
1

The OpenACC™
Application Programming

Interface

Version 1.0

November, 2011

2

Contents

1. Introduction .. 4

1.1 Scope .. 4

1.2 Execution Model .. 4

1.3 Memory Model .. 5

1.4 Organization of this document .. 6

1.5 References ... 6

2. Directives .. 7

2.1 Directive Format ... 7

2.2 Conditional Compilation ... 8

2.3 Internal Control Variables .. 8

2.3.1 Modifying and Retrieving ICV Values .. 8
2.4 Accelerator Compute Constructs ... 9

2.4.1 Parallel Construct ... 9
2.4.2 Kernels Construct .. 10
2.4.3 if clause .. 11
2.4.4 async clause .. 11
2.4.5 num_gangs clause ... 12
2.4.6 num_workers clause .. 12
2.4.7 vector_length clause .. 12
2.4.8 private clause .. 12
2.4.9 firstprivate clause .. 12
2.4.10 reduction clause ... 13

2.5 Data Construct ... 13

2.5.1 if clause .. 14
2.6 Host_Data Construct ... 14

2.6.1 use_device clause .. 15
2.7 Data Clauses .. 15

2.7.1 deviceptr clause ... 16
2.7.2 copy clause ... 16
2.7.3 copyin clause... 16
2.7.4 copyout clause .. 17
2.7.5 create clause ... 17
2.7.6 present clause ... 17
2.7.7 present_or_copy clause .. 17
2.7.8 present_or_copyin clause .. 17
2.7.9 present_or_copyout clause .. 18
2.7.10 present_or_create clause .. 18

2.8 Loop Construct ... 18

2.8.1 collapse clause .. 19
2.8.2 gang clause ... 19
2.8.3 worker clause .. 19
2.8.4 seq clause ... 19
2.8.5 vector clause ... 20
2.8.6 independent clause .. 20
2.8.7 private clause .. 20
2.8.8 reduction clause .. 20

3

2.9 Cache Directive .. 20

2.10 Combined Directives .. 21

2.11 Declare Directive ... 22

2.11.1 device_resident clause .. 23
2.12 Executable Directives ... 23

2.12.1 update directive ... 23
2.12.1.1 host clause .. 24
2.12.1.2 device clause ... 24
2.12.1.3 if clause .. 24
2.12.1.4 async clause .. 24

2.12.2 wait directive ... 25

3. Runtime Library Routines .. 26

3.1 Runtime Library Definitions .. 26

3.2 Runtime Library Routines ... 27

3.2.1 acc_get_num_devices .. 27
3.2.2 acc_set_device_type .. 27
3.2.3 acc_get_device_type .. 28
3.2.4 acc_set_device_num .. 28
3.2.5 acc_get_device_num .. 29
3.2.6 acc_async_test .. 29
3.2.7 acc_async_test_all ... 30
3.2.8 acc_async_wait ... 30
3.2.9 acc_async_wait_all .. 31
3.2.10 acc_init ... 31
3.2.11 acc_shutdown .. 32
3.2.12 acc_on_device ... 32
3.2.13 acc_malloc .. 33
3.2.14 acc_free .. 33

4. Environment Variables .. 34

4.1 ACC_DEVICE_TYPE ... 34

4.2 ACC_DEVICE_NUM .. 34

5. Glossary ... 35

4

1. Introduction

This document describes the compiler directives, library routines and environment variables

that collectively define the OpenACC™ Application Programming Interface (OpenACC API)

for offloading code in C, C++ and Fortran programs from a host CPU to an attached

accelerator device. The method outlined provides a model for accelerator programming that

is portable across operating systems and various types of host CPUs and accelerators. The

directives extend the ISO/ANSI standard C, C++ and Fortran base languages in a way that

allows a programmer to migrate applications incrementally to accelerator targets using

standards-based C, C++ or Fortran.

The directives and programming model defined in this document allow programmers to create

applications capable of using accelerators, without the need to manage data or program

transfers between the host and accelerator, or initiate accelerator startup and shutdown.

Rather, all of these details are implicit in the programming model and are managed by the

OpenACC API-enabled compilers and runtime environments. The programming model

allows the programmer to augment information available to the compilers, including

specification of data local to an accelerator, guidance on mapping of loops onto an

accelerator, and similar performance-related details.

1.1 Scope

This OpenACC API document covers only user-directed accelerator programming, where the

user specifies the regions of a host program to be targeted for offloading to an accelerator

device. The remainder of the program will be executed on the host. This document does not

describe features or limitations of the host programming environment as a whole; it is limited

to specification of loops and regions of code to be offloaded to an accelerator.

This document does not describe automatic detection and offloading of regions of code to an

accelerator by a compiler or other tool. This document does not describe targeting loops or

code regions to multiple accelerators attached to a single host. While future compilers may

allow for automatic offloading, multiple accelerators of the same type, or multiple

accelerators of different types, none of these features are addressed in this document.

1.2 Execution Model

The execution model targeted by OpenACC API-enabled compilers is host-directed execution

with an attached accelerator device, such as a GPU. The bulk of a user application executes on

the host. Compute intensive regions are offloaded to the accelerator device under control of

the host. The device executes parallel regions, which typically contain work-sharing loops, or

kernels regions, which typically contains one or more loops which are executed as kernels.

Even in accelerator-targeted regions, the host must orchestrate the execution by allocating

memory on the accelerator device, initiating data transfer, sending the code to the accelerator,

passing arguments to the parallel region, queuing the device code, waiting for completion,

transferring results back to the host, and deallocating memory. In most cases, the host can

queue a sequence of operations to be executed on the device, one after the other.

Most current accelerators support two or three levels of parallelism. Most accelerators

support coarse-grain parallelism, which is fully parallel execution across execution units.

There may be limited support for synchronization across coarse-grain parallel operations.

 OpenACC Programming Interface 5

Many accelerators also support fine-grain parallelism, often implemented as multiple threads

of execution within a single execution unit, which are typically rapidly switched on the

execution unit to tolerate long latency memory operations. Finally, most accelerators also

support SIMD or vector operations within each execution unit. The execution model on the

device side exposes these multiple levels of parallelism and the programmer is required to

understand the difference between, for example, a fully parallel loop and a loop that is

vectorizable but requires synchronization between statements. A fully parallel loop can be

programmed for coarse-grain parallel execution. Loops with dependences must either be split

to allow coarse-grain parallel execution, or be programmed to execute on a single execution

unit using fine-grain parallelism, vector parallelism, or sequentially.

1.3 Memory Model

The most significant difference between a host-only program and a host+accelerator program

is that the memory on the accelerator may be completely separate from host memory. This is

the case with most current GPUs, for example. In this case, the host may not be able to read

or write device memory directly because it is not mapped into the host’s virtual memory

space. All data movement between host memory and device memory must be performed by

the host through runtime library calls that explicitly move data between the separate

memories, typically using direct memory access (DMA) transfers. Similarly, it is not valid to

assume the accelerator can read or write host memory, though this is supported by some

accelerator devices.

The concept of separate host and accelerator memories is very apparent in low-level

accelerator programming languages such as CUDA or OpenCL, in which data movement

between the memories can dominate user code. In the OpenACC model, data movement

between the memories is implicit and managed by the compiler, based on directives from the

programmer. However, the programmer must be aware of the potentially separate memories

for many reasons, including but not limited to:

 Memory bandwidth between host memory and device memory determines the level of

compute intensity required to effectively accelerate a given region of code, and

 The limited device memory size may prohibit offloading of regions of code that

operate on very large amounts of data.

