
The OpenACC Application Program Interface describes a
collection of compiler directives to specify loops and regions
of code in standard C, C++ and Fortran to be offloaded from a
host CPU to an attached accelerator device, providing portability
across operating systems, host CPUs and accelerators.

Most OpenACC directives apply to the immediately following
structured block or loop; a structured block is a single statement
or a compound statement (C and C++) or a sequence of
statements (Fortran) with a single entry point at the top and a
single exit at the bottom.

General Syntax

C/C++
#pragma acc directive [clause [[,] clause]...] new-line

FORTRAN
!$acc directive [clause [[,] clause]...]

An OpenACC construct is an OpenACC directive and, if
applicable, the immediately following statement, loop or
structured block.

REFERENCE GUIDE

API 2.5

Parallel Construct
A parallel construct launches a number of gangs executing
in parallel, where each gang may support multiple workers, each
with vector or SIMD operations.

C/C++
#pragma acc parallel [clause [[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc parallel [clause [[,] clause]…]
structured block
!$acc end parallel

Compute Construct and Data clauses are also allowed; data
clauses on the parallel construct modify the structured reference
counts for the associated data.

OTHER CLAUSES
reduction(operator: list)
A private copy of each variable in list is allocated for each gang.
The values for all gangs are combined with the operator at the
end of the parallel region. Valid C and C++ operators are +, *,
max, min, &, |, ,̂ &&, ||. Valid Fortran operators are +, *, max,
min, iand, ior, ieor, .and., .or., .eqv., .neqv.

private(list)
A copy of each variable in list is allocated for each gang.

firstprivate(list)
A copy of each variable in list is allocated for each gang and
initialized with the value of the variable of the encountering
thread.

Kernels Construct
A kernels construct surrounds loops to be executed on the
device, typically as a sequence of kernel operations.

C/C++
#pragma acc kernels [clause [[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc kernels [clause [[,] clause]…]
structured block
!$acc end kernels

Compute Construct and Data clauses are also allowed; data
clauses on the kernels construct modifty the structured reference
counts for the associated data.

Compute Construct Clauses
if(condition)
When the condition is nonzero or .TRUE. the kernels region will
execute on the device; otherwise, the encountering thread will
execute the region.

default(none)
Prevents the compiler from implicitly determining data attributes
for any variable used or assigned in the construct.

default(present)
Implicitly assume any non-scalar data not specified in a data
clause is present.

device_type or dtype([* | device-type-list])
May be followed by any of the clauses below. Clauses following
device_type will apply only when compiling for the given
device type(s). Clauses following device_type(*) apply to all
devices not named in another device_type clause.

async [(expression)]
The kernels region executes asynchronously with the
encountering thread on the corresponding async queue.

wait [(expression-list)]
The kernels region will not begin execution until all actions on
the corresponding async queue(s) are complete.

num_gangs(expression)
Controls how many parallel gangs are created.

num_workers(expression)
Controls how many workers are created in each gang.

vector_length(expression)
Controls the vector length on each worker.

Data Construct
An device data construct defines a region of the program
within which data is accessible by the device.

C/C++
#pragma acc data [clause[[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc data [clause[[,] clause]…]
structured block
!$acc end data

Data clauses are also allowed; data clauses on the data construct
modify the structured reference counts for the associated data.

OTHER CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be allocated or
moved to or from the device.

Enter Data Directive
An enter data directive is used to allocate and move data to
the device memory for the remainder of the program, or until a
matching exit data directive deallocates the data.

C/C++
#pragma acc enter data [clause[[,] clause]…] new-line

FORTRAN
!$acc enter data [clause[[,] clause]…]

CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be allocated or
moved to the device.

async [(expression)]
The data movement executes asynchronously with the
encountering thread on the corresponding async queue.

wait [(expression-list)]
The data movement will not begin execution until all actions on
the corresponding async queue(s) are complete.

copyin(list)
create(list)
See Data Clauses; data clauses on the enter data directive modify
the dynamic reference counts for the associated data.

