
1

The OpenACC™
Application Programming

Interface

Version 2.0

June, 2013

Corrected, August, 2013

2

Contents

1. Introduction .. 7

1.1 Scope .. 7

1.2 Execution Model .. 7

1.3 Memory Model .. 9

1.4 Conventions used in this document ... 10

1.5 Organization of this document .. 11

1.6 References ... 11

1.7 Changes from Version 1.0 to 2.0 ... 11

1.8 Corrections in the August 2013 document .. 12

1.9 Topics Deferred For a Future Revision .. 13

2. Directives .. 14

2.1 Directive Format ... 14

2.2 Conditional Compilation ... 15

2.3 Internal Control Variables .. 15

2.3.1 Modifying and Retrieving ICV Values .. 15
2.4 Device-Specific Clauses ... 16

2.5 Accelerator Compute Constructs ... 16

2.5.1 Parallel Construct ... 16
2.5.2 Kernels Construct .. 18
2.5.3 if clause .. 19
2.5.4 async clause .. 20
2.5.5 wait clause .. 20
2.5.6 num_gangs clause ... 20
2.5.7 num_workers clause .. 20
2.5.8 vector_length clause .. 20
2.5.9 private clause .. 20
2.5.10 firstprivate clause ... 20
2.5.11 reduction clause ... 20
2.5.12 default(none) clause ... 21

2.6 Data Environment ... 21

2.6.1 Variables with Predetermined Data Attributes 22
2.6.2 Data Regions and Data Lifetimes ... 22
2.6.3 Data Construct .. 23

2.6.3.1 if clause .. 23
2.6.4 Enter Data and Exit Data Directives .. 24

2.6.4.1 if clause .. 25
2.6.4.2 async clause .. 25
2.6.4.3 wait clause .. 25

2.6.5 Data Clauses ... 25
2.6.5.1 Data Specification in Data Clauses .. 25
2.6.5.2 deviceptr clause ... 27
2.6.5.3 copy clause ... 27
2.6.5.4 copyin clause ... 27
2.6.5.5 copyout clause ... 27
2.6.5.6 create clause ... 28
2.6.5.7 delete clause ... 28

3

2.6.5.8 present clause ... 28
2.6.5.9 present_or_copy clause ... 28
2.6.5.10 present_or_copyin clause .. 28
2.6.5.11 present_or_copyout clause .. 29
2.6.5.12 present_or_create clause ... 29

2.6.6 Host_Data Construct .. 29
2.6.6.1 use_device clause .. 30

2.7 Loop Construct ... 30

2.7.1 collapse clause .. 31
2.7.2 gang clause ... 31
2.7.3 worker clause .. 32
2.7.4 vector clause ... 32
2.7.5 seq clause ... 33
2.7.6 auto clause ... 33
2.7.7 tile clause ... 33
2.7.8 device_type clause ... 33
2.7.9 independent clause .. 33
2.7.10 private clause .. 34
2.7.11 reduction clause ... 34

2.8 Cache Directive .. 34

2.9 Combined Directives .. 35

2.10 Atomic Directive .. 35

2.11 Declare Directive ... 39

2.11.1 device_resident clause .. 40
2.11.2 link clause ... 41

2.12 Executable Directives ... 41

2.12.1 Update Directive .. 41
2.12.1.1 self clause ... 42
2.12.1.2 host clause .. 42
2.12.1.3 device clause ... 42
2.12.1.4 if clause .. 42
2.12.1.5 async clause .. 42
2.12.1.6 wait clause .. 43

2.12.2 Wait Directive .. 43
2.12.3 Enter Data Directive ... 43
2.12.4 Exit Data Directive ... 43

2.13 Procedure Calls in Compute Regions .. 43

2.13.1 Routine Directive.. 44
2.13.1.1 gang clause ... 45
2.13.1.2 worker clause ... 45
2.13.1.3 vector clause.. 45
2.13.1.4 seq clause ... 45
2.13.1.5 bind clause .. 45
2.13.1.6 device_type clause ... 45
2.13.1.7 nohost clause ... 45

2.13.2 Global Data Access ... 46
2.14 Asynchronous Behavior .. 46

2.14.1 async clause .. 46
2.14.2 wait clause .. 47
2.14.3 Wait Directive .. 47

3. Runtime Library ... 49

4

3.1 Runtime Library Definitions .. 49

3.2 Runtime Library Routines ... 50

3.2.1 acc_get_num_devices .. 50
3.2.2 acc_set_device_type .. 50
3.2.3 acc_get_device_type .. 51
3.2.4 acc_set_device_num .. 51
3.2.5 acc_get_device_num .. 52
3.2.6 acc_async_test .. 52
3.2.7 acc_async_test_all ... 53
3.2.8 acc_wait ... 53
3.2.9 acc_wait_async ... 54
3.2.10 acc_wait_all .. 54
3.2.11 acc_wait_all _async .. 54
3.2.12 acc_init ... 55
3.2.13 acc_shutdown .. 55
3.2.14 acc_on_device ... 56
3.2.15 acc_malloc .. 56
3.2.16 acc_free .. 57
3.2.17 acc_copyin .. 57
3.2.18 acc_present_or_copyin ... 57
3.2.19 acc_create .. 58
3.2.20 acc_present_or_create.. 59
3.2.21 acc_copyout .. 59
3.2.22 acc_delete ... 60
3.2.23 acc_update_device ... 60
3.2.24 acc_update_self ... 61
3.2.25 acc_map_data ... 61
3.2.26 acc_unmap_data .. 62
3.2.27 acc_deviceptr .. 62
3.2.28 acc_hostptr ... 62
3.2.29 acc_is_present ... 63
3.2.30 acc_memcpy_to_device .. 63
3.2.31 acc_memcpy_from_device .. 64

4. Environment Variables .. 65

4.1 ACC_DEVICE_TYPE ... 65

4.2 ACC_DEVICE_NUM .. 65

5. Glossary ... 66

Appendix A. Recommendations for Target-Specific Implementations 69

A.1 Target Devices ... 69

A.1.1 NVIDIA GPU Targets .. 69
A.1.1.1 Accelerator Device Type .. 69
A.1.1.2 ACC_DEVICE_TYPE ... 69
A.1.1.3 device_type clause argument ... 69

A.1.2 AMD GPU Targets .. 69
A.1.2.1 Accelerator Device Type ... 69
A.1.2.2 ACC_DEVICE_TYPE ... 69
A.1.2.3 device_type clause argument ... 69

A.1.3 Intel Xeon Phi Coprocessor Targets .. 69
A.1.3.1 Accelerator Device Type .. 70

5

A.1.3.2 ACC_DEVICE_TYPE ... 70
A.1.3.3 device_type clause argument ... 70

A.2 API Routines for Target Platforms ... 70

A.2.1 NVIDIA CUDA Platform ... 70
A.2.1.1 acc_get_current_cuda_device .. 70
A.2.1.2 acc_get_current_cuda_context .. 70
A.2.1.3 acc_get_cuda_stream ... 70
A.2.1.4 acc_set_cuda_stream ... 71

A.2.2 OpenCL Target Platform .. 71
A.2.2.1 acc_get_current_opencl_device ... 71
A.2.2.2 acc_get_current_opencl_context .. 71
A.2.2.3 acc_get_opencl_queue .. 71
A.2.2.4 acc_set_opencl_queue .. 71

A.2.3 Intel Coprocessor Offload Infrastructure (COI) API 72
A.2.3.1 acc_get_current_coi_device ... 72
A.2.3.2 acc_get_current_coi_context ... 72
A.2.3.3 acc_get_coi_pipeline... 72
A.2.3.4 acc_set_coi_pipeline ... 72

A.3 Recommended Options .. 72

A.3.1 C Pointer in Present clause .. 72
A.3.2 Autoscoping .. 73

6

7

1. Introduction

This document describes the compiler directives, library routines and environment variables

that collectively define the OpenACC™ Application Programming Interface (OpenACC API)

for offloading programs written in C, C++ and Fortran programs from a host CPU to an

attached accelerator device. The method outlined provides a model for accelerator

programming that is portable across operating systems and various types of host CPUs and

accelerators. The directives extend the ISO/ANSI standard C, C++ and Fortran base

languages in a way that allows a programmer to migrate applications incrementally to

accelerator targets using standards-based C, C++ or Fortran.

The directives and programming model defined in this document allow programmers to create

applications capable of using accelerators, without the need to explicitly manage data or

program transfers between the host and accelerator, or initiate accelerator startup and

shutdown. Rather, these details are implicit in the programming model and are managed by

the OpenACC API-enabled compilers and runtime environments. The programming model

allows the programmer to augment information available to the compilers, including

specification of data local to an accelerator, guidance on mapping of loops onto an

accelerator, and similar performance-related details.

1.1 Scope

This OpenACC API document covers only user-directed accelerator programming, where the

user specifies the regions of a host program to be targeted for offloading to an accelerator

device. The remainder of the program will be executed on the host. This document does not

describe features or limitations of the host programming environment as a whole; it is limited

to specification of loops and regions of code to be offloaded to an accelerator.

This document does not describe automatic detection and offloading of regions of code to an

accelerator by a compiler or other tool. This document does not describe splitting loops or

code regions to multiple accelerators attached to a single host. While future compilers may

allow for automatic offloading, or offloading to multiple accelerators of the same type, or to

multiple accelerators of different types, these possibilities are not addressed in this document.

1.2 Execution Model

The execution model targeted by OpenACC API-enabled implementations is host-directed

execution with an attached accelerator device, such as a GPU. Much of a user application

executes on the host. Compute intensive regions are offloaded to the accelerator device under

control of the host. The device executes parallel regions, which typically contain work-

sharing loops, or kernels regions, which typically contain one or more loops which are

executed as kernels on the accelerator. Even in accelerator-targeted regions, the host may

orchestrate the execution by allocating memory on the accelerator device, initiating data

transfer, sending the code to the accelerator, passing arguments to the compute region,

queuing the device code, waiting for completion, transferring results back to the host, and

deallocating memory. In most cases, the host can queue a sequence of operations to be

executed on the device, one after the other.

Most current accelerators support two or three levels of parallelism. Most accelerators

support coarse-grain parallelism, which is fully parallel execution across execution units.

OpenACC Programming Interface 8

There may be limited support for synchronization across coarse-grain parallel operations.

Many accelerators also support fine-grain parallelism, often implemented as multiple threads

of execution within a single execution unit, which are typically rapidly switched on the

execution unit to tolerate long latency memory operations. Finally, most accelerators also

support SIMD or vector operations within each execution unit. The execution model exposes

these multiple levels of parallelism on the device and the programmer is required to

understand the difference between, for example, a fully parallel loop and a loop that is

vectorizable but requires synchronization between statements. A fully parallel loop can be

programmed for coarse-grain parallel execution. Loops with dependences must either be split

to allow coarse-grain parallel execution, or be programmed to execute on a single execution

unit using fine-grain parallelism, vector parallelism, or sequentially.

OpenACC exposes these three levels of parallelism via gang, worker and vector parallelism.

Gang parallelism is coarse-grain. A number of gangs will be launched on the accelerator.

Worker parallelism is fine-grain. Each gang will have one or more workers. Vector

parallelism is for SIMD or vector operations within a worker.