On the accelerator side, some accelerators (such as current GPUs) implement a weak memory

model. In particular, they do not support memory coherence between operations executed by

different execution units; even on the same execution unit, memory coherence is only

guaranteed when the memory operations are separated by an explicit barrier. Otherwise, if one

operation updates a memory location and another reads the same location, or two operations

store a value to the same location, the hardware may not guarantee the same result for each

execution. While a compiler can detect some potential errors of this nature, it is nonetheless

possible to write an accelerator parallel or kernels region that produces inconsistent numerical

results.

Some current accelerators have a software-managed cache, some have hardware managed

caches, and most have hardware caches that can be used only in certain situations and are

limited to read-only data. In low-level programming models such as CUDA or OpenCL

languages, it is up to the programmer to manage these caches. In the OpenACC model, these

caches are managed by the compiler with hints from the programmer in the form of directives.

 OpenACC Programming Interface 6

1.4 Organization of this document

The rest of this document is organized as follows:

Chapter 2, Directives, describes the C, C++ and Fortran directives used to delineate

accelerator regions and augment information available to the compiler for scheduling of loops

and classification of data.

Chapter 3, Runtime Library Routines, defines user-callable functions and library routines to

query the accelerator device features and control behavior of accelerator-enabled programs at

runtime.

Chapter 4, Environment Variables, defines user-settable environment variables used to control

behavior of accelerator-enabled programs at execution.

Chapter 5, Glossary, defines common terms used in this document.

1.5 References

 American National Standard Programming Language C, ANSI X3.159-1989 (ANSI

C).

 ISO/IEC 9899:1999, Information Technology – Programming Languages – C (C99).

 ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.

 ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran

– Part 1: Base Language, (Fortran 2003).

 OpenMP Application Program Interface, version 3.1, July 2011

 PGI Accelerator Programming Model for Fortran & C, version 1.3, November 2011

 NVIDIA CUDA™ C Programming Guide, version 4.0, May 2011.

 The OpenCL Specification, version 1.1, Khronos OpenCL Working Group, June

2011.

 OpenACC Programming Interface 7

2. Directives

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++,

OpenACC directives are specified using the #pragma mechanism provided by the language.

In Fortran, OpenACC directives are specified using special comments that are identified by a

unique sentinel. Compilers will typically ignore OpenACC directives if support is disabled or

not provided.

Restrictions

 OpenACC directives may not appear in Fortran PURE or ELEMENTAL procedures.

2.1 Directive Format

In C and C++, OpenACC directives are specified with the #pragma mechanism. The syntax

of an OpenACC directive is:

 #pragma acc directive-name [clause [[,] clause]…] new-line

Each directive starts with #pragma acc. The remainder of the directive follows the C and

C++ conventions for pragmas. White space may be used before and after the #; white space

may be required to separate words in a directive. Preprocessing tokens following the

#pragma acc are subject to macro replacement. Directives are case sensitive. An

OpenACC directive applies to the immediately following statement, structured block or loop.

In Fortran, OpenACC directives are specified in free-form source files as

 !$acc directive-name [clause [[,] clause]…]

The comment prefix (!) may appear in any column, but may only be preceded by white space

(spaces and tabs). The sentinel (!$acc) must appear as a single word, with no intervening

white space. Line length, white space, and continuation rules apply to the directive line.

Initial directive lines must have a space after the sentinel. Continued directive lines must have

an ampersand (&) as the last nonblank character on the line, prior to any comment placed in

the directive. Continuation directive lines must begin with the sentinel (possibly preceded by

white space) and may have an ampersand as the first non-white space character after the

sentinel. Comments may appear on the same line as a directive, starting with an exclamation

point and extending to the end of the line. If the first nonblank character after the sentinel is

an exclamation point, the line is ignored.

In Fortran fixed-form source files, OpenACC directives are specified as one of

 !$acc directive-name [clause [[,] clause]…]

 c$acc directive-name [clause [[,] clause]…]

 *$acc directive-name [clause [[,] clause]…]

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,

white space, continuation, and column rules apply to the directive line. Initial directive lines

 OpenACC Programming Interface 8

must have a space or zero in column 6, and continuation directive lines must have a character

other than a space or zero in column 6. Comments may appear on the same line as a directive,

starting with an exclamation point on or after column 7 and continuing to the end of the line.

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued

statements, and statements must not be embedded within continued directives. In this

document, free form is used for all Fortran OpenACC directive examples.

Only one directive-name can be specified per directive. The order in which clauses appear is

not significant, and clauses may be repeated unless otherwise specified. Some clauses have a

list argument; a list is a comma-separated list of variable names, array names, or, in some

cases, subarrays with subscript ranges.

2.2 Conditional Compilation

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and

mm is the month designation of the version of the OpenACC directives supported by the

implementation. This macro must be defined by a compiler only when OpenACC directives

are enabled. The version described here is 201111.

2.3 Internal Control Variables

An OpenACC implementation acts as if there are internal control variables (ICVs) that control

the behavior of the program. These ICVs are initialized by the implementation, and may be

given values through environment variables and through calls to OpenACC API routines. The

program can retrieve values through calls to OpenACC API routines.

The ICVs are:

 acc-device-type-var - controls which type of accelerator device is used..

 acc-device-num-var - controls which accelerator device of the selected type is used.

2.3.1 Modifying and Retrieving ICV Values

The following table shows environment variables or procedures to modify the values of the

internal control variables, and procedures to retrieve the values:

ICV Ways to modify values Way to retrieve value

acc-device-type-var ACC_DEVICE_TYPE

acc_set_device_type

acc_get_device_type

acc-device-num-var ACC_DEVICE_NUM

acc_set_device_num

acc_get_device_num

The initial values are implementation defined. After initial values are assigned, but before

any OpenACC construct or API routine is executed, the values of any environment variables

that were set by the user are read and the associated ICVs are modified accordingly. After

this point, no changes to the environment variables, either by the program or externally, will

affect the ICVs. Clauses on OpenACC constructs do not modify the ICV values.

 OpenACC Programming Interface 9

2.4 Accelerator Compute Constructs

2.4.1 Parallel Construct

Summary

This fundamental construct starts parallel execution on the accelerator device.

Syntax

In C and C++, the syntax of the OpenACC parallel directive is

 #pragma acc parallel [clause [[,] clause]…] new-line

 structured block

and in Fortran, the syntax is

 !$acc parallel [clause [[,] clause]…]

 structured block

 !$acc end parallel

where clause is one of the following:

 if(condition)

 async [(scalar-integer-expression)]

 num_gangs(scalar-integer-expression)

 num_workers(scalar-integer-expression)

 vector_length(scalar-integer-expression)

 reduction(operator : list)

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

 private(list)

 firstprivate(list)

Description

When the program encounters an accelerator parallel construct, gangs of workers are

created to execute the accelerator parallel region. Once the gangs are created, the number of

gangs and the number of workers in each gang remain constant for the duration of that parallel

region. One worker in each gang begins executing the code in the structured block of the

construct.

If the async clause is not present, there is an implicit barrier at the end of the accelerator

parallel region, and the host program will wait until all gangs have completed execution.

 OpenACC Programming Interface 10

An array or variable of aggregate data type referenced in the parallel construct that does

not appear in a data clause for the construct or any enclosing data construct will be treated

as if it appeared in a present_or_copy clause for the parallel construct. A scalar

variable referenced in the parallel construct that does not appear in a data clause for the

construct or any enclosing data construct will be treated as if it appeared in a private

clause (if not live-in or live-out) or a copy clause for the parallel construct.

