™ Deep Copy Attach and Detach

name appears, the members named in the clause will use the policy named on this directive,
or the unnamed policy.

Question 3.12: There has been discussion about allowing a hierarchy of policies, where a
child policy could add or modify the behavior of a parent policy. Would this be useful? Do
you have a motivating examples?

exclude clause

The exclude clause gives a list of dynamically allocated and aggregate member names. If
there is an exclude clause, there must be no include clause. Any dynamically allocated
member that appears in an exclude clause is excluded. An aggregate member that appears
in an exclude clause is likewise excluded. All dynamically allocated or aggregate members
of an excluded member are also excluded. If there is an exclude clause, then all shaped
dynamically allocated members that are not excluded will be processed for this data type
and policy. A member-shape may not appear in an exclude clause.

Question 3.13: Is there any reason to allow both exclude and include clauses in the
same policy for a datatype?

include clause

The include clause gives a list of dynamically allocated and aggregate member names. If
there is an include clause for a policy, there must be no exclude clause. Any dynamically
allocated member that appears in an include clause or a direction clause is included. An
aggregate member that appears in an include or direction clause is likewise included. All
dynamically allocated or aggregate members of an included member are also included. If
there is an include clause for a policy, then no dynamically allocated members will be
processed for this data type and policy unless they are included.

The member-name may be any of the options specified under the member selection and
direction clauses.

In the example in Figure the include clause specifies a dynamically allocated member
(m2) as well as an aggregate member (mst), which would then include the dynamically
allocated member mst.m1.

The reason for allowing a member-shape here is to avoid having to give the member twice,
once in shape and a second time in include. Similarly for the direction clauses below.

Direction Clauses
If a member appears in an in clause, out clause, inout clause or create clause, then the

default data movement for that member or submembers of that member will depend on the
directive and data clause as follows:
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typedef struct sti{
long sz;
float* ml;
}stil;
typedef struct p2{
long len;
float* m2;
float* q2;
stl mst;
#pragma policy include(m2,mst)
}p2;

Figure 3.2: include clause.

struct ti1{
float* mil;
float* m2;

int n;
#pragma acc policy in(ml[n]) inout(m2[n])
} oti_t;
struct t29
float* x1;
tl_t si;
int m;
#pragma acc policy in(sl,x1[m])
} t2_t;
t2_t* tt;
Figure 3.3: Direction clauses
default data movement
directive clause in out create inout or not given
data copy in out  none in and out
data copyin in none none in
data copyout none out none out
data create none none none none
update device in none none in
update self, host none out none out

The default direction is inout. If a policy directive specifies a direction for a member
of aggregate type, and that aggregate type specifies a different direction for one of its
submembers, the direction specified for that submember applies.

In the example in Figure |3.3] a data copy(tt[0:100]) would have the following behavior
on the members, for i from 0 through 99:

copyin(tt[i].x1[0:tt[i].m])
copyin(tt[i].s1.m1[0:tt[i].s1.n])
copy(tt[i].s1.m2[0:tt[i].sl.n])

Question 3.14: This is an important point but subtle. In Figure the policy specifies
direction in(s1), but the datatype for s1 specifies direction inout(m2). Which should
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apply to m2? Is the direction specified for s1 a default, or a limitation?

3.2.3 type clause

The type clause may only be used and must be used when the policy directive appears
outside the declaration of a C struct, a C++ class or struct, or a Fortran derived type.
The type specification in the type clause may be the typedef name of a C or C++ struct
or C++ class, the struct or class name (preceded by the keyword struct or class, as
appropriate), or a derived type name in Fortran. In that case, the directive is treated as if
it had appeared inside the struct, class or derived type specification.

3.3 Open Issues

Polymorphic datatypes in Fortran.
Dynamic types in C++.

Virtual function members in C++: this is a significant separate issue that needs some
serious thought.

We may want something between a deep update and a deep present. All the possible
behaviors are being discussed.

One big difference between this proposal and technical report TR-14-1: Complex Data
Management is the lack of a single line nested syntax, such as

#pragma acc enter data copyin(tt[0:n]::{s1.m2[0:s1.n]})
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