When executing a compute region on the device, one or more gangs are launched, each with

one or more workers, where each worker may have vector execution capability with one or

more vector lanes. The gangs start executing in gang-redundant mode (GR mode), meaning

one vector lane of one worker in each gang executes the same code, redundantly. When the

program reaches a loop or loop nest marked for gang-level work-sharing, the program starts to

execute in gang-partitioned mode (GP mode), where the iterations of the loop or loops are

partitioned across gangs for truly parallel execution, but still with only one vector lane per

worker and one worker per gang active.

When only one worker is active, in either GR or GP mode, the program is in worker-single

mode (WS mode). When only one vector lane is active, the program is in vector-single mode

(VS mode). If a gang reaches a loop or loop nest marked for worker-level work-sharing, the

gang transitions to worker-partitioned mode (WP mode), which activates all the workers of

the gang. The iterations of the loop or loops are partitioned across the workers of this gang.

If the same loop is marked for both gang-partitioning and worker-partitioning, then the

iterations of the loop are spread across all the workers of all the gangs. If a worker reaches a

loop or loop nest marked for vector-level work-sharing, the worker will transition to vector-

partitioned mode (VP mode). Similar to WP mode, the transition to VP mode activates all the

vector lanes of the worker. The iterations of the loop or loops will be partitioned across the

vector lanes using vector or SIMD operations. Again, a single loop may be marked for one,

two or all three of gang, worker and vector parallelism, and the iterations of that loop will be

spread across the gangs, workers and vector lanes as appropriate.

The host program starts executing with a single thread, identified by a program counter and its

stack. The thread may spawn additional threads, for instance using the OpenMP API. On the

accelerator, a single vector lane of a single worker of a single gang is called a thread. When

executing on the device, a parallel execution context is created and may contain many such

threads.

The user should not attempt to implement barrier synchronization, critical sections or locks

across any of gang, worker or vector parallelism. The execution model allows for an

implementation that executes some gangs to completion before starting to execute other

gangs. This means that trying to implement synchronization between gangs is likely to fail.

In particular, a barrier across gangs cannot be implemented in a portable fashion, since all

gangs may not ever be active at the same time. Similarly, the execution model allows for an

OpenACC Programming Interface 9

implementation that executes some workers within a gang or vector lanes within a worker to

completion before starting other workers or vector lanes, or for some workers or vector lanes

to be suspended until other workers or vector lanes complete. This means that trying to

implement synchronization across workers or vector lanes is likely to fail. In particular,

implementing a barrier or critical section across workers or vector lanes using atomic

operations and a busy-wait loop may never succeed, since the scheduler may suspend the

worker or vector lane that owns the lock, and the worker or vector lane waiting on the lock

can never complete.

On some devices, the accelerator may also create and launch parallel kernels, allowing for

nested parallelism. In that case, the OpenACC directives may be executed by a host thread or

an accelerator thread. This specification uses the term local thread or local memory to mean

the thread that executes the directive, or the memory associated with that thread, whether that

thread executes on the host or on the accelerator.

Most accelerators can operate asynchronously with respect to the host thread. With such

devices, the accelerator has one or more activity queues. The host thread will enqueue

operations onto the device activity queues, such as data transfers and procedure execution.

After enqueuing the operation, the host thread can continue execution while the device

operates independently and asynchronously. The host thread may query the device activity

queue(s) and wait for all the operations in a queue to complete. Operations on a single device

activity queue will complete before starting the next operation on the same queue; operations

on different activity queues may be active simultaneously and may complete in any order.

1.3 Memory Model

The most significant difference between a host-only program and a host+accelerator program

is that the memory on the accelerator may be completely separate from host memory. This is

the case with most current GPUs, for example. In this case, the host thread may not be able to

read or write device memory directly because it is not mapped into the host thread’s virtual

memory space. All data movement between host memory and device memory must be

performed by the host thread through system calls that explicitly move data between the

separate memories, typically using direct memory access (DMA) transfers. Similarly, it is not

valid to assume the accelerator can read or write host memory, though this is supported by

some accelerator devices, often with significant performance penalty.

The concept of separate host and accelerator memories is very apparent in low-level

accelerator programming languages such as CUDA or OpenCL, in which data movement

between the memories can dominate user code. In the OpenACC model, data movement

between the memories can be implicit and managed by the compiler, based on directives from

the programmer. However, the programmer must be aware of the potentially separate

memories for many reasons, including but not limited to:

 Memory bandwidth between host memory and device memory determines the level of

compute intensity required to effectively accelerate a given region of code, and

 The limited device memory size may prohibit offloading of regions of code that

operate on very large amounts of data.

 Host addresses stored to pointers on the host may only be valid on the host; addresses

stored to pointers on the device may only be valid on the device. Dereferencing host

OpenACC Programming Interface 10

pointers on the device or dereferencing device pointers on the host is likely to be

invalid on such targets.

OpenACC exposes the separate memories through the use of a device data environment.

Device data has an explicit lifetime, from when it is allocated or created until it is deleted. If

the device shares physical and virtual memory with the local thread, the device data

environment will be shared with the local thread. In that case, the implementation need not

create new copies of the data for the device and no data movement need be done. If the

device has a physically or virtually separate memory from the local thread, the

implementation will allocate new data in the device memory and copy data from the local

memory to the device environment.

Some accelerators (such as current GPUs) implement a weak memory model. In particular,

they do not support memory coherence between operations executed by different threads;

even on the same execution unit, memory coherence is only guaranteed when the memory

operations are separated by an explicit memory fence. Otherwise, if one thread updates a

memory location and another reads the same location, or two threads store a value to the same

location, the hardware may not guarantee the same result for each execution. While a

compiler can detect some potential errors of this nature, it is nonetheless possible to write an

accelerator parallel or kernels region that produces inconsistent numerical results.

Some current accelerators have a software-managed cache, some have hardware managed

caches, and most have hardware caches that can be used only in certain situations and are

limited to read-only data. In low-level programming models such as CUDA or OpenCL

languages, it is up to the programmer to manage these caches. In the OpenACC model, these

caches are managed by the compiler with hints from the programmer in the form of directives.

1.4 Conventions used in this document

Keywords and punctuation that are part of the actual specification will appear in typewriter

font:

 #pragma acc

Italic font is used where a keyword or other name must be used:

 #pragma acc directive-name

For C and C++, new-line means the newline character at the end of a line:

 #pragma acc directive-name new-line

Optional syntax is enclosed in square brackets; where an option that may be repeated more

than once is followed by ellipses:

 #pragma acc directive-name [clause [[,] clause]…] new-line

To simplify the specification and convey appropriate constraint information, a pqr-list is a

comma-separated list of pqr items. For example, an int-expr-list is a comma-separated list of

one or more integer expressions. A var-list is a comma-separated list of one or more variable

names or array names; in some clauses, a var-list may include subarrays with subscript ranges

or may include common block names between slashes. The one exception is clause-list,

which is a list of one or more clauses optionally separated by commas.

 #pragma acc directive-name [clause-list] new-line

OpenACC Programming Interface 11

1.5 Organization of this document

The rest of this document is organized as follows:

Chapter 2. Directives, describes the C, C++ and Fortran directives used to delineate

accelerator regions and augment information available to the compiler for scheduling of loops

and classification of data.

Chapter 3. Runtime Library, defines user-callable functions and library routines to query the

accelerator device features and control behavior of accelerator-enabled programs at runtime.

Chapter 4. Environment Variables, defines user-settable environment variables used to control

behavior of accelerator-enabled programs at execution.

Chapter 5. Glossary, defines common terms used in this document.

Chapter Appendix A. Recommendations for Target-Specific Implementations, gives advice to

implementers to support more portability across implementations and interoperability with

other accelerator APIs.

1.6 References

 American National Standard Programming Language C, ANSI X3.159-1989 (ANSI

C).

 ISO/IEC 9899:1999, Information Technology – Programming Languages – C (C99).

 ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.

 ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran

– Part 1: Base Language, (Fortran 2003).

 OpenMP Application Program Interface, version 3.1, July 2011

 PGI Accelerator Programming Model for Fortran & C, version 1.3, November 2011

 NVIDIA CUDA™ C Programming Guide, version 5.0, October 2012.

 The OpenCL Specification, version 1.2, Khronos OpenCL Working Group, November

2011.

1.7 Changes from Version 1.0 to 2.0

 _OPENACC value updated to 201306

 default(none) clause on parallel and kernels directives

 the implicit data attribute for scalars in parallel constructs has changed

 the implicit data attribute for scalars in loops with loop directives with the

independent attribute has been clarified

 acc_async_sync and acc_async_noval values for async clauses

 Clarified the behavior of the reduction clause on a gang loop

 Clarified allowable loop nesting (gang may not appear inside worker, which may

not appear within vector)

OpenACC Programming Interface 12

 wait clause on parallel, kernels and update directives

 async clause on the wait directive

 enter data and exit data directives

 Fortran common block names may now be specified in many data clauses

 link clause for the declare directive

 the behavior of the declare directive for global data

 the behavior of a data clause with a C or C++ pointer variable has been clarified

 predefined data attributes

 support for multidimensional dynamic C/C++ arrays

 tile and auto loop clauses

 update self introduced as a preferred synonym for update host

 routine directive and support for separate compilation

 device_type clause and support for multiple device types

 nested parallelism using parallel or kernels region containing another parallel or

kernels region

 atomic constructs

 new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned;

vector-single, vector-partitioned; thread

 new API routines:

 acc_wait, acc_wait_all instead of acc_async_wait and

acc_async_wait_all

 acc_wait_async

 acc_copyin, acc_present_or_copyin

 acc_create, acc_present_or_create

 acc_copyout, acc_delete

 acc_map_data, acc_unmap_data

 acc_deviceptr, acc_hostptr

 acc_is_present

 acc_memcpy_to_device, acc_memcpy_from_device

 acc_update_device, acc_update_self

 defined behavior with multiple host threads, such as with OpenMP

 recommendations for specific implementations

1.8 Corrections in the August 2013 document

 corrected the atomic capture syntax for C/C++

OpenACC Programming Interface 13

 fixed the name of the acc_wait and acc_wait_all procedures

 fixed description of the acc_hostptr procedure

1.9 Topics Deferred For a Future Revision

The following topics are under discussion for a future revision. Some of these are known to

be important, while others will depend on feedback from users. Readers who have feedback

or want to participate may post a message at the forum at www.openacc.org, or may send

email to feedback@openacc.org. No promises are made or implied that all these items will be

available in the next revision.

 Full support for C and C++ structs and struct members, including pointer members.

 Full support for Fortran derived types and derived type members, including

allocatable and pointer members.

 Defined support with multiple host threads.

 Optionally removing the synchronization or barrier at the end of vector and worker

loops.

 Allowing an if clause after a device_type clause.

 A default(none) clause for the loop directive.

 A shared clause (or something similar) for the loop directive.

 A standard interface for a profiler or trace or other runtime data collection tool.

 Better support for multiple devices from a single thread, whether of the same type or

of different types.

http://www.openacc.org/
mailto:feedback@openacc.org

OpenACC Programming Interface 14

2. Directives

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++,

OpenACC directives are specified using the #pragma mechanism provided by the language.