Restrictions

 OpenACC parallel regions may not contain other parallel regions or kernels regions.

 A program may not branch into or out of an OpenACC parallel construct.

 A program must not depend on the order of evaluation of the clauses, or on any side

effects of the evaluations.

 At most one if clause may appear. In Fortran, the condition must evaluate to a

scalar logical value; in C or C++, the condition must evaluate to a scalar integer

value.

The copy, copyin, copyout, create, present, present_or_copy,

present_or_copyin, present_or_copyout, present_or_create,

deviceptr, firstprivate, and private data clauses are described in Section 2.7.

2.4.2 Kernels Construct

Summary

This construct defines a region of the program that is to be compiled into a sequence of

kernels for execution on the accelerator device.

Syntax

In C and C++, the syntax of the OpenACC kernels directive is

 #pragma acc kernels [clause [[,] clause]…] new-line

 structured block

and in Fortran, the syntax is

 !$acc kernels [clause [[,] clause]…]

 structured block

 !$acc end kernels

where clause is one of the following:

 if(condition)

 async [(scalar-integer-expression)]

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 OpenACC Programming Interface 11

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

Description

The compiler will break the code in the kernels region into a sequence of accelerator kernels.

Typically, each loop nest will be a distinct kernel. When the program encounters a kernels

construct, it will launch the sequence of kernels in order on the device. The number and

configuration of gangs of workers and vector length may be different for each kernel.

If the async clause is not present, there is an implicit barrier at the end of the kernels region,

and the host program will wait until all kernels have completed execution.

An array or variable of aggregate data type referenced in the kernels construct that does

not appear in a data clause for the construct or any enclosing data construct will be treated

as if it appeared in a present_or_copy clause for the kernels construct. A scalar

referenced in the kernels construct that does not appear in a data clause for the construct or

any enclosing data construct will be treated as if it appeared in a private clause (if not

live-in or live-out) or a copy clause for the kernels construct.

Restrictions

 OpenACC kernels regions may not contain other parallel regions or kernels regions.

 A program may not branch into or out of an OpenACC kernels construct.

 A program must not depend on the order of evaluation of the clauses, or on any side

effects of the evaluations.

 At most one if clause may appear. In Fortran, the condition must evaluate to a

scalar logical value; in C or C++, the condition must evaluate to a scalar integer

value.

The copy, copyin, copyout, create, present, present_or_copy,

present_or_copyin, present_or_copyout, present_or_create, and

deviceptr data clauses are described in Section 2.7.

2.4.3 if clause

The if clause is optional on the parallel and kernels constructs; when there is no if

clause, the compiler will generate code to execute the region on the accelerator device.

When an if clause appears, the compiler will generate two copies of the construct, one copy

to execute on the accelerator and one copy to execute on the host. When the condition in the

if clause evaluates to zero in C or C++, or .false. in Fortran, the host copy will be

executed. When the condition evaluates to nonzero in C or C++, or .true. in Fortran, the

accelerator copy will be executed.

2.4.4 async clause

The async clause is optional on the parallel and kernels constructs; when there is no

async clause, the host process will wait until the parallel or kernels region is complete

before executing any of the code that follows the construct. When there is an async clause,

 OpenACC Programming Interface 12

the parallel or kernels region will be executed by the accelerator device asynchronously while

the host process continues with the code following the region.

If present, the argument to the async must be an integer expression (int for C or C++,

integer for Fortran). The same integer expression value may be used in a wait directive

or various runtime routines to have the host process test for or wait for completion of the

region. An async clause may also be used with no argument, in which case the

implementation will use a value distinct from all explicit async arguments in the program.

Two asynchronous activities with the same argument value will be executed on the device in

the order they are encountered by the host process. Two asynchronous activities with

different handle values may be executed on the device in any order relative to each other. If

there are two or more host threads executing and sharing the same accelerator device, two

asynchronous activities with the same argument value will execute on the device one after the

other, though the relative order is not determined.

2.4.5 num_gangs clause

The num_gangs clause is allowed on the parallel construct. The value of the integer

expression defines the number of parallel gangs that will execute the region. If the clause is

not specified, an implementation-defined default will be used.

2.4.6 num_workers clause

The num_workers clause is allowed on the parallel construct. The value of the integer

expression defines the number of workers within each gang that will execute the region. If

the clause is not specified, an implementation-defined default will be used; the default value

may be 1.

2.4.7 vector_length clause

The vector_length clause is allowed on the parallel construct. The value of the

integer expression defines the vector length to use for vector or SIMD operations within each

worker of the gang. If the clause is not specified, an implementation-defined default will be

used. This vector length will be used for loops annotated with the vector clause on a loop

directive, and for loop automatically vectorized by the compiler. There may be

implementation-defined limits on the allowed values for the vector length expression.

2.4.8 private clause

The private clause is allowed on the parallel construct; it declares that a copy of each

item on the list will be created for each parallel gang.

2.4.9 firstprivate clause

The firstprivate clause is allowed on the parallel construct; it declares that a copy

of each item on the list will be created for each parallel gang, and that the copy will be

initialized with the value of that item on the host when the parallel construct is

encountered.

 OpenACC Programming Interface 13

2.4.10 reduction clause

The reduction clause is allowed on the parallel construct. It specifies a reduction

operator and one or more scalar variables. For each variable, a private copy is created for

each parallel gang and initialized for that operator. At the end of the region, the values for

each gang are combined using the reduction operator, and the result combined with the value

of the original variable and stored in the original variable. The reduction result is available

after the region.

The following table lists the operators that are valid and the initialization values; in each case,

the initialization value will be cast into the variable type. For max and min reductions, the

initialization values are the least representable value and the largest representable value for

the variable’s data type, respectively. Supported data types are the numerical data types in C

and C++ (int, float, double, complex) and Fortran (integer, real, double precision, complex).

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ~0 iand all bits on

| 0 ior 0

^ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

 .eqv. .true.

 .neqv. .false.

2.5 Data Construct

Summary

The data construct defines scalars, arrays and subarrays to be allocated in the device

memory for the duration of the region, whether data should be copied from the host to the

device memory upon region entry, and copied from the device to host memory upon region

exit.

Syntax

In C and C++, the syntax of the OpenACC data directive is

 #pragma acc data [clause [[,] clause]…] new-line

 structured block

and in Fortran, the syntax is

 OpenACC Programming Interface 14

 !$acc data [clause [[,] clause]…]

 structured block

 !$acc end data

where clause is one of the following:

 if(condition)

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

Description

Data will be allocated in the device memory and copied from the host memory to the device,

or copied back, as required. The data clauses are described in Sections 2.7.

2.5.1 if clause

The if clause is optional; when there is no if clause, the compiler will generate code to to

allocate memory on the accelerator device and move data from and to the host.

When an if clause appears, the program will conditionally allocate memory on, and move

data to and/or from the device. When the condition in the if clause evaluates to zero in C or

C++, or .false. in Fortran, no device memory will be allocated, and no data will be

moved. When the condition evaluates to nonzero in C or C++, or .true. in Fortran, the

data will be allocated and moved as specified.

2.6 Host_Data Construct

Summary

The host_data construct makes the address of device data available on the host.