Exit Data Directive
For data that was created with the enter data directive. the
exit data directive moves data from device memory and
deallocates the memory,

C/C++
#pragma acc exit data [clause[[,] clause]…] new-line

FORTRAN
!$acc exit data [clause[[,] clause]…]

CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be moved from
the device or deallocated.

async [(expression)]
The data movement executes asynchronously with the
encountering thread on the corresponding async queue.

wait [(expression-list)]
The data movement will not begin execution until all actions on
the corresponding async queue(s) are complete.

finalize
Sets the dynamic reference count to zero.

copyout(list)
delete(list)

acc_get_default_async()
Returns the async queue used by default when no queue is
specified in an async clause.

acc_set_default_async()
Sets the default async queue used by default when no queue is
specified on an async clause.

acc_on_device(devicetype)
In a parallel or kernels region, this is used to take different
execution paths depending on whether the program is running
on a device or on the host.

acc_malloc(size_t)
Returns the address of memory allocated on the device
device.

acc_free(d_void*)
Frees memory allocated by acc_malloc.

acc_map_data(h_void*, d_void*, size_t)
Creates a new data lifetime for the host address, using the
device data in the device address, with the data length in bytes.

acc_unmap_data(h_void*)
Unmaps the data lifetime previously created for the host address
by acc_map_data.

acc_deviceptr(h_void*)
Returns the device pointer associated with a host address.
Returns NULL if the host address is not present on the device.

acc_hostptr(d_void*)
Returns the host pointer associated with a device address.
Returns NULL if the device address is not associated with a
host address.

acc_memcpy_to_device(�d_void*, h_void*,
size_t)

acc_memcpy_to_device_async(�d_void*, h_void*,
size_t, int)

Copies data from the local thread memory to the device.

acc_memcpy_from_device(�h_void*, d_void*,
size_t)

acc_memcpy_from_device_async(�h_void*,
d_void*,
size_t, int)

Copies data from the device to the local thread memory.

acc_memcpy_device(�d_void*, d_void*, size_t)

acc_memcpy_device_async(�d_void*, d_void*,
size_t, int)

Copies data from one device memory location to another.

DATA MOVEMENT ROUTINES
The following data routines are called with C prototype:
	routine(h_void*, size_t)
and in Fortran with interface:
	 subroutine routine(a)
		type, dimension(:[,:]...) :: a
	subroutine routine(a, len)
		type :: a
		integer :: len

The async versions are colled with C prototype:
	routine_async(h_void*, size_t, int)
and in Fortran with interface:
	 subroutine routine_async(a, async)
		type, dimension(:[,:]...) :: a
		integer :: async
	subroutine routine(a, len, async)
		type :: a
		integer :: len, async

acc_copyin, acc_copyin_async
Acts like an enter data directive with a copyin clause. Tests
if the data is present, and if not allocates memory on and copies
data to the current device. Increments the dynamic reference
count.

acc_create, acc_create_async
�Acts like an enter data directive with a create clause. Tests
if the data is present, and if not allocates memory on the current
device. Increments the dynamic reference count.

acc_copyout, acc_copyout_async
�Acts like an exit data directive with a copyout and no
finalize clause. Decrements the dynamic reference count. If
both reference counts are zero, copies data from and deallocates
memory on the current device.

acc_copyout_finalize,
acc_copyout_finalize_async
�Acts like an exit data directive with a copyout and
finalize clause. Zeros the dynamic reference count. If both
reference counts are zero, copies data from and deallocates
memory on the current device.

acc_delete, acc_delete_async
Acts like an exit data directive with a delete and no
finalize clause. Decrements the dynamic reference count.
If both reference counts are zero, deallocates memory on the
current device.

acc_delete_finalize, acc_delete_finalize_async
Acts like an exit data directive with a delete and a
finalize clause. Zeros the dynamic reference count. If both
reference counts are zero, deallocates memory on the current
device.

acc_update_device, acc_update_device_async
Acts like an update directive with a device clause. Updates
the corresponding device memory from the host memory.

acc_update_self, acc_update_self_async
Acts like an update directive with a self clause. Updates the
host memory from the corresponding device memory.

acc_is_present
Tests whether the specified host data is present on the
device. Returns nonzero or .TRUE. if the data is fully present on
the device.

Environment Variables
ACC_DEVICE_TYPE device
The variable specifies the device type to which to connect.
This can be overridden with a call to acc_set_device_type.

ACC_DEVICE_NUM num
The variable specifies the device number to which to connect.
This can be overridden with a call to acc_set_device_num.

Conditional Compilation
The _OPENACC preprocessor macro is defined to have value
yyyymm when compiled with OpenACC directives enabled. The
version described here has value 201510.

© 2015 openacc-standard.org. All Rights Reserved.

More OpenACC resources available at
www.openacc.org