In Fortran, OpenACC directives are specified using special comments that are identified by a

unique sentinel. Compilers will typically ignore OpenACC directives if support is disabled or

not provided.

Restrictions

 OpenACC directives may not appear in Fortran PURE or ELEMENTAL procedures.

2.1 Directive Format

In C and C++, OpenACC directives are specified with the #pragma mechanism. The syntax

of an OpenACC directive is:

 #pragma acc directive-name [clause-list] new-line

Each directive starts with #pragma acc. The remainder of the directive follows the C and

C++ conventions for pragmas. White space may be used before and after the #; white space

may be required to separate words in a directive. Preprocessing tokens following the

#pragma acc are subject to macro replacement. Directives are case sensitive. An

OpenACC directive applies to the immediately following statement, structured block or loop.

In Fortran, OpenACC directives are specified in free-form source files as

 !$acc directive-name [clause-list]

The comment prefix (!) may appear in any column, but may only be preceded by white space

(spaces and tabs). The sentinel (!$acc) must appear as a single word, with no intervening

white space. Line length, white space, and continuation rules apply to the directive line.

Initial directive lines must have white space after the sentinel. Continued directive lines must

have an ampersand (&) as the last nonblank character on the line, prior to any comment placed

in the directive. Continuation directive lines must begin with the sentinel (possibly preceded

by white space) and may have an ampersand as the first non-white space character after the

sentinel. Comments may appear on the same line as a directive, starting with an exclamation

point and extending to the end of the line. If the first nonblank character after the sentinel is

an exclamation point, the line is ignored.

In Fortran fixed-form source files, OpenACC directives are specified as one of

 !$acc directive-name [clause-list]

 c$acc directive-name [clause-list]

 *$acc directive-name [clause-list]

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,

white space, continuation, and column rules apply to the directive line. Initial directive lines

OpenACC Programming Interface 15

must have a space or zero in column 6, and continuation directive lines must have a character

other than a space or zero in column 6. Comments may appear on the same line as a directive,

starting with an exclamation point on or after column 7 and continuing to the end of the line.

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued

statements, and statements must not be embedded within continued directives. In this

document, free form is used for all Fortran OpenACC directive examples.

Only one directive-name can be specified per directive, except that a combined directive name

is considered a single directive-name. The order in which clauses appear is not significant

unless otherwise specified. Clauses may be repeated unless otherwise specified. Some clauses

have an argument that can contain a list.

2.2 Conditional Compilation

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and

mm is the month designation of the version of the OpenACC directives supported by the

implementation. This macro must be defined by a compiler only when OpenACC directives

are enabled. The version described here is 201306.

2.3 Internal Control Variables

An OpenACC implementation acts as if there are internal control variables (ICVs) that control

the behavior of the program. These ICVs are initialized by the implementation, and may be

given values through environment variables and through calls to OpenACC API routines. The

program can retrieve values through calls to OpenACC API routines.

The ICVs are:

 acc-device-type-var - controls which type of accelerator device is used.

 acc-device-num-var - controls which accelerator device of the selected type is used.

2.3.1 Modifying and Retrieving ICV Values

The following table shows environment variables or procedures to modify the values of the

internal control variables, and procedures to retrieve the values:

ICV Ways to modify values Way to retrieve value

acc-device-type-var ACC_DEVICE_TYPE

acc_set_device_type

acc_get_device_type

acc-device-num-var ACC_DEVICE_NUM

acc_set_device_num

acc_get_device_num

The initial values are implementation-defined. After initial values are assigned, but before

any OpenACC construct or API routine is executed, the values of any environment variables

that were set by the user are read and the associated ICVs are modified accordingly. Clauses

on OpenACC constructs do not modify the ICV values. There is one copy of each ICV for

each host thread. An ICV value for a device thread may not be modified.

OpenACC Programming Interface 16

2.4 Device-Specific Clauses

OpenACC directives can specify different clauses or clause arguments for different

accelerators using the device_type clause. The argument to the device_type clause is

a comma-separated list of one or more accelerator architecture name identifiers, or an asterisk.

A single directive may have one or several device_type clauses. Clauses on a directive

with no device_type clause apply to all accelerator device types. Clauses that follow a

device_type clause up to the end of the directive or up to the next device_type clause

are associated with this device_type clause. Clauses associated with a device_type

clause apply only when compiling for the named accelerator device type. Clauses associated

with a device_type clause that has an asterisk argument apply to any accelerator device

type that was not named in any device_type clause on that directive. The

device_type clauses may appear in any order. For each directive, only certain clauses

may follow a device_type clause.

Clauses that precede any device_type clause are default values. If the same clause is

associated with a device_type clause, the specific value from the clause associated with

the device_type is used for that device. If no device_type clause applies for a device,

or a device_type clause applies but the same clause is not associated with this

device_type clause, the default value is used.

The supported accelerator device types are implementation-defined. Depending on the

implementation and the compiling environment, an implementation may support only a single

accelerator device type, or may support multiple accelerator device types but only one at a

time, or many support multiple accelerator device types in a single compilation.

An accelerator architecture name may be generic, such as a vendor, or more specific, such as

a particular generation of device; see Appendix A.1 Target Devices for recommended names.

When compiling for a particular device, the implementation will use the clauses associated

with the device_type clause that specifies most specific architecture name that applies for

this device; clauses associated with any other device_type clause are ignored. In this

context, the asterisk is the least specific architecture name.

Syntax

The syntax of the device_type clause is

 device_type(*)

 device_type(device-type-list)

The device_type clause may be abbreviated to dtype.

2.5 Accelerator Compute Constructs

2.5.1 Parallel Construct

Summary

This fundamental construct starts parallel execution on the accelerator device.

Syntax

In C and C++, the syntax of the OpenACC parallel directive is

 #pragma acc parallel [clause-list] new-line

OpenACC Programming Interface 17

 structured block

and in Fortran, the syntax is

 !$acc parallel [clause-list]

 structured block

 !$acc end parallel

where clause is one of the following:

 async [(int-expr)]

 wait [(int-expr-list)]

 num_gangs(int-expr)

 num_workers(int-expr)

 vector_length(int-expr)

 device_type(device-type-list)

 if(condition)

 reduction(operator : var-list)

 copy(var-list)

 copyin(var-list)

 copyout(var-list)

 create(var-list)

 present(var-list)

 present_or_copy(var-list)

 present_or_copyin(var-list)

 present_or_copyout(var-list)

 present_or_create(var-list)

 deviceptr(var-list)

 private(var-list)

 firstprivate(var-list)

 default(none)

Description
When the program encounters an accelerator parallel construct, one or more gangs are

created to execute the accelerator parallel region. The number of gangs, the number of

workers per gang and the number of vector lanes per worker remain constant for the duration

of that parallel region. Each gang begins executing the code in the structured block in gang-

redundant mode. This means that code within the parallel region, but outside of a loop with a

loop directive and gang-level worksharing, will be executed redundantly by all gangs.

If the async clause is not present, there is an implicit barrier at the end of the accelerator

parallel region, and the execution of the local thread will not proceed until all gangs have

reached the end of the parallel region.

If there is no default(none) clause on the construct, the compiler will implicitly

determine data attributes for variables that are referenced in the compute construct that do not

appear in a data clause on the compute construct or a lexically containing data construct and

do not have predetermined data attributes. An array or variable of aggregate data type

referenced in the parallel construct that does not appear in a data clause for the construct

or any enclosing data construct will be treated as if it appeared in a present_or_copy

OpenACC Programming Interface 18

clause for the parallel construct. A scalar variable referenced in the parallel construct

that does not appear in a data clause for the construct or any enclosing data construct will be

treated as if it appeared in a firstprivate clause.

Restrictions

 A program may not branch into or out of an OpenACC parallel construct.

 A program must not depend on the order of evaluation of the clauses, or on any side

effects of the evaluations.

 Only the async, wait, num_gangs, num_workers, and vector_length

clauses may follow a device_type clause.

 At most one if clause may appear. In Fortran, the condition must evaluate to a

scalar logical value; in C or C++, the condition must evaluate to a scalar integer

value.

The copy, copyin, copyout, create, present, present_or_copy,

present_or_copyin, present_or_copyout, present_or_create,

deviceptr, firstprivate, and private data clauses are described in Section 2.6

Data Environment. The device_type clause is described in Section 2.4 Device-Specific

Clauses.

2.5.2 Kernels Construct

Summary

This construct defines a region of the program that is to be compiled into a sequence of

kernels for execution on the accelerator device.

Syntax

In C and C++, the syntax of the OpenACC kernels directive is

 #pragma acc kernels [clause-list] new-line

 structured block

and in Fortran, the syntax is

 !$acc kernels [clause-list]

 structured block

 !$acc end kernels

where clause is one of the following:

 async [(int-expr)]

 wait [(int-expr-list)]

 device_type(device-type-list)

 if(condition)

 copy(var-list)

 copyin(var-list)

 copyout(var-list)

 create(var-list)

 present(var-list)

 present_or_copy(var-list)

OpenACC Programming Interface 19

 present_or_copyin(var-list)

 present_or_copyout(var-list)

 present_or_create(var-list)

 deviceptr(var-list)

 default(none)

Description

The compiler will split the code in the kernels region into a sequence of accelerator kernels.

Typically, each loop nest will be a distinct kernel. When the program encounters a kernels

construct, it will launch the sequence of kernels in order on the device. The number and

configuration of gangs of workers and vector length may be different for each kernel.

If the async clause is not present, there is an implicit barrier at the end of the kernels region,

and the local thread execution will not proceed until all kernels have completed execution.

If there is no default(none) clause on the construct, the compiler will implicitly

determine data attributes for variables that are referenced in the compute construct that do not

appear in a data clause on the compute construct or a lexically containing data construct and

do not have predetermined data attributes. An array or variable of aggregate data type

referenced in the kernels construct that does not appear in a data clause for the construct or

any enclosing data construct will be treated as if it appeared in a present_or_copy

clause for the kernels construct. A scalar variable referenced in the kernels construct

that does not appear in a data clause for the construct or any enclosing data construct will be

treated as if it appeared in a copy clause.

Restrictions

 A program may not branch into or out of an OpenACC kernels construct.

 A program must not depend on the order of evaluation of the clauses, or on any side

effects of the evaluations.

 Only the async and wait clauses may follow a device_type clause.

 At most one if clause may appear. In Fortran, the condition must evaluate to a

scalar logical value; in C or C++, the condition must evaluate to a scalar integer

value.

The copy, copyin, copyout, create, present, present_or_copy,

present_or_copyin, present_or_copyout, present_or_create, and

deviceptr data clauses are described in Section 2.6 Data Environment. The

device_type clause is described in Section 2.4 Device-Specific Clauses.

2.5.3 if clause

The if clause is optional on the parallel and kernels constructs; when there is no if

clause, the compiler will generate code to execute the region on the accelerator device.

When an if clause appears, the compiler will generate two copies of the construct, one copy

to execute on the accelerator and one copy to execute on the encountering local thread. When

the condition evaluates to nonzero in C or C++, or .true. in Fortran, the accelerator copy

will be executed. When the condition in the if clause evaluates to zero in C or C++, or

.false. in Fortran, the encountering local thread will execute the construct.

OpenACC Programming Interface 20

2.5.4 async clause

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.

2.5.5 wait clause

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.