Syntax

In C and C++, the syntax of the OpenACC data directive is

 #pragma acc host_data [clause [[,] clause]…] new-line

 structured block

and in Fortran, the syntax is

 !$acc host_data [clause [[,] clause]…]

 structured block

 !$acc end host_data

 OpenACC Programming Interface 15

where the only valid clause is:

 use_device(list)

Description

This construct is used to make the device address of data available in host code.

2.6.1 use_device clause

The use_device tells the compiler to use the device address of any variable or array in the

list in code within the construct. In particular, this may be used to pass the device address of

variables or arrays to optimized procedures written in a lower-level API. The variables or

arrays in list must be present in the accelerator memory due to data regions that contain this

construct.

2.7 Data Clauses

These data clauses may appear on the parallel construct, kernels construct or the

data construct. The list argument to each data clause is a comma-separated collection of

variable names, array names, or subarray specifications. In all cases, the compiler will

allocate and manage a copy of the variable or array in device memory, creating a visible

device copy of that variable or array.

The intent is to support accelerators with physically and logically separate memories from the

host. However, if the accelerator can access the host memory directly, the implementation

may avoid the memory allocation and data movement and simply use the host memory.

Therefore, a program that uses and assigns data on the host and uses and assigns the same data

on the accelerator within a data region without update directives to manage the coherence of

the two copies may get different answers on different accelerators and implementations.

In C and C++, a subarray is an array name followed by an extended array range specification

in brackets, with start and length, such as

 arr[2:n]

If the lower bound is missing, zero is used. If the length is missing and the array has known

size, the difference between the lower bound and the declared size of the array is used;

otherwise the length is required. The subarray arr[2:n] means element a[2], a[3], …,

a[2+n-1].

In Fortran, a subarray is an array name followed by a comma-separated list of range

specifications in parentheses, with lower and upper bound subscripts, such as

 arr(1:high,low:100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array,

if known, are used.

Restrictions

 In Fortran, the upper bound for the last dimension of an assumed-size dummy array

must be specified.

 In C and C++, the length for a dynamically allocated array must be explicitly

specified.

 OpenACC Programming Interface 16

 If a subarray is specified in a data clause, the compiler may choose to allocate

memory for only that subarray on the accelerator.

 The compiler may pad dimensions of arrays on the accelerator to improve memory

alignment and program performance.

 In Fortran, array pointers may be specified, but pointer association is not preserved in

the device memory.

 Any array or subarray in a data clause, including Fortran array pointers, must be a

contiguous block of memory.

 In C and C++, if a variable or array of struct or class type is specified, all the data

members of the struct or class are allocated and copied, as appropriate. If a struct or

class member is a pointer type, the data addressed by that pointer are not implicitly

copied.

 In C and C++, a member of a struct or class may be specified, including a subarray of

a member. However, the struct variable itself must be automatic, static or global, that

is, not accessed via a pointer. Members of a subarray of struct or class type may not

be specified.

 In Fortran, if a variable or array with derived type is specified, all the members of that

derived type are allocated and copied, as appropriate. If any member has the

allocatable or pointer attribute, the data accessed through that member are

not copied.

 In Fortran, members of variables of derived type may be specified, including a

subarray of a member. However, the derived type variable must not have the

allocatable or pointer attribute. Members of subarrays of derived type may

not be specified.

2.7.1 deviceptr clause

The deviceptr clause is used to declare that the pointers in the list are device pointers, so

the data need not be allocated or moved between the host and device for this pointer.

In C and C++, the variables in list must be pointers.

In Fortran, the variable in list must be dummy arguments (arrays or scalars), and may not have

the Fortran pointer, allocatable or value attributes.

2.7.2 copy clause

The copy clause is used to declare that the variables, arrays or subarrays in the list have

values in the host memory that need to be copied to the device memory, and are assigned

values on the accelerator that need to be copied back to the host. If a subarray is specified,

then only that subarray of the array needs to be copied. The data is copied to the device

memory before entry to the region, and data copied back to the host memory when the region

is complete.

2.7.3 copyin clause

The copyin clause is used to declare that the variables, arrays or subarrays in the list have

values in the host memory that need to be copied to the device memory. If a subarray is

 OpenACC Programming Interface 17

specified, then only that subarray of the array needs to be copied. If a variable, array or

subarray appears in a copyin, the clause implies that the data need not be copied back from

the device memory to the host memory, even if those values were changed on the accelerator.

The data is copied to the device memory upon entry to the region.

2.7.4 copyout clause

The copyout clause is used to declare that the variables, arrays or subarrays in the list are

assigned or contain values in the device memory that need to be copied back to the host

memory at the end of the accelerator region. If a subarray is specified, then only that subarray

of the array needs to be copied. If a variable, array or subarray appears in a copyout, the

clause implies that the data need not be copied to the device memory from the host memory,

even if those values are used on the accelerator. The data is copied back to the host memory

upon exit from the region.

2.7.5 create clause

The create clause is used to declare that the variables, arrays or subarrays in the list need to

be allocated (created) in the device memory, but the values in the host memory are not needed

on the accelerator, and any values computed and assigned on the accelerator are not needed on

the host. No data in this clause will be copied between the host and device memories.

2.7.6 present clause

The present clause is used to tell the implementation that the variables or arrays in the list

are already present in the accelerator memory due to data regions that contain this region,

perhaps from procedures that call the procedure containing this construct. The

implementation will find and use that existing accelerator data. If there is no containing data

region that has placed any of the variables or arrays on the accelerator, the program will halt

with an error.

If the containing data region specifies a subarray, the present clause must specify the same

subarray, or a subarray that is a proper subset of the subarray in the data region. It is a

runtime error if the subarray in the present clause includes array elements that are not part

of the subarray specified in the data region.

2.7.7 present_or_copy clause

The present_or_copy clause is used to tell the implementation to test whether each of

the variables or arrays on the list is already present in the accelerator memory. If it is already

present, that accelerator data is used. If it is not present, the data is allocated in the accelerator

memory and copied from the host to the accelerator at region entry and back to the host at

region exit, as with the copy clause. This clause may be shortened to pcopy. The same

restrictions regarding subarrays in the present clause apply to this clause.

2.7.8 present_or_copyin clause

The present_or_copyin clause is used to tell the implementation to test whether each of

the variables or arrays on the list is already present in the accelerator memory. If it is already

present, that accelerator data is used. If it is not present, the data is allocated in the accelerator

memory and copied from the host to the accelerator at region entry, as with the copyin

 OpenACC Programming Interface 18

clause. This clause may be shortened to pcopyin. The same restrictions regarding

subarrays in the present clause apply to this clause.

2.7.9 present_or_copyout clause

The present_or_copyout clause is used to tell the implementation to test whether each

of the variables or arrays on the list is already present in the accelerator memory. If it is

already present, that accelerator data is used. If it is not present, the data is allocated in the

accelerator memory and copied from the accelerator back to the host at region exit, as with the

copyout clause. This clause may be shortened to pcopyout. The same restrictions

regarding subarrays in the present clause apply to this clause.

2.7.10 present_or_create clause

The present_or_create clause is used to tell the implementation to test whether each of

the variables or arrays on the list is already present in the accelerator memory. If it is already

present, that accelerator data is used. If it is not present, the data is allocated in the accelerator

memory, as with the create clause. This clause may be shortened to pcreate. The same

restrictions about subarrays in the present clause applies to this clause.

2.8 Loop Construct

Summary

The OpenACC loop directive applies to a loop which must immediately follow this

directive. The loop directive can describe what type of parallelism to use to execute the loop

and declare loop-private variables and arrays and reduction operations.

Syntax

In C and C++, the syntax of the loop directive is

 #pragma acc loop [clause [[,] clause]...]new-line

 for loop

In Fortran, the syntax of the loop directive is

 !$acc loop [clause [[,] clause]…]

 do loop

where clause is one of the following:

 collapse(n)

 gang [(scalar-integer-expression)]

 worker [(scalar-integer-expression)]

 vector [(scalar-integer-expression)]

 seq

 independent

 private(list)

 reduction(operator : list)

Some clauses are only valid in the context of a parallel region, and some only in the context of

a kernels region; see the descriptions below.

 OpenACC Programming Interface 19

In a parallel region, a loop directive with no gang, worker or vector clauses allows the

implementation to automatically select whether to execute the loop across gangs, workers

within a gang, or whether to execute as vector operations. The implementation may also

choose to use vector operations to execute any loop with no loop directive, using classical

automatic vectorization.

2.8.1 collapse clause

The collapse clause is used to specify how many tightly nested loops are associated with

the loop construct. The argument to the collapse clause must be a constant positive

integer expression. If no collapse clause is present, only the immediately following loop

is associated with the loop directive.

If more than one loop is associated with the loop construct, the iterations of all the

associated loops are all scheduled according to the rest of the clauses. The trip count for all

loops associated with the collapse clause must be computable and invariant in all the

loops.

It is implementation-defined whether a gang, worker or vector clause on the directive is

applied to each loop, or to the linearized iteration space.

2.8.2 gang clause

In an accelerator parallel region, the gang clause specifies that the iterations of the associated

loop or loops are to be executed in parallel by distributing the iterations among the gangs

created by the parallel construct. No argument is allowed. The loop iterations must be

data independent, except for variables specified in a reduction clause.

In an accelerator kernels region, the gang clause specifies that the iterations of the associated

loop or loops are to be executed in parallel across the gangs created for any kernel contained

within the loop or loops. If an argument is specified, it specifies how many gangs to use to

execute the iterations of this loop.

2.8.3 worker clause

In an accelerator parallel region, the worker clause specifies that the iterations of the

associated loop or loops are to be executed in parallel by distributing the iterations among the

multiple workers within a single gang. No argument is allowed. The loop iterations must be

data independent, except for variables specified in a reduction clause. It is

implementation-defined whether a loop with the worker clause may contain a loop

containing the gang clause.

In an accelerator kernels region, the worker clause specifies that the iterations of the

associated loop or loops are to be executed in parallel across the workers within the gangs

created for any kernel contained within the loop or loops. If an argument is specified, it

specifies how many workers to use to execute the iterations of this loop.

2.8.4 seq clause

The seq clause specifies that the associated loop or loops are to be executed sequentially by

the accelerator; this is the default in an accelerator parallel region. This clause will

override any automatic compiler parallelization or vectorization.

 OpenACC Programming Interface 20

2.8.5 vector clause

In an accelerator parallel region, the vector clause specifies that the iterations of the

associated loop or loops are to be executed in vector or SIMD mode. The operations will

execute using vectors of the length specified or chosen for the parallel region. It is

implementation-defined whether a loop with the vector clause may contain a loop

containing the gang or worker clause.

In an accelerator kernels region, the vector clause specifies that the iterations of the associated

loop or loops are to be executed with vector or SIMD processing. If an argument is specified,

the iterations will be processed in vector strips of that length; if no argument is specified, the

compiler will choose an appropriate vector length.

2.8.6 independent clause

The independent clause is allowed on loop directives in kernels regions, and tells the

compiler that the iterations of this loop are data-independent with respect to each other. This

allows the compiler to generate code to execute the iterations in parallel with no

synchronization.

Restrictions

 It is a programming error to use the independent clause if any iteration writes to a

variable or array element that any other iteration also writes or reads, except for

variables in a reduction clause.

2.8.7 private clause

The private clause on a loop directive specifies that a copy of each item on the list will be

created for each iteration of the associated loop or loops.

2.8.8 reduction clause

The reduction clause is allowed on a loop construct with the gang, worker or vector

clauses. It specifies a reduction operator and one or more scalar variables. For each reduction

variable, a private copy is created for each iteration of the associated loop or loops and

initialized for that operator; see the table in section 2.4.10. At the end of the loop, the values

for each iteration are combined using the specified reduction operator, and the result stored in

the original variable at the end of the parallel or kernels region.

In a parallel region, if the reduction clause is used on a loop with the vector or worker

clauses (and no gang clause), and the scalar variable also appears in a private clause on

the parallel construct, the value of the private copy of the scalar will be updated at the

exit of the loop. Otherwise, variables that appear in a reduction clause on a loop in a

parallel region will not be updated until the end of the region.

2.9 Cache Directive

Summary

The cache directive may appear at the top of (inside of) a loop. It specifies array elements or

subarrays that should be fetched into the highest level of the cache for the body of the loop.

Syntax

 OpenACC Programming Interface 21

In C and C++, the syntax of the cache directive is

 #pragma acc cache(list) new-line

In Fortran, the syntax of the cache directive is

 !$acc cache (list)

The entries in list must be single array elements or simple subarray. In C and C++, a simple

subarray is an array name followed by an extended array range specification in brackets, with

start and length, such as

 arr[lower:length]

where the lower bound is a constant, loop invariant, or the for loop index variable plus or

minus a constant or loop invariant, and the length is a constant.

In Fortran, a simple subarray is an array name followed by a comma-separated list of range

specifications in parentheses, with lower and upper bound subscripts, such as

 arr(lower:upper,lower2:upper2)

The lower bounds must be constant, loop invariant, or the do loop index variable plus or

minus a constant or loop invariant; moreover the difference between the corresponding upper

and lower bounds must be a constant.

2.10 Combined Directives

Summary

The combined OpenACC parallel loop and kernels loop directives are shortcuts

for specifying a loop directive nested immediately inside a parallel or kernels

construct. The meaning is identical to explicitly specifying a parallel or kernels

directive containing a loop directive. Any clause that is allowed on a parallel or loop

directive are allowed on the parallel loop directive, and any clause allowed on a

kernels or loop directive are allowed on a kernels loop directive.

Syntax

In C and C++, the syntax of the parallel loop directive is

 #pragma acc parallel loop [clause [[,] clause]...]new-line

 for loop

In Fortran, the syntax of the parallel loop directive is

 !$acc parallel loop [clause [[,] clause]…]

 do loop

 [!$acc end parallel loop]

The associated structured block is the loop which must immediately follow the directive. Any

of the parallel or loop clauses valid in a parallel region may appear.

In C and C++, the syntax of the kernels loop directive is

 #pragma acc kernels loop [clause [[,] clause]...]new-line

 for loop

In Fortran, the syntax of the kernels loop directive is

 OpenACC Programming Interface 22

 !$acc kernels loop [clause [[,] clause]…]

 do loop

 [!$acc end kernels loop]

The associated structured block is the loop which must immediately follow the directive. Any

of the kernels or loop clauses valid in a kernels region may appear.

Restrictions

 This combined directive may not appear within the body of another accelerator

parallel or kernels region.

 The restrictions for the parallel, kernels and loop constructs apply.