2.5.6 num_gangs clause

The num_gangs clause is allowed on the parallel construct. The value of the integer

expression defines the number of parallel gangs that will execute the region. If the clause is

not specified, an implementation-defined default will be used; the default may depend on the

code within the construct.

2.5.7 num_workers clause

The num_workers clause is allowed on the parallel construct. The value of the integer

expression defines the number of workers within each gang that will be active after a gang

transitions from worker-single mode to worker-partitioned mode. If the clause is not

specified, an implementation-defined default will be used; the default value may be 1, and

may be different for each parallel construct.

2.5.8 vector_length clause

The vector_length clause is allowed on the parallel construct. The value of the

integer expression defines the number of vector lanes that will be active after a worker

transitions from vector-single mode to vector-partitioned mode. This clause determines the

vector length to use for vector or SIMD operations. If the clause is not specified, an

implementation-defined default will be used. This vector length will be used for loops

annotated with the vector clause on a loop directive, as well as loops automatically

vectorized by the compiler. There may be implementation-defined limits on the allowed

values for the vector length expression.

2.5.9 private clause

The private clause is allowed on the parallel construct; it declares that a copy of each

item on the list will be created for each parallel gang.

2.5.10 firstprivate clause

The firstprivate clause is allowed on the parallel construct; it declares that a copy

of each item on the list will be created for each parallel gang, and that the copy will be

initialized with the value of that item on the host when the parallel construct is

encountered.

2.5.11 reduction clause

The reduction clause is allowed on the parallel construct. It specifies a reduction

operator and one or more scalar variables. For each variable, a private copy is created for

each parallel gang and initialized for that operator. At the end of the region, the values for

OpenACC Programming Interface 21

each gang are combined using the reduction operator, and the result combined with the value

of the original variable and stored in the original variable. The reduction result is available

after the region.

The following table lists the operators that are valid and the initialization values; in each case,

the initialization value will be cast into the variable type. For max and min reductions, the

initialization values are the least representable value and the largest representable value for

the variable’s data type, respectively. Supported data types are the numerical data types in C

and C++ (int, float, double, complex) and Fortran (integer, real, double precision, complex).

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ~0 iand all bits on

| 0 ior 0

^ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

 .eqv. .true.

 .neqv. .false.

2.5.12 default(none) clause

The default(none) clause is optional. It tells the compiler not to implicitly determine a

data attribute for any variable, but to require that all variables or arrays used in the compute

region that do not have predetermined data attributes to explicitly appear in a data clause for

the compute construct or for a data construct that lexically contains the parallel or

kernels construct.

2.6 Data Environment

This section describes the data attributes for variables. The data attributes for a variable may

be predetermined, implicitly determined, or explicitly determined. Variables with

predetermined data attributes may not appear in a data clause that conflicts with that data

attribute. Variables with implicitly determined data attributes may appear in a data clause that

overrides the implicit attribute. Variables with explicitly determined data attributes are those

which appear in a data clause on a data construct, a compute construct, or a declare directive.

OpenACC supports systems with accelerators that have distinct memory from the host, as

well as systems with accelerators that share memory with the host. In the former case, the

system has separate host memory and device memory. In the latter case, the system has one

shared memory. The latter case is called a shared memory device as the accelerator shares

OpenACC Programming Interface 22

memory with the host thread; the former case is called a non-shared memory device. When a

nested OpenACC construct is executed on the device, the default target device for that

construct is the same device on which the encountering accelerator thread is executing. In

that case, the target device shares memory with the encountering thread.

2.6.1 Variables with Predetermined Data Attributes

The loop variable in a C for statement or Fortran do statement that is associated with a loop

directive is predetermined to be private to each thread that will execute each iteration of the

loop. Loop variables in Fortran do statements within a parallel or kernels region are

predetermined to be private to the thread that executes the loop.

Variables declared in a C block within a compute construct are predetermined to be private to

the thread that executes the block. Variables declared in procedures called from a compute

construct are predetermined to be private to the thread that executes the procedure call.

2.6.2 Data Regions and Data Lifetimes

There are four types of data regions. When the program encounters a data construct, it creates

a data region. Data created on the accelerator for the data construct has a lifetime of the

region associated with the construct; it remains live until the program exits the data region.

When the program encounters a compute construct with explicit data clauses or with implicit

data allocation added by the compiler, it creates a data region that has a lifetime of the

compute construct. Data created on the accelerator for the compute construct has a lifetime of

the region associated with the construct, just as with a data construct.

When the program enters a procedure, it creates an implicit data region that has a lifetime of

the procedure. That is, the implicit data region is created when the procedure is called, and

exited when the program returns from that procedure invocation. Data created on the

accelerator for an implicit data region has a lifetime of that invocation of the procedure.

There is also an implicit data region associated with the execution of the program itself. The

implicit program data region has a lifetime of the execution of the program. Static or global

data created on the accelerator has a lifetime of the execution of the program, or from the time

the program attaches to and initializes the accelerator until it detaches and shuts the

accelerator down.

In addition to data regions, a program may create and delete data on the accelerator using

enter data and exit data directives or using runtime API routines. When the

program executes an enter data directive, or executes a call to a runtime API

acc_copyin or acc_create routine, the program enters a data lifetime for each variable,

array or subarray on the directive or for the variable on the runtime API argument list. Such

data created on the accelerator has a lifetime from when the directive is executed or the

runtime API routine is called until an exit data directive is executed or a runtime API

acc_copyout or acc_delete routine is called for that data; if no exit data directive

or appropriate runtime API routine is executed, the data lifetime on the accelerator continues

until the program exits.

OpenACC Programming Interface 23

2.6.3 Data Construct

Summary

The data construct defines scalars, arrays and subarrays to be allocated in the device

memory for the duration of the region, whether data should be copied from the host to the

device memory upon region entry, and copied from the device to host memory upon region

exit.

Syntax

In C and C++, the syntax of the OpenACC data directive is

 #pragma acc data [clause-list] new-line

 structured block

and in Fortran, the syntax is

 !$acc data [clause-list]

 structured block

 !$acc end data

where clause is one of the following:

 if(condition)

 copy(var-list)

 copyin(var-list)

 copyout(var-list)

 create(var-list)

 present(var-list)

 present_or_copy(var-list)

 present_or_copyin(var-list)

 present_or_copyout(var-list)

 present_or_create(var-list)

 deviceptr(var-list)

Description
Data will be allocated in the device memory and copied from the host or local memory to the

device, or copied back, as required. The data clauses are described in Sections 2.6.5 Data

Clauses.

2.6.3.1 if clause

The if clause is optional; when there is no if clause, the compiler will generate code to

allocate memory on the accelerator device and move data from and to the local memory as

required. When an if clause appears, the program will conditionally allocate memory on,

and move data to and/or from the device. When the condition in the if clause evaluates to

zero in C or C++, or .false. in Fortran, no device memory will be allocated, and no data

will be moved. When the condition evaluates to nonzero in C or C++, or .true. in Fortran,

the data will be allocated and moved as specified. At most one if clause may appear.

OpenACC Programming Interface 24

2.6.4 Enter Data and Exit Data Directives

Summary

An enter data directive may be used to define scalars, arrays and subarrays to be

allocated in the device memory for the remaining duration of the program, or until an exit

data directive that deallocates the data. They also tell whether data should be copied from

the host to the device memory at the enter data directive, and copied from the device to

host memory at the exit data directive. The dynamic range of the program between the

enter data directive and the matching exit data directive is the data lifetime for that

data.

Syntax

In C and C++, the syntax of the OpenACC enter data directive is

 #pragma acc enter data clause-list new-line

and in Fortran, the syntax is

 !$acc enter data clause-list

where clause is one of the following:

 if(condition)

 async [(int-expr)]

 wait [(int-expr-list)]

 copyin(var-list)

 create(var-list)

 present_or_copyin(var-list)

 present_or_create(var-list)

In C and C++, the syntax of the OpenACC exit data directive is

 #pragma acc exit data clause-list new-line

and in Fortran, the syntax is

 !$acc exit data clause-list

where clause is one of the following:

 if(condition)

 async [(int-expr)]

 wait [(int-expr-list)]

 copyout(var-list)

 delete(var-list)

Description

At an enter data directive, data will be allocated in the device memory and optionally

copied from the host or local memory to the device. This action enters a data lifetime for

those variables, arrays or subarrays, and will make the data available for present clauses on

constructs within the data lifetime.

At an exit data directive, data will be optionally copied from the device memory to the

host or local memory and deallocated from device memory. This action exits the

OpenACC Programming Interface 25

corresponding data lifetime. An exit data directive may only be used to exit a data

lifetime created by an enter data construct or a runtime API routine.

The data clauses are described in Sections 2.6.5 Data Clauses.

2.6.4.1 if clause

The if clause is optional; when there is no if clause, the compiler will generate code to

allocate or deallocate memory on the accelerator device and move data from and to the local

memory. When an if clause appears, the program will conditionally allocate or deallocate

device memory and move data to and/or from the device. When the condition in the if

clause evaluates to zero in C or C++, or .false. in Fortran, no device memory will be

allocated or deallocated, and no data will be moved. When the condition evaluates to nonzero

in C or C++, or .true. in Fortran, the data will be allocated or deallocated and moved as

specified.

2.6.4.2 async clause

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.

2.6.4.3 wait clause

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.

2.6.5 Data Clauses

These data clauses may appear on the parallel construct, kernels construct, the data

construct, and the enter data and exit data directives. The list argument to each data

clause is a comma-separated collection of variable names, array names, or subarray

specifications. For all clauses except deviceptr and present, the list argument may

include a Fortran common block name enclosed within slashes, if that common block name

also appears in a declare directive link clause. In all cases, the compiler will allocate and

manage a copy of the variable or array in device memory, creating a visible device copy of

that variable or array.

The intent is to support accelerators with physically and logically separate memories from the

local thread. However, if the accelerator can access the local memory directly, the

implementation may avoid the memory allocation and data movement and simply share the

data in local memory. Therefore, a program that uses and assigns data on the host and uses

and assigns the same data on the accelerator within a data region without update directives to

manage the coherence of the two copies may get different answers on different accelerators or

implementations.

Restrictions

 Data clauses may not follow a device_type clause.

2.6.5.1 Data Specification in Data Clauses

In C and C++, a subarray is an array name followed by an extended array range specification

in brackets, with start and length, such as

 AA[2:n]

If the lower bound is missing, zero is used. If the length is missing and the array has known

size, the size of the array is used; otherwise the length is required. The subarray AA[2:n]

means element AA[2], AA[3], …, AA[2+n-1].

In C and C++, a two dimensional array may be declared in at least four ways:

 Statically-sized array: float AA[100][200];

OpenACC Programming Interface 26

 Pointer to statically sized rows: typedef float row[200]; row* BB;

 Statically-sized array of pointers: float* CC[200];

 Pointer to pointers: float** DD;

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each

of these may be included in a data clause using subarray notation to specify a rectangular

array:

 AA[2:n][0:200]

 BB[2:n][0:m]

 CC[2:n][0:m]

 DD[2:n][0:m]

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any

combination of statically-sized or dynamically-allocated dimensions. For statically sized

dimensions, all dimensions except the first must specify the whole dimension, to preserve the

contiguous data restriction, discussed below. For dynamically allocated dimensions, the

implementation will allocate pointers on the device corresponding to the pointers on the host,

and will fill in those pointers as appropriate.