2.11 Declare Directive

Summary

A declare directive is used in the declaration section of a Fortran subroutine, function, or

module, or following an variable declaration in C or C++. It can specify that a variable or

array is to be allocated in the device memory for the duration of the implicit data region of a

function, subroutine or program, and specify whether the data values are to be transferred

from the host to the device memory upon entry to the implicit data region, and from the

device to the host memory upon exit from the implicit data region. These directives create a

visible device copy of the variable or array.

Syntax

In C and C++, the syntax of the declare directive is:

 #pragma acc declare declclause [[,] declclause]... new-line

In Fortran the syntax of the declare directive is:

 !$acc declare declclause [[,] declclause]...

where declclause is one of the following:

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

 device_resident(list)

The associated region is the implicit region associated with the function, subroutine, or

program in which the directive appears. If the directive appears in a Fortran MODULE

subprogram, the associated region is the implicit region for the whole program. Otherwise,

the clauses have exactly the same behavior as having an explicit data construct surrounding

the body of the procedure with these clauses. The data clauses are described in section 2.7.

 OpenACC Programming Interface 23

Restrictions

 A variable or array may appear at most once in all the clauses of declare directives

for a function, subroutine, program, or module.

 Subarrays are not allowed in declare directives.

 If a variable or array appears in a declare directive, the same variable or array may

not appear in a data clause for any construct where the declaration of the variable is

visible.

 In Fortran, assumed-size dummy arrays may not appear in a declare directive.

 The compiler may pad dimensions of arrays on the accelerator to improve memory

alignment and program performance.

 In Fortran, pointer arrays may be specified, but pointer association is not preserved in

the device memory.

2.11.1 device_resident clause

Summary

The device_resident specifies that the memory for the named variables should be

allocated in the accelerator device memory, not in the host memory.

In C and C++, this means the host may not be able to access these variables. Variables in list

must be file static or local to a function.

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the

variable will be allocated in and deallocated from the accelerator device memory when the

host program executes an allocate or deallocate statement for that variable. If the

variable has the Fortran pointer attribute, it may be allocated or deallocated in the

accelerator device memory, or may appear on the left hand side of a pointer assignment

statement, if the right hand side variable itself appears in a device_resident clause. If

the variable has neither allocatable nor pointer attributes, it must be local to a subprogram.

2.12 Executable Directives

2.12.1 update directive

Summary

The update directive is used within an explicit or implicit data region to update all or part of

a host memory array with values from the corresponding array in device memory, or to update

all or part of a device memory array with values from the corresponding array in host

memory.

Syntax

In C and C++, the syntax of the update directive is:

 #pragma acc update clause [[,] clause]... new-line

In Fortran the syntax of the update data directive is:

 !$acc update clause [[,] clause]...

where clause is one of the following:

 OpenACC Programming Interface 24

 host(list)

 device(list)

 if(condition)

 async [(scalar-integer-expression)]

The list argument to an update clause is a comma-separated collection of variable names,

array names, or subarray specifications. Multiple subarrays of the same array may appear in a

list. The effect of an update clause is to copy data from the accelerator device memory to

the host memory for update host, and from host memory to accelerator device memory

for update device. The updates are done in the order in which they appear on the

directive. There must be a visible device copy of the variables or arrays that appear in the

host or device clauses. At least one host or device clause must appear.

2.12.1.1 host clause

The host clause specifies that the variables, arrays or subarrays in the list are to be copied

from the accelerator device memory to the host memory.

2.12.1.2 device clause

The device clause specifies that the variables, arrays or subarrays in the list are to be copied

from the accelerator host memory to the accelerator device memory.

2.12.1.3 if clause

The if clause is optional; when there is no if clause, the compiler will generate code to

perform the updates unconditionally. When an if clause appears, the compiler will generate

code to conditionally perform the updates only when the condition evaluates to nonzero in C

or C++, or .true. in Fortran.

2.12.1.4 async clause

The async clause is optional; when there is no async clause, the host process will wait

until the updates are complete before executing any of the code that follows the update

directive. When there is an async clause, the updates will be processed asynchronously

while the host process continues with the code following the directive.

If the async clause has an argument, that argument must be the name of an integer variable

(int for C or C++, integer for Fortran). The variable may be used in a wait directive or

various runtime routines to make the host process test or wait for completion of the update.

An async clause may also be used with no argument, in which case the implementation will

use a value distinct from all explicit async arguments in the program.

Two asynchronous activities with the same argument value will be executed on the device in

the order they are encountered by the host process. Two asynchronous activities with

different handle values may be executed on the device in any order relative to each other. If

there are two or more host threads executing and sharing the same accelerator device, two

asynchronous activities with the same argument value will execute on the device one after the

other, though the relative order is not determined.

Restrictions

 OpenACC Programming Interface 25

 The update directive is executable. It must not appear in place of the statement

following an if, while, do, switch, or label in C or C++, or in place of the statement

following a logical if in Fortran.

 A variable or array which appears in the list of an update directive must have a

visible device copy.

2.12.2 wait directive

Summary

The wait directive causes the program to wait for completion of an asynchronous activity,

such as an accelerator parallel or kernels region or update directive.

Syntax

In C and C++, the syntax of the wait directive is:

 #pragma acc wait [(scalar-integer-expression)] new-line

In Fortran the syntax of the wait directive is:

 !$acc wait [(scalar-integer-expression)]

The argument, if specified, must be an integer expression (int for C or C++, integer for

Fortran). The host thread will wait until all asynchronous activities that had an async clause

with an argument with the same value have completed.

If no argument is specified, the host process will wait until all asynchronous activities have

completed.

If there are two or more host threads executing and sharing the same accelerator device, a wait

directive will cause the host thread to wait until at least all of the appropriate asynchronous

activities initiated by that host thread have completed. There is no guarantee that all the

similar asynchronous activities initiated by some other host thread will have completed.

 OpenACC Programming Interface 26

3. Runtime Library Routines

This chapter describes the OpenACC runtime library routines that are available for use by

programmers. Use of these routines may limit portability to systems that do not support the

OpenACC API. Conditional compilation using the _OPENACC preprocessor variable may

preserve portability.

This chapter has two sections:

 Runtime library definitions

 Runtime library routines

Restrictions

 In Fortran, none of the OpenACC runtime library routines may be called from a

PURE or ELEMENTAL procedure.

3.1 Runtime Library Definitions

In C and C++, prototypes for the runtime library routines described in this chapter are

provided in a header file named openacc.h. All the library routines are extern functions

with “C” linkage. This file defines:

 The prototypes of all routines in the chapter.

 Any datatypes used in those prototypes, including an enumeration type to describe

types of accelerators.

In Fortran, interface declarations are provided in a Fortran include file named

openacc_lib.h and in a Fortran module named openacc. These files define:

 Interfaces for all routines in the chapter.

 The integer parameter openacc_version with a value yyyymm where yyyy and

mm are the year and month designations of the version of the Accelerator

programming model supported. This value matches the value of the preprocessor

variable _OPENACC.

 Integer parameters to define integer kinds for arguments to those routines.

 Integer parameters to describe types of accelerators.

Many of the routines accept or return a value corresponding to the type of accelerator device.

In C and C++, the datatype used for device type values is acc_device_t; in Fortran, the

corresponding datatype is integer(kind=acc_device_kind). The possible values

for device type are implementation specific, and are listed in the C or C++ include file

openacc.h, the Fortran include file openacc_lib.h and the Fortran module

openacc_lib. Four values are always supported: acc_device_none,

acc_device_default, acc_device_host and acc_device_not_host. For

other values, look at the appropriate files included with the implementation, or read the

documentation for the implementation. The value acc_device_default will never be

returned by any function; its use as an argument will tell the runtime library to use the default

device type for that implementation.

 OpenACC Programming Interface 27

3.2 Runtime Library Routines

3.2.1 acc_get_num_devices

Summary

The acc_get_num_devices routine returns the number of accelerator devices of the

given type attached to the host.

Format

C or C++:

 int acc_get_num_devices(acc_device_t);

Fortran:

 integer function acc_get_num_devices(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_get_num_devices routine returns the number of accelerator devices of the

given type attached to the host. The argument tells what kind of device to count.

3.2.2 acc_set_device_type

Summary

The acc_set_device_type routine tells the runtime which type of device to use when

executing an accelerator parallel or kernels region. This is useful when the implementation

allows the program to be compiled to use more than one type of accelerator.

Format

C or C++:

 void acc_set_device_type (acc_device_t);

Fortran:

 subroutine acc_set_device_type (devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_set_device_type routine tells the runtime which type of device to use among

those available. To be effective, this routine should be called before any accelerator data,

parallel or kernels regions have been entered, or after an acc_shutdown call.

Restrictions

 This routine may not be called during execution of an accelerator parallel, kernels or

data region.

 If the device type specified is not available, the behavior is implementation-defined;

in particular, the program may abort.

 If the routine is called more than once without an intervening acc_shutdown call,

with a different value for the device type argument, the behavior is implementation-

defined.

 OpenACC Programming Interface 28

 If some accelerator regions are compiled to only use one device type, calling this

routine with a different device type may produce undefined behavior.

3.2.3 acc_get_device_type

Summary

The acc_get_device_type routine tells the program what type of device will be used to

run the next accelerator region, if one has been selected. This is useful when the

implementation allows the program to be compiled to use more than one type of accelerator.

Format

C or C++:

 acc_device_t acc_get_device_type (void);

Fortran:

 function acc_get_device_type ()

 integer(acc_device_kind) acc_get_device

Description

The acc_get_device_type routine returns a value to tell the program what type of

device will be used to run the next accelerator parallel or kernels region, if one has been

selected. The device type may have been selected by the program with an

acc_set_device_type call, with an environment variable, or by the default behavior of

the program. This is only effective for accelerator regions that were compiled to run on more

than one type of accelerator device.

Restrictions

 This routine may not be called during execution of an accelerator parallel or kernels

region.

 If the device type has not yet been selected, the value acc_device_none will be

returned.

3.2.4 acc_set_device_num

Summary

The acc_set_device_num routine tells the runtime which device to use.

Format

C or C++

 void acc_set_device_num(int, acc_device_t);

Fortran:

 subroutine acc_set_device_num(devicenum, devicetype)

 integer devicenum

 integer(acc_device_kind) devicetype

Description

 OpenACC Programming Interface 29

The acc_set_device_num routine tells the runtime which device to use among those

attached of the given type. If the value of devicenum is zero, the runtime will revert to its

default behavior, which is implementation-defined. If the value of the second argument is

zero, the selected device number will be used for all attached accelerator types.

Restrictions

 This routine may not be called during execution of an accelerator parallel, kernels or

data region.

 If the value of devicenum is greater than the value returned by

acc_get_num_devices for that device type, the behavior is implementation-

defined.

 Calling acc_set_device_num implies a call to acc_set_device_type with

that device type argument.

3.2.5 acc_get_device_num

Summary

The acc_get_device_num routine returns the device number of the specified device type

that will be used to run the next accelerator parallel or kernels region.

Format

C or C++:

 int acc_get_device_num(acc_device_t);

Fortran:

 integer function acc_get_device_num(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_get_device_num routine returns an integer corresponding to the device number

of the specified device type that will be used to execute the next accelerator parallel or kernels

region.

Restrictions

 This routine may not be called during execution of an accelerator parallel or kernels

region.

3.2.6 acc_async_test

Summary

The acc_async_test routine tests for completion of all associated asynchronous

activities.

Format

C or C++:

 int acc_async_test(int);

 OpenACC Programming Interface 30

Fortran:

 logical function acc_async_test(arg)

 integer(acc_handle_kind) arg

Description

The argument must be an integer expression. If that value appeared in one or more async

clauses, and all such asynchronous activities have completed, the acc_async_test

routine will return with a nonzero value or .true. If some such asynchronous activities

have not completed, the acc_async_test routine will return with a zero value or

.false.. If there are two or more host threads sharing the same accelerator, the

acc_async_test routine will return with a zero value or .false. only if all matching

asynchronous activities initiated by this host thread have completed; there is no guarantee that

all matching asynchronous activities initiated by other host threads have completed.

Restrictions

 This routine may not be called by an accelerator parallel or kernels region.

3.2.7 acc_async_test_all

Summary

The acc_async_test_all routine waits for completion of all asynchronous activities.

Format

C or C++:

 int acc_async_test_all();

Fortran:

 logical function acc_async_test_all()

Description

If all outstanding asynchronous activities have completed, the acc_async_test_all

routine will return with a nonzero value or .true. If some asynchronous activities have not

completed, the acc_async_test_all routine will return with a zero value or .false..

If there are two or more host threads sharing the same accelerator, the

acc_async_test_all routine will return with a zero value or .false. only if all

outstanding asynchronous activities initiated by this host thread have completed; there is no

guarantee that all asynchronous activities initiated by other host threads have completed.

Restrictions

 This routine may not be called by an accelerator parallel or kernels region.

3.2.8 acc_async_wait

Summary

The acc_async_wait routine waits for completion of all associated asynchronous

activities.

Format

C or C++:

 OpenACC Programming Interface 31

 void acc_async_wait(int);

Fortran:

 subroutine acc_async_wait(arg)

 integer(acc_handle_kind) arg

Description

The argument must be an integer expression. If that value appeared in one or more async

clauses, the acc_async_wait routine will not return until the latest such asynchronous

activity has completed. If there are two or more host threads sharing the same accelerator, the

acc_async_wait routine will return only if all matching asynchronous activities initiated

by this host thread have completed; there is no guarantee that all matching asynchronous

activities initiated by other host threads have completed.

 .Restrictions

 This routine may not be called by an accelerator parallel or kernels region.

3.2.9 acc_async_wait_all

Summary

The acc_async_wait_all routine waits for completion of all asynchronous activities.

Format

C or C++:

 void acc_async_wait_all();

Fortran:

 subroutine acc_async_wait_all()

Description

The acc_async_wait_all routine will not return until the all asynchronous activitie have

completed. If there are two or more host threads sharing the same accelerator, the

acc_async_wait_all routine will return only if all asynchronous activities initiated by

this host thread have completed; there is no guarantee that all asynchronous activities initiated

by other host threads have completed.

 Restrictions

 This routine may not be called by an accelerator parallel or kernels region.

3.2.10 acc_init

Summary

The acc_init routine tells the runtime to initialize the runtime for that device type. This

can be used to isolate any initialization cost from the computational cost, when collecting

performance statistics.

Format

C or C++:

 OpenACC Programming Interface 32

 void acc_init (acc_device_t);

Fortran:

 subroutine acc_init (devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_init routine also calls acc_set_device. To be effective, this routine should

be called before any accelerator regions have been entered, or after an acc_shutdown call.

Restrictions

 This routine may not be called by an accelerator parallel or kernels region.

 If the device type specified is not available, the behavior is implementation-defined;

in particular, the program may abort.