In Fortran, a subarray is an array name followed by a comma-separated list of range

specifications in parentheses, with lower and upper bound subscripts, such as

 arr(1:high,low:100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array,

if known, are used. All dimensions except the last must specify the whole dimension, to

preserve the contiguous data restriction, discussed below.

Restrictions

 In Fortran, the upper bound for the last dimension of an assumed-size dummy array

must be specified.

 In C and C++, the length for dynamically allocated dimensions of an array must be

explicitly specified.

 In C and C++, modifying pointers in pointer arrays during the data lifetime, either on

the host or on the device, may result in undefined behavior.

 If a subarray is specified in a data clause, the implementation may choose to allocate

memory for only that subarray on the accelerator.

 In Fortran, array pointers may be specified, but pointer association is not preserved in

the device memory.

 Any array or subarray in a data clause, including Fortran array pointers, must be a

contiguous block of memory, except for dynamic multidimensional C arrays.

 In C and C++, if a variable or array of struct or class type is specified, all the data

members of the struct or class are allocated and copied, as appropriate. If a struct or

class member is a pointer type, the data addressed by that pointer are not implicitly

copied.

 In Fortran, if a variable or array with derived type is specified, all the members of that

derived type are allocated and copied, as appropriate. If any member has the

OpenACC Programming Interface 27

allocatable or pointer attribute, the data accessed through that member are

not copied.

 If an expression is used in a subscript or subarray expression in a clause on a data

construct, the same value is used when copying data at the end of the data region,

even if the values of variables in the expression change during the data region.

2.6.5.2 deviceptr clause

The deviceptr clause is used to declare that the pointers in the var-list are device pointers,

so the data need not be allocated or moved between the host and device for this pointer.

In C and C++, the variables in var-list must be pointer variables.

In Fortran, the variable in var-list must be dummy arguments (arrays or scalars), and may not

have the Fortran pointer, allocatable or value attributes.

For a shared-memory device, host pointers are the same as device pointers, so this clause has

no effect.

2.6.5.3 copy clause

The copy clause is used to declare that the variables, array, subarrays or common blocks in

the var-list have values in the local memory that need to be copied to the device memory, for

a non-shared memory accelerator, and are assigned values on the accelerator that need to be

copied back to the local memory. If a subarray is specified, then only that subarray of the

array needs to be copied. On a data construct or compute construct, the data is allocated and

copied to the device memory upon entry to the region, and copied back to the local memory

and deallocated upon exit from the region. If the device shares memory with the local thread,

the data in the copy clause will be shared; no memory is allocated or copied.

2.6.5.4 copyin clause

The copyin clause is used to declare that the variables, arrays, subarrays or common blocks

in the var-list have values in the local memory that need to be copied to the device memory,

for a non-shared memory accelerator. If a subarray is specified, then only that subarray of the

array needs to be copied. If a variable, array or subarray appears in a copyin, the clause

implies that the data need not be copied back from the device memory to the local memory,

even if those values were changed on the accelerator. On a data construct or compute

construct, the data is allocated and copied to the device memory upon entry to the region and

deallocated upon exit from the region. On an enter data directive, the data is allocated

and copied to the device memory. If the device shares memory with the local thread, the data

in the copyin clause will be shared; no memory is allocated or copied.

2.6.5.5 copyout clause

The copyout clause is used to declare that the variables, arrays, subarrays or common

blocks in the var-list are assigned or contain values in the device memory that need to be

copied back to the local memory at the end of the accelerator region, for a non-shared

memory accelerator. If a subarray is specified, then only that subarray of the array needs to

be copied. If a variable, array or subarray appears in a copyout, the clause implies that the

data need not be copied to the device memory from the local memory, even if those values are

used on the accelerator. On a data construct or compute construct, the data is allocated upon

entry to the region, and copied back to the local memory and deallocated upon exit from the

region. On an exit data directive, the data is copied back to the local memory and

deallocated. If the device shares memory with the local thread, the data in the copyout

clause will be shared; no memory is allocated or copied.

OpenACC Programming Interface 28

2.6.5.6 create clause

The create clause is used to declare that the variables, arrays, subarrays or common blocks

in the var-list need to be allocated (created) in the device memory, for a non-shared memory

accelerator, but the values in the local memory are not needed on the accelerator, and any

values computed and assigned on the accelerator are not needed back in local memory. On a

data construct or compute construct, the data is allocated in device memory upon entry to the

region, and deallocated upon exit from the region. On an enter data directive, the data is

allocated in device memory. No data in this clause will be copied between the local and

device memories. If the device shares memory with the local thread, the data in the create

clause will be shared; no memory is allocated or copied.

2.6.5.7 delete clause

The delete clause is used on exit data directives to deallocate arrays, subarrays or

common blocks without copying values back to local memory. The data is deallocated, on a

non-shared memory device. No action is required or taken if the device shares memory with

the local thread.

2.6.5.8 present clause

The present clause is used to tell the implementation on a non-shared memory device that

the variables or arrays in the var-list are already present in device memory due to data regions

or data lifetimes that contain this region, such as data constructs within procedures that call

the procedure containing this construct, or an enter data directive or runtime API routine

called before this routine. The implementation will find and use that existing accelerator data.

If there is no active data lifetime that has placed any of the variables or arrays on the

accelerator, the behavior is unspecified; in particular, the program may halt with a runtime

error.

If a containing data lifetime specifies a subarray, the present clause must specify the same

subarray, or a subarray that is a proper subset of the subarray in the data lifetime. It is a

runtime error if the subarray in the present clause includes array elements that are not part

of the subarray specified in the data lifetime.

2.6.5.9 present_or_copy clause

The present_or_copy clause is used to tell the implementation on a non-shared memory

accelerator to test whether each of the variables or arrays on the var-list is already present in

the accelerator memory, as with the present clause.

If the data is already present, the program behaves as with the present clause. No new

device memory will be allocated and no data will be moved to or from the device memory.

If the data is not present, the program behaves as with the copy clause. The data is allocated

and copied to the device memory upon entry to the region, and copied back to the local

memory and deallocated upon exit from the region.

This clause may be shortened to pcopy. The restrictions regarding subarrays in the

present clause apply to this clause.

2.6.5.10 present_or_copyin clause

The present_or_copyin clause is used to tell the implementation on a non-shared

memory accelerator to test whether each of the variables or arrays on the var-list is already

present in the accelerator memory, as with the present clause.

OpenACC Programming Interface 29

If the data is already present, the program behaves as with the present clause. No new

device memory will be allocated and no data will be moved to or from the device memory.

If the data is not present, the program behaves as with the copyin clause. On a data

construct or compute construct, the data is allocated and copied to the device memory upon

entry to the region and deallocated upon exit from the region. On an enter data directive,

the data is allocated and copied to the device memory.

This clause may be shortened to pcopyin. The restrictions regarding subarrays in the

present clause apply to this clause.

2.6.5.11 present_or_copyout clause

The present_or_copyout clause is used to tell the implementation on a non-shared

memory accelerator to test whether each of the variables or arrays on the var-list is already

present in the accelerator memory, as with the present clause.

If the data is already present, the program behaves as with the present clause. No new

device memory will be allocated and no data will be moved to or from the device memory.

If the data is not present, the program behaves as with the copyout clause. The data is

allocated upon entry to the region, and copied back to the local memory and deallocated upon

exit from the region.

This clause may be shortened to pcopyout. The restrictions regarding subarrays in the

present clause apply to this clause.

2.6.5.12 present_or_create clause

The present_or_create clause is used to tell the implementation on a non-shared

memory accelerator to test whether each of the variables or arrays on the var-list is already

present in the accelerator memory, as with the present clause.

If the data is already present, the program behaves as with the present clause. No new

device memory will be allocated.

If the data is not present, the program behaves as with the create clause. On a data

construct or compute construct, the data is allocated in device memory upon entry to the

region, and deallocated upon exit from the region. On an enter data directive, the data is

allocated in device memory.

This clause may be shortened to pcreate. The same restrictions about subarrays in the

present clause apply to this clause.

2.6.6 Host_Data Construct

Summary

The host_data construct makes the address of device data available on the host.

Syntax

In C and C++, the syntax of the OpenACC data directive is

 #pragma acc host_data clause-list new-line

 structured block

and in Fortran, the syntax is

OpenACC Programming Interface 30

 !$acc host_data clause-list

 structured block

 !$acc end host_data

where the only valid clause is:

 use_device(var-list)

Description

This construct is used to make the device address of data available in host code.

2.6.6.1 use_device clause

The use_device tells the compiler to use the device address of any variable or array in the

var-list in code within the construct. In particular, this may be used to pass the device address

of variables or arrays to optimized procedures written in a lower-level API. The variables or

arrays in var-list must be present in the accelerator memory due to data regions or data

lifetimes that contain this construct. On a shared memory accelerator, the device address may

be the same as the host address.

2.7 Loop Construct

Summary

The OpenACC loop directive applies to a loop which must immediately follow this

directive. The loop directive can describe what type of parallelism to use to execute the loop

and declare loop-private variables and arrays and reduction operations.

Syntax

In C and C++, the syntax of the loop directive is

 #pragma acc loop [clause-list] new-line

 for loop

In Fortran, the syntax of the loop directive is

 !$acc loop [clause-list]

 do loop

where clause is one of the following:

 collapse(n)

 gang [(gang-arg-list)]

 worker [([num:] int-expr)]

 vector [([length:] int-expr)]

 seq

 auto

 tile(size-expr-list)

 device_type(device-type-list)

 independent

 private(var-list)

 reduction(operator : var-list)

where gang-arg is one of:

 [num:] int-expr

 static: size-expr

OpenACC Programming Interface 31

and gang-arg-list may have at most one num and one static argument,

and where size-expr is one of:

 *

 int-expr

Some clauses are only valid in the context of a parallel region, and some only in the context of

a kernels region; see the descriptions below.

Restrictions

 Only the collapse, gang, worker, vector, seq, auto and tile clauses may

follow a device_type clause.

 The int-expr argument to the worker and vector clauses must be invariant in the

kernels region.

2.7.1 collapse clause

The collapse clause is used to specify how many tightly nested loops are associated with

the loop construct. The argument to the collapse clause must be a constant positive

integer expression. If no collapse clause is present, only the immediately following loop

is associated with the loop directive.

If more than one loop is associated with the loop construct, the iterations of all the

associated loops are all scheduled according to the rest of the clauses. The trip count for all

loops associated with the collapse clause must be computable and invariant in all the

loops.

It is implementation-defined whether a gang, worker or vector clause on the directive is

applied to each loop, or to the linearized iteration space.

2.7.2 gang clause

In an accelerator parallel region, the gang clause specifies that the iterations of the associated

loop or loops are to be executed in parallel by distributing the iterations among the gangs

created by the parallel construct. A loop construct with the gang clause transitions a

compute region from gang-redundant mode to gang-partitioned mode. The number of gangs

is controlled by the parallel construct; only the static argument is allowed. The loop

iterations must be data independent, except for variables specified in a reduction clause.

The region of a loop with the gang clause may not contain another loop with the gang

clause unless within a nested parallel or kernels region

In an accelerator kernels region, the gang clause specifies that the iterations of the associated

loop or loops are to be executed in parallel across the gangs created for any kernel contained

within the loop or loops. If an argument with no keyword or an argument after the num

keyword is specified, it specifies how many gangs to use to execute the iterations of this loop.

The region of a loop with the gang clause may not contain another loop with a gang clause

unless within a nested parallel or kernels region.

The scheduling of loop iterations to gangs is not specified unless the static argument

appears as an argument. If the static argument appears with an integer expression, that

expression is used as a chunk size. If the static argument appears with an asterisk, the

implementation will select a chunk size. The iterations are divided into chunks of the selected

OpenACC Programming Interface 32

chunk size, and the chunks are assigned to gangs starting with gang zero and continuing in

round-robin fashion. Two gang loops in the same parallel region with the same number

of iterations, and with static clauses with the same argument, will assign the iterations to

gangs in the same manner. Two gang loops in the same kernels region with the same

number of iterations, the same number of gangs to use, and with static clauses with the

same argument, will assign the iterations to gangs in the same manner.

2.7.3 worker clause

In an accelerator parallel region, the worker clause specifies that the iterations of the

associated loop or loops are to be executed in parallel by distributing the iterations among the

multiple workers within a single gang. A loop construct with a worker clause causes a gang

to transition from worker-single mode to worker-partitioned mode. In contrast to the gang

clause, the worker clause first activates additional worker-level parallelism and then

distributes the loop iterations across those workers. No argument is allowed. The loop

iterations must be data independent, except for variables specified in a reduction clause.

The region of a loop with the worker clause may not contain a loop with the gang or

worker clause unless within a nested parallel or kernels region.

In an accelerator kernels region, the worker clause specifies that the iterations of the

associated loop or loops are to be executed in parallel across the workers within a gang

created for any kernel contained within the loop or loops. If an argument is specified, it

specifies how many workers per gang to use to execute the iterations of this loop. The region

of a loop with the worker clause may not contain a loop with a gang or worker clause

unless within a nested parallel or kernels region.

All workers will complete execution of their assigned iterations before any worker proceeds

beyond the end of the loop.

2.7.4 vector clause

In an accelerator parallel region, the vector clause specifies that the iterations of the

associated loop or loops are to be executed in vector or SIMD mode. A loop construct with a

vector clause causes a worker to transition from vector-single mode to vector-partitioned

mode. Similar to the worker clause, the vector clause first activates additional vector-

level parallelism and then distributes the loop iterations across those vector lanes. The

operations will execute using vectors of the length specified or chosen for the parallel region.

The region of a loop with the vector clause may not contain a loop with the gang,

worker or vector clause unless within a nested parallel or kernels region.

In an accelerator kernels region, the vector clause specifies that the iterations of the associated

loop or loops are to be executed with vector or SIMD processing. If an argument is specified,

the iterations will be processed in vector strips of that length; if no argument is specified, the

implementation will choose an appropriate vector length. The region of a loop with the

vector clause may not contain a loop with a gang, worker or vector clause unless

within a nested parallel or kernels region.

All vector lanes will complete execution of their assigned iterations before any vector lane

proceeds beyond the end of the loop.

OpenACC Programming Interface 33

2.7.5 seq clause

The seq clause specifies that the associated loop or loops are to be executed sequentially by

the accelerator. This clause will override any automatic parallelization or vectorization.

2.7.6 auto clause

The auto clause specifies that the implementation should select whether to apply gang,

worker or vector parallelism to this loop. The implementation may be restricted to the types

of parallelism it can apply by the presence of loop directives with gang, worker or

vector clauses for outer or inner loops. This clause by itself does not tell the

implementation that the loop iterations are data independent, and the implementation cannot

apply any parallelism unless the loop has the independent clause, is implicitly

independent because it is in a parallel construct, or the implementation can analyze the loop

and determine that the loop iterations are data independent. In a kernels construct, a loop

directive with no gang, worker, vector or seq clause is treated as if it has the auto

clause.

2.7.7 tile clause

The tile clause specifies that the implementation should split each loop in the loop nest into

two loops, with an outer set of tile loops and an inner set of element loops. The argument to

the tile clause is a list of one or more tile sizes, where each tile size is a constant positive

integer expression or an asterisk. If there are n tile sizes in the list, the loop directive must be

immediately followed by n tightly-nested loops. The first argument in the size-expr-list

corresponds to the innermost loop of the n associated loops, and the last element corresponds

to the outermost associated loop. If the tile size is specified with an asterisk, the

implementation will choose an appropriate value. Each loop in the nest will be split or strip-

mined into two loops, an outer tile loop and an inner element loop. The trip count of the

element loop will be limited to the corresponding tile size from the size-expr-list. The tile

loops will be reordered to be outside all the element loops, and the element loops will all be

inside the tile loops.

If the vector clause appears on the loop directive, the vector clause is applied to the

element loops. If the gang clause appears on the loop directive, the gang clause is applied

to the tile loops. If the worker clause appears on the loop directive, the worker clause is

applied to the element loops if no vector clause appears, and to the tile loops otherwise.

2.7.8 device_type clause

The device_type clause is described in Section 2.4 Device-Specific Clauses.

2.7.9 independent clause

In a kernels construct, the independent clause tells the implementation that the

iterations of this loop are data-independent with respect to each other. This allows the

implementation to generate code to execute the iterations in parallel with no synchronization.

In a parallel construct, the independent clause is implied on all loop directives

without a seq clause.

OpenACC Programming Interface 34

Restrictions

 It is a programming error to use the independent clause on a loop in a kernels

construct if any iteration writes to a variable or array element that any other iteration

also writes or reads, except for variables in a reduction clause.

2.7.10 private clause

The private clause on a loop directive specifies that a copy of each item on the var-list

will be created for each thread that executes one or more iterations of the associated loop or

loops. Variables referenced in the loop and not in a private clause or predetermined

private are not privatized for a thread that execute the loop iterations.

2.7.11 reduction clause

The reduction clause specifies a reduction operator and one or more scalar variables. For

each reduction variable, a private copy is created for each thread that executes iterations of the

associated loop or loops and initialized for that operator; see the table in section 2.5.11

reduction clause. At the end of the loop, the values for each thread are combined using the

specified reduction operator, and the result stored in the original variable at the end of the

parallel or kernels region.

In a parallel region, if the reduction clause is used on a loop with the vector or worker

clauses (and no gang clause), and the scalar variable also appears in a private clause on

the parallel construct, the value of the private copy of the scalar will be updated at the

exit of the loop. If the scalar variable does not appear in a private clause on the

parallel construct, or if the reduction clause is used on a loop with the gang clause,

the value of the scalar will not be updated until the end of the parallel region.

2.8 Cache Directive

Summary

The cache directive may appear at the top of (inside of) a loop. It specifies array elements or

subarrays that should be fetched into the highest level of the cache for the body of the loop.

Syntax

In C and C++, the syntax of the cache directive is

 #pragma acc cache(var-list) new-line

In Fortran, the syntax of the cache directive is

 !$acc cache (var-list)

The entries in var-list must be single array elements or simple subarray. In C and C++, a

simple subarray is an array name followed by an extended array range specification in

brackets, with start and length, such as

 arr[lower:length]

where the lower bound is a constant, loop invariant, or the for loop index variable plus or

minus a constant or loop invariant, and the length is a constant.

In Fortran, a simple subarray is an array name followed by a comma-separated list of range

specifications in parentheses, with lower and upper bound subscripts, such as

OpenACC Programming Interface 35

 arr(lower:upper,lower2:upper2)

The lower bounds must be constant, loop invariant, or the do loop index variable plus or

minus a constant or loop invariant; moreover the difference between the corresponding upper

and lower bounds must be a constant.

2.9 Combined Directives

Summary

The combined OpenACC parallel loop and kernels loop directives are shortcuts

for specifying a loop directive nested immediately inside a parallel or kernels

construct. The meaning is identical to explicitly specifying a parallel or kernels

directive containing a loop directive. Any clause that is allowed on a parallel or loop

directive is allowed on the parallel loop directive, and any clause allowed on a

kernels or loop directive are allowed on a kernels loop directive.

Syntax

In C and C++, the syntax of the parallel loop directive is

 #pragma acc parallel loop [clause-list] new-line

 for loop

In Fortran, the syntax of the parallel loop directive is

 !$acc parallel loop [clause-list]

 do loop

 [!$acc end parallel loop]

The associated structured block is the loop which must immediately follow the directive. Any

of the parallel or loop clauses valid in a parallel region may appear.

In C and C++, the syntax of the kernels loop directive is

 #pragma acc kernels loop [clause-list] new-line

 for loop

In Fortran, the syntax of the kernels loop directive is

 !$acc kernels loop [clause-list]

 do loop

 [!$acc end kernels loop]

The associated structured block is the loop which must immediately follow the directive. Any

of the kernels or loop clauses valid in a kernels region may appear.

Restrictions

 The restrictions for the parallel, kernels and loop constructs apply.

2.10 Atomic Directive

Summary

An atomic construct ensures that a specific storage location is accessed and/or updated

atomically, preventing simultaneous reading and writing by gangs, workers and vector threads

that could result in indeterminate values.

OpenACC Programming Interface 36

Syntax

In C and C++, the syntax of the atomic constructs are:

 #pragma acc atomic [atomic-clause] new-line

 expression-stmt

or:

 #pragma acc atomic capture new-line

 structured-block

Where atomic-clause is one of read, write, update, or capture. The expression-stmt

is an expression statement with one of the following forms:

If the atomic-clause is read:

 v = x;

If the atomic-clause is write:

 x = expr;

If the atomic-clause is update or not present:

 x++;

 x--;

 ++x;

 --x;

 x binop= expr;

 x = x binop expr;

 x = expr binop x;

If the atomic-clause is capture:

 v = x++;

 v = x--;

 v = ++x;

 v = --x;

 v = x binop= expr;

 v = x = x binop expr;

 v = x = expr binop x;

The structured-block is a structured block with one of the following forms:

 {v = x; x binop= expr;}

 {x binop= expr; v = x;}

 {v = x; x = x binop expr;}

 {v = x; x = expr binop x;}

 {x = x binop expr; v = x;}

 {x = expr binop x; v = x;}

 {v = x; x = expr;}

 {v = x; x++;}

 {v = x; ++x;}

 {++x; v = x;}

 {x++; v = x;}

 {v = x; x--;}

 {v = x; --x;}

OpenACC Programming Interface 37

 {--x; v = x;}

 {x--; v = x;}

In the preceding expressions:

 x and v (as applicable) are both l-value expressions with scalar type.

 During the execution of an atomic region, multiple syntactic occurrences of x must

designate the same storage location.

 Neither of v and expr (as applicable) may access the storage location designated by x.

 Neither of x and expr (as applicable) may access the storage location designated by v.

 expr is an expression with scalar type.

 binop is one of +, *, -, /, &, ^, |, <<, or >>.

 binop, binop=, ++, and -- are not overloaded operators.

 The expression x binop expr must be mathematically equivalent to x binop (expr).

This requirement is satisfied if the operators in expr have precedence greater than

binop, or by using parentheses around expr or subexpressions of expr.

 The expression expr binop x must be mathematically equivalent to (expr) binop x.