 If the routine is called more than once without an intervening acc_shutdown call,

with a different value for the device type argument, the behavior is implementation-

defined.

 If some accelerator regions are compiled to only use one device type, calling this

routine with a different device type may produce undefined behavior.

3.2.11 acc_shutdown

Summary

The acc_shutdown routine tells the runtime to shut down the connection to the given

accelerator device, and free up any runtime resources. This may be used to connect to a

different device, if the program was built in a way to run on different device types.

Format

C or C++:

 void acc_shutdown (acc_device_t);

Fortran:

 subroutine acc_shutdown (devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_shutdown routine disconnects the program from the accelerator device.

Restrictions

 This routine may not be called during execution of an accelerator region.

3.2.12 acc_on_device

Summary

The acc_on_device routine tells the program whether it is executing on a particular

device.

Format

 OpenACC Programming Interface 33

C or C++:

 int acc_on_device (acc_device_t);

Fortran:

 logical function acc_on_device (devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_on_device routine may be used to execute different paths depending on whether

the code is running on the host or on some accelerator. If the acc_on_device routine has

a compile-time constant argument, it evaluates at compile time to a constant. The argument

must be one of the defined accelerator types. If the argument is acc_device_host, then

outside of an accelerator parallel or kernels region, or in an accelerator parallel or kernels

region that is executed on the host processor, this routine will evaluate to nonzero for C or

C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or C++, and

.false. for Fortran.

3.2.13 acc_malloc

Summary

The acc_malloc routine allocates memory on the accelerator device.

Format

C or C++:

 void* acc_malloc (size_t);

Description

The acc_malloc routine may be used to allocate memory on the accelerator device.

Pointers assigned from this function may be used in deviceptr clauses to tell the compiler

that the pointer target is resident on the accelerator.

3.2.14 acc_free

Summary

The acc_free routine frees memory on the accelerator device.

Format

C or C++:

 void acc_free (void*);

Description

The acc_free routine will free previously allocated memory on the accelerator device; the

argument should be a pointer value that was returned by a call to acc_malloc.

 OpenACC Programming Interface 34

4. Environment Variables

This chapter describes the environment variables that modify the behavior of accelerator

regions. The names of the environment variables must be upper case. The values assigned

environment variables are case insensitive and may have leading and trailing white space. If

the values of the environment variables change after the program has started, even if the

program itself modifies the values, the behavior is implementation defined.

4.1 ACC_DEVICE_TYPE

The ACC_DEVICE_TYPE environment variable controls the default device type to use when

executing accelerator parallel and kernels regions, if the program has been compiled to use

more than one different type of device. The allowed values of this environment variable are

implementation-defined. See the release notes for currently-supported values of this

environment variable.

Example:

 setenv ACC_DEVICE_TYPE NVIDIA

 export ACC_DEVICE_TYPE=NVIDIA

4.2 ACC_DEVICE_NUM

The ACC_DEVICE_NUM environment variable controls the default device number to use

when executing accelerator regions. The value of this environment variable must be a

nonnegative integer between zero and the number of devices of the desired type attached to

the host. If the value is zero, the implementation-defined default is used. If the value is

greater than the number of devices attached, the behavior is implementation-defined.

Example:

 setenv ACC_DEVICE_NUM 1

 export ACC_DEVICE_NUM=1

 OpenACC Programming Interface 35

5. Glossary

Clear and consistent terminology is important in describing any programming model. We

define here the terms you must understand in order to make effective use of this document and

the associated programming model.

Accelerator – a special-purpose co-processor attached to a CPU and to which the CPU can

offload data and compute kernels to perform compute-intensive calculations.

Barrier – a type of synchronization where all parallel execution units or threads must reach

the barrier before any execution unit or thread is allowed to proceed beyond the barrier;

modeled after the starting barrier on a horse race track.

Compute intensity – for a given loop, region, or program unit, the ratio of the number of

arithmetic operations performed on computed data divided by the number of memory

transfers required to move that data between two levels of a memory hierarchy.

Construct – a directive and the associated statement, loop or structured block, if any.

Compute region – a parallel region or a kernels region.

CUDA –the CUDA environment from NVIDIA is a C-like programming environment used to

explicitly control and program an NVIDIA GPU.

Data region – a region defined by an Accelerator data construct, or an implicit data region

for a function or subroutine containing Accelerator directives. Data constructs typically

require device memory to be allocated and data to be copied from host to device memory

upon entry, and data to be copied from device to host memory and device memory deallocated

upon exit. Data regions may contain other data regions and compute regions.

Device – a general reference to any type of accelerator.

Device memory – memory attached to an accelerator, logically and physically separate from

the host memory.

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment

statement, that is interpreted by a compiler to augment information about or specify the

behavior of the program.

DMA – Direct Memory Access, a method to move data between physically separate

memories; this is typically performed by a DMA engine, separate from the host CPU, that can

access the host physical memory as well as an IO device or other physical memory.

GPU – a Graphics Processing Unit; one type of accelerator device.

GPGPU – General Purpose computation on Graphics Processing Units.

Host – the main CPU that in this context has an attached accelerator device. The host CPU

controls the program regions and data loaded into and executed on the device.

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are

divided into a parallel domain, and the body of the loop becomes the body of the kernel.

Kernels region – a region defined by an Accelerator kernels construct. A kernels region

is a structured block which is compiled for the accelerator. The code in the kernels region

will be divided by the compiler into a sequence of kernels; typically each loop nest will

become a single kernel. A kernels region may require device memory to be allocated and data

 OpenACC Programming Interface 36

to be copied from host to device upon region entry, and data to be copied from device to host

memory and device memory deallocated upon exit. Kernels regions may not contain other

compute regions in this version of the standard.

Loop trip count – the number of times a particular loop executes.

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different

execution units or threads execute different instruction streams asynchronously with each

other.

OpenCL – short for Open Compute Language, a developing, portable standard C-like

programming environment that enables low-level general-purpose programming on GPUs and

other accelerators.

Parallel region – a region defined by an Accelerator parallel construct. A parallel region

is a structured block which is compiled for the accelerator. A parallel region typically

contains one or more work-sharing loops. A parallel region may require device memory to be

allocated and data to be copied from host to device upon region entry, and data to be copied

from device to host memory and device memory deallocated upon exit. Parallel regions may

not contain other compute regions in this version of the standard.

Private data – with respect to an iterative loop, data which is used only during a particular

loop iteration. With respect to a more general region of code, data which is used within the

region but is not initialized prior to the region and is re-initialized prior to any use after the

region.

Region – all the code encountered during an instance of execution of a construct. A region

includes any code in called routines, and may be thought of as the dynamic extent of a

construct. This may be a parallel region, kernels region, data region or implicit data region.

SIMD – A method of parallel execution (single-instruction, multiple-data) where the same

instruction is applied to multiple data elements simultaneously.

SIMD operation – a vector operation implemented with SIMD instructions.

Structured block – in C or C++, an executable statement, possibly compound, with a single

entry at the top and a single exit at the bottom. In Fortran, a block of executable statements

with a single entry at the top and a single exit at the bottom.

Vector operation – a single operation or sequence of operations applied uniformly to each

element of an array.

Visible device copy – a copy of a variable, array, or subarray allocated in device memory,

that is visible to the program unit being compiled.

 OpenACC Programming Interface 37

This is a preliminary document and may be changed substantially prior to any release of the
software implementing this standard.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in, or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of the authors.

© 2011 OpenACC-Standard.org. All rights reserved.