This requirement is satisfied if the operators in expr have precedence equal to or

greater than binop, or by using parentheses around expr or subexpressions of expr.

 For forms that allow multiple occurrences of x, the number of times that x is

evaluated is unspecified.

In Fortran the syntax of the atomic constructs are:

 !$acc atomic read

 capture-statement
 [!$acc end atomic]

 or

 !$acc atomic write

 write-statement
 [!$acc end atomic]

 or

 !$acc atomic [update]

 update-statement
 [!$acc end atomic]

 or

 !$acc atomic capture

 update-statement

 capture-statement
 !$acc end atomic

 or

 !$acc atomic capture

 capture-statement

 update-statement
 !$acc end atomic

 or

OpenACC Programming Interface 38

 !$acc atomic capture

 capture-statement

 write-statement
 !$acc end atomic

where write-statement has the following form (if clause is write or capture):

 x = expr

where capture-statement has the following form (if clause is capture or read):

 v = x

and where update-statement has one of the following forms (if clause is update, capture,

or not present):

 x = x operator expr

 x = expr operator x

 x = intrinsic_procedure_name(x, expr-list)

 x = intrinsic_procedure_name(expr-list, x)

 In the preceding statements:

 x and v (as applicable) are both scalar variables of intrinsic type.

 x must not be an allocatable variable.

 During the execution of an atomic region, multiple syntactic occurrences of x must

designate the same storage location.

 None of v, expr and expr-list (as applicable) may access the same storage location as

x.

 None of x, expr and expr-list (as applicable) may access the same storage location as

v.

 expr is a scalar expression.

 expr-list is a comma-separated, non-empty list of scalar expressions. If

intrinsic_procedure_name refers to iand, ior, or ieor, exactly one expression

must appear in expr-list.

 intrinsic_procedure_name is one of max, min, iand, ior, or ieor. operator is one

of +, *, -, /, .and., .or., .eqv., or .neqv. .

 The expression x operator expr must be mathematically equivalent to x operator

(expr). This requirement is satisfied if the operators in expr have precedence greater

than operator, or by using parentheses around expr or subexpressions of expr.

 The expression expr operator x must be mathematically equivalent to (expr)

operator x. This requirement is satisfied if the operators in expr have precedence

equal to or greater than operator, or by using parentheses around expr or

subexpressions of expr.

 intrinsic_procedure_name must refer to the intrinsic procedure name and not to other

program entities.

 operator must refer to the intrinsic operator and not to a user-defined operator. All

assignments must be intrinsic assignments.

 For forms that allow multiple occurrences of x, the number of times that x is

evaluated is unspecified.

OpenACC Programming Interface 39

An atomic construct with the read clause forces an atomic read of the location designated by

x. An atomic construct with the write clause forces an atomic write of the location

designated by x.

An atomic construct with the update clause forces an atomic update of the location

designated by x using the designated operator or intrinsic. Note that when no clause is

present, the semantics are equivalent to atomic update. Only the read and write of the

location designated by x are performed mutually atomically. The evaluation of expr or expr-

list need not be atomic with respect to the read or write of the location designated by x.

An atomic construct with the capture clause forces an atomic update of the location

designated by x using the designated operator or intrinsic while also capturing the original or

final value of the location designated by x with respect to the atomic update. The original or

final value of the location designated by x is written into the location designated by v

depending on the form of the atomic construct structured block or statements following the

usual language semantics. Only the read and write of the location designated by x are

performed mutually atomically. Neither the evaluation of expr or expr-list, nor the write to the

location designated by v, need to be atomic.

For all forms of the atomic construct, any combination of two or more of these atomic

constructs enforces mutually exclusive access to the locations designated by x. To avoid race

conditions, all accesses of the locations designated by x that could potentially occur in

parallel must be protected with an atomic construct.

Atomic regions do not guarantee exclusive access with respect to any accesses outside of

atomic regions to the same storage location x even if those accesses occur during the

execution of a reduction clause.

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is

not a multiple of the size of x), then the behavior of the atomic region is implementation-

defined.

Restrictions

The following restriction applies to the atomic construct:

 All atomic accesses to the storage locations designated by x throughout the program

are required to have the same type and type parameters.

 Storage locations designated by x must be less than or equal in size to the largest

available native atomic operator width.

2.11 Declare Directive

Summary

A declare directive is used in the declaration section of a Fortran subroutine, function, or

module, or following a variable declaration in C or C++. It can specify that a variable or

array is to be allocated in the device memory for the duration of the implicit data region of a

function, subroutine or program, and specify whether the data values are to be transferred

from the host to the device memory upon entry to the implicit data region, and from the

device to the host memory upon exit from the implicit data region. These directives create a

visible device copy of the variable or array.

Syntax

In C and C++, the syntax of the declare directive is:

OpenACC Programming Interface 40

 #pragma acc declare clause-list new-line

In Fortran the syntax of the declare directive is:

 !$acc declare clause-list

where clause is one of the following:

 copy(var-list)

 copyin(var-list)

 copyout(var-list)

 create(var-list)

 present(var-list)

 present_or_copy(var-list)

 present_or_copyin(var-list)

 present_or_copyout(var-list)

 present_or_create(var-list)

 deviceptr(var-list)

 device_resident(var-list)

 link(var-list)

The associated region is the implicit region associated with the function, subroutine, or

program in which the directive appears. If the directive appears in the declaration section of a

Fortran module subprogram or in a C or C++ global scope, the associated region is the

implicit region for the whole program. Otherwise, the clauses have exactly the same behavior

as having an explicit data construct surrounding the body of the procedure with these clauses.

The data clauses are described in section 2.6.5 Data Clauses.

Restrictions

 A variable or array may appear at most once in all the clauses of declare directives

for a function, subroutine, program, or module.

 Subarrays are not allowed in declare directives.

 In Fortran, assumed-size dummy arrays may not appear in a declare directive.

 In Fortran, pointer arrays may be specified, but pointer association is not preserved in

the device memory.

 In a Fortran module declaration section, only create, copyin,

device_resident and link clauses are allowed.

 In C or C++ global scope, only create, copyin, deviceptr,

device_resident and link clauses are allowed.

 C and C++ extern variables may only appear in create, copyin, deviceptr,

device_resident and link clauses on a declare directive.

2.11.1 device_resident clause

Summary

The device_resident clause specifies that the memory for the named variables should

be allocated in the accelerator device memory and not in the host memory. The names in the

argument list may be variable or array names, or Fortran common block names enclosed

between slashes; subarrays are not allowed. The host may not be able to access variables in a

OpenACC Programming Interface 41

device_resident clause. The accelerator data lifetime of global variables or common

blocks specified in a device_resident clause is the entire execution of the program.

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable

will be allocated in and deallocated from the accelerator device memory when the host

program executes an allocate or deallocate statement for that variable. If the variable

has the Fortran pointer attribute, it may be allocated or deallocated by the host in the

accelerator device memory, or may appear on the left hand side of a pointer assignment

statement, if the right hand side variable itself appears in a device_resident clause.

In Fortran, the argument to a device_resident clause may be a common block name

enclosed in slashes; in this case, all declarations of the common block must have a matching

device_resident clause. In this case, the common block will be statically allocated in

device memory, and not in host memory. The common block will be available to accelerator

routines; see 2.13 Procedure Calls in Compute Regions.

In a Fortran module declaration section, a variable or array in a device_resident clause

will be available to accelerator routines.

In C or C++ global scope, a variable or array in a device_resident clause will be

available to accelerator routines . A C or C++ extern variable may appear in a

device_resident clause only if the actual declaration and all extern declarations are also

followed by device_resident clauses.

2.11.2 link clause

The link clause is used for large global host static data that is referenced within an

accelerator routine and that should have a dynamic data lifetime on the device. The link

clause specifies that only a global link for the named variables should be statically created in

accelerator memory. The host data structure remains statically allocated and globally

available. The device data memory will be allocated only when the global variable appears on

a data clause for a data construct, compute construct or enter data directive. The

arguments to the link clause must be global data. In C or C++, the link clause must appear

on global scope, or the arguments must be extern variables. In Fortran, the link clause must

appear in a module declaration section, or the arguments must be common block names

enclosed in slashes. A declare link clause must be visible everywhere the global

variables or common block variables are explicitly or implicitly used in a data clause,

compute construct, or accelerator routine. The global variable or common block variables may

be used in accelerator routines. The accelerator data lifetime of variables or common blocks

specified in a link clause is the data region that allocates the variable or common block with

a data clause, or from the execution of the enter data directive that allocates the data until

an exit data directive deallocates it or until the end of the program.

2.12 Executable Directives

2.12.1 Update Directive

Summary

The update directive is used during the lifetime of accelerator data to update all or part of

local variables or arrays with values from the corresponding memory in device memory, or to

OpenACC Programming Interface 42

update all or part of device variables or arrays with values from the corresponding local

memory.

Syntax

In C and C++, the syntax of the update directive is:

 #pragma acc update clause-list new-line

In Fortran the syntax of the update data directive is:

 !$acc update clause-list

where clause is one of the following:

 async [(int-expr)]

 wait [(int-expr-list)]

 device_type(device-type-list)

 if(condition)

 self(var-list)

 host(var-list)

 device(var-list)

The var-list argument to an update clause is a comma-separated collection of variable

names, array names, or subarray specifications. Multiple subarrays of the same array may

appear in a var-list of the same or different clauses on the same directive. The effect of an

update clause is to copy data from the accelerator device memory to the local memory for

update self, and from local memory to accelerator device memory for update

device. The updates are done in the order in which they appear on the directive. There

must be a device copy of the variables or arrays that appear in the self or device clauses.

At least one self, host or device clause must appear.

2.12.1.1 self clause

The self clause specifies that the variables, arrays or subarrays in the var-list are to be

copied from the accelerator device memory to the local memory for a non-shared memory

accelerator. If the accelerator shares the same memory with the encountering thread, no

action is taken.

2.12.1.2 host clause

The host clause is a synonym for the self clause.

2.12.1.3 device clause

The device clause specifies that the variables, arrays or subarrays in the var-list are to be

copied from the local memory to the accelerator device memory, for a non-shared memory

accelerator. If the accelerator shares the same memory with the encountering thread, no

action is taken.

2.12.1.4 if clause

The if clause is optional; when there is no if clause, the implementation will generate code

to perform the updates unconditionally. When an if clause appears, the implementation will

generate code to conditionally perform the updates only when the condition evaluates to

nonzero in C or C++, or .true. in Fortran.

2.12.1.5 async clause

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.

OpenACC Programming Interface 43

2.12.1.6 wait clause

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.

Restrictions

 The update directive is executable. It must not appear in place of the statement

following an if, while, do, switch, or label in C or C++, or in place of the statement

following a logical if in Fortran.

 A variable or array which appears in the var-list of an update directive must have a

device copy.

 Only the async and wait clauses may follow a device_type clause.

 At most one if clause may appear. In Fortran, the condition must evaluate to a

scalar logical value; in C or C++, the condition must evaluate to a scalar integer

value.

 Noncontiguous subarrays may be specified. It is implementation-specific whether

noncontiguous regions are updated by using one transfer for each contiguous

subregion, or whether the noncontiguous data is packed, transferred once, and

unpacked.

 In C and C++, a member of a struct or class may be specified, including a subarray of

a member. Members of a subarray of struct or class type may not be specified.

 In C and C++, if a subarray notation is used for a struct member, subarray notation

may not be used for any parent of that struct member.

 In Fortran, members of variables of derived type may be specified, including a

subarray of a member. Members of subarrays of derived type may not be specified.

 In Fortran, if array or subarray notation is used for a derived type member, array or

subarray notation may not be used for an parent of that derived type member.

2.12.2 Wait Directive

See section 2.14 Asynchronous Behavior for more information.

2.12.3 Enter Data Directive

See section 2.6.4 Enter Data and Exit Data Directives for more information.

2.12.4 Exit Data Directive

See section 2.6.4 Enter Data and Exit Data Directives for more information.

2.13 Procedure Calls in Compute Regions

This section describes how routines are compiled for an accelerator and how procedure calls

are compiled in compute regions.

OpenACC Programming Interface 44

2.13.1 Routine Directive

Summary

The routine directive is used to tell the compiler to compile a given procedure for an

accelerator as well as the host. In a file or routine with a procedure call, the routine

directive tells the implementation the attributes of the procedure when called on the

accelerator.

Syntax

In C and C++, the syntax of the routine directive is:

 #pragma acc routine clause-list new-line

 #pragma acc routine(name) clause-list new-line

In C and C++, the routine directive without a name may appear immediately before a

function definition or just before a function prototype and applies to that immediately

following function or prototype. The routine directive with a name may appear anywhere

that a function prototype is allowed and applies to the function in that scope with that name,

but must appear before any definition or use of that function.

In Fortran the syntax of the routine directive is:

 !$acc routine clause-list

 !$acc routine(name) clause-list

In Fortran, the routine directive without a name may appear within the specification part of

a subroutine or function definition, or within an interface body for a subroutine or function in

an interface block, and applies to the containing subroutine or function. The routine

directive with a name may appear in the specification part of a subroutine, function or

module, and applies to the named subroutine or function.

A C or C++ function or Fortran subprogram compiled with the routine directive for an

accelerator is called an accelerator routine.

The clause is one of the following:

 gang

 worker

 vector

 seq

 bind(name)

 bind(string)

 device_type(device-type-list)

 nohost

Restrictions

 Only the gang, worker, vector, seq and bind clauses may follow a

device_type clause.

 In C and C++, function static variables are not supported in functions to which a

routine directive applies.

 In Fortran, variables with the save attribute, either explicitly or implicitly, are not

supported in subprograms to which a routine directive applies.

OpenACC Programming Interface 45

2.13.1.1 gang clause

The gang clause specifies that the procedure contains, may contain, or may call another

procedure that contains a loop with a gang clause. A call to this procedure must appear in

code that is executed in gang-redundant mode, and all gangs must execute the call. For

instance, a procedure with a routine gang directive may not be called from within a loop

that has a gang clause. Only one of gang, worker, vector and seq may be specified for

each device type.

2.13.1.2 worker clause

The worker clause specifies that the procedure contains, may contain, or may call another

procedure that contains a loop with a worker clause, but does not contain nor does it call

another procedure that contains a loop with the gang clause. A loop in this procedure with

an auto clause may be selected by the compiler to execute in worker or vector mode. A

call to this procedure must appear in code that is executed in worker-single mode, though it

may be in gang-redundant or gang-partitioned mode. For instance, a procedure with a

routine worker directive may be called from within a loop that has the gang clause, but

not from within a loop that has the worker clause. Only one of gang, worker, vector

and seq may be specified for each device type.

2.13.1.3 vector clause

The vector clause specifies that the procedure contains, may contain, or may call another

procedure that contains a loop with the vector clause, but does not contain nor does it call

another procedure that contains a loop with either a gang or worker clause. A loop in this

procedure with an auto clause may be selected by the compiler to execute in vector mode,

but not worker mode. A call to this procedure must appear in code that is executed in

vector-single mode, though it may be in gang-redundant or gang-partitioned mode, and in

worker-single or worker-partitioned mode. For instance, a procedure with a routine

vector directive may be called from within a loop that has the gang clause or the worker

clause, but not from within a loop that has the vector clause. Only one of gang, worker,

vector and seq may be specified for each device type.

2.13.1.4 seq clause

The seq clause specifies that the procedure does not contain nor does it call another

procedure that contains a loop with a gang, worker or vector clause. A loop in this

procedure with an auto clause will be executed in seq mode. A call to this procedure may

appear in any mode. Only one of gang, worker, vector and seq may be specified for

each device type.

2.13.1.5 bind clause

The bind clause specifies the name to use when compiling or calling the procedure. If the

name is specified as an identifier, it is compiled or called as if that name were specified in the

language being compiled. If the name is specified as a string, the string is used for the

procedure name unmodified.

2.13.1.6 device_type clause

The device_type clause is described in Section 2.4 Device-Specific Clauses.

2.13.1.7 nohost clause

The nohost tells the compiler not to compile a version of this procedure for the host. All

calls to this procedure must appear within accelerator compute regions. If this procedure is

OpenACC Programming Interface 46

called from other procedures, those other procedures must also have a matching routine

directive with the nohost clause.

2.13.2 Global Data Access

C or C++ global, file static or extern variables or array, and Fortran module or common block

variables or arrays, that are used in accelerator routines must appear in a declare directive in a

create, copyin, device_resident or link clause. If the data appears in a

device_resident clause, the routine directive for the procedure must include the

nohost clause. If the data appears in a link clause, that data must have an active

accelerator data lifetime by virtue of appearing in a data clause for a data construct, compute

construct or enter data directive.

2.14 Asynchronous Behavior

This section describes the async clause and the behavior of programs that use asynchronous

data movement and compute constructs.

2.14.1 async clause

The async clause may appear on a parallel or kernels construct, or an enter data,

exit data, update or wait directive. In all cases, the async clause is optional; when

there is no async clause, the local thread will wait until the compute construct or data

operations are complete before executing any of the code that follows, or, on the wait

directive, until all operations on the appropriate asynchronous activity queues are complete.

When there is an async clause, the parallel or kernels region or data operations may be

processed asynchronously while the local thread continues with the code following the

construct or directive.

The async clause may have a single async-argument, where an async-argument is a

nonnegative scalar integer expression (int for C or C++, integer for Fortran), or one of the

special async values defined below. The behavior with a negative async-argument, except the

special async values defined below, is implementation-defined. The value of the async-

argument may be used in a wait directive, wait clause, or various runtime routines to test

or wait for completion of the operation.

Two special async values are defined in the C and Fortran header files and the Fortran

openacc module. These are negative values, so as not to conflict with a user-specified

nonnegative async-argument. An async clause with the async-argument

acc_async_noval will behave the same as if the async clause had no argument. An

async clause with the async-argument acc_async_sync will behave the same as if no

async clause appeared.

The async-value of any operation is the value of the async-argument, if present, or

acc_async_noval if the async clause had no value, or acc_async_sync if no

async clause appeared. If the device supports asynchronous operation with one or more

device activity queues, the async-value is used to select the queue onto which to enqueue an

operation. The properties of the device and the implementation will determine how many

actual activity queues are supported, and how the async-value is mapped onto the actual

activity queues. Two asynchronous operations with the same async-value will be enqueued

OpenACC Programming Interface 47

onto the same activity queue, and therefore will be executed on the device in the order they

are encountered by the local thread. Two asynchronous operations with different async-

values may be enqueued onto different activity queues, and therefore may be executed on the

device in either order relative to each other. If there are two or more threads executing and

sharing the same accelerator device, two asynchronous operations with the same async-value

will be enqueued on the same activity queue, but unless the threads are synchronized with

respect to each other, the operations may be enqueued in either order and therefore may

execute on the device in either order.

2.14.2 wait clause

The wait clause may appear on a parallel or kernels construct, or an enter data,

exit data, or update directive. In all cases, the wait clause is optional. When there is

no wait clause, the associated compute or update operations may be enqueued or launched

or executed immediately on the device. If there is an argument to the wait clause, it must be

a list of one or more async-arguments. The compute, data or update operation may not be

launched or executed until all operations enqueued up to this point by this thread on the

associated asynchronous device activity queues have completed. One legal implementation is

for the local thread to wait for all the associated asynchronous device activity queues.

Another legal implementation is for the local thread to enqueue the compute or update

operation in such a way that the operation will not start until the operations enqueued on the

associated asynchronous device activity queues have completed.

2.14.3 Wait Directive

Summary

The wait directive causes the local thread to wait for completion of asynchronous

operations, such as an accelerator parallel or kernels region or an update directive, or causes

one device activity queue to synchronize with one or more other activity queues.

Syntax

In C and C++, the syntax of the wait directive is:

 #pragma acc wait [(int-expr-list)] clause-list new-line

In Fortran the syntax of the wait directive is:

 !$acc wait [(int-expr-list)] clause-list

where clause is:

 async [(int-expr)]

The wait argument, if present, must be one or more async-arguments.

If there is no wait argument and no async clause, the local thread will wait until all

operations enqueued by this thread on any device activity queue have completed.

If there are one or more int-expr expressions and no async clause, the local thread will wait

until all operations enqueued by this thread on each of the associated device activity queues

have completed.

If there are two or more threads executing and sharing the same accelerator device, a wait

directive with no async clause will cause the local thread to wait until all of the appropriate

asynchronous operations previously enqueued have completed. To guarantee that operations

OpenACC Programming Interface 48

have been enqueued by other threads requires additional synchronization between those

threads.

If there is an async clause, no new operation may be launched or executed on the async

device activity queue until all operations enqueued up to this point by this thread on the

asynchronous activity queues associated with the wait argument have completed. One legal

implementation is for the local thread to wait for all the associated asynchronous device

activity queues. Another legal implementation is for the thread to enqueue a synchronization

operation in such a way that no new operation will start until the operations enqueued on the

associated asynchronous device activity queues have completed.

OpenACC Programming Interface 49

3. Runtime Library

This chapter describes the OpenACC runtime library routines that are available for use by

programmers. Use of these routines may limit portability to systems that do not support the

OpenACC API. Conditional compilation using the _OPENACC preprocessor variable may

preserve portability.

This chapter has two sections:

 Runtime library definitions

 Runtime library routines

Restrictions

 In Fortran, none of the OpenACC runtime library routines may be called from a

PURE or ELEMENTAL procedure.

3.1 Runtime Library Definitions

In C and C++, prototypes for the runtime library routines described in this chapter are

provided in a header file named openacc.h. All the library routines are extern functions

with “C” linkage. This file defines:

 The prototypes of all routines in the chapter.

 Any datatypes used in those prototypes, including an enumeration type to describe

types of accelerators.

 The values of acc_async_noval and acc_async_sync.

In Fortran, interface declarations are provided in a Fortran include file named

openacc_lib.h and in a Fortran module named openacc. These files define:

 Interfaces for all routines in the chapter.

 The integer parameter openacc_version with a value yyyymm where yyyy and

mm are the year and month designations of the version of the Accelerator

programming model supported. This value matches the value of the preprocessor

variable _OPENACC.

 Integer parameters to define integer kinds for arguments to those routines.

 Integer parameters to describe types of accelerators.

 The values of acc_async_noval and acc_async_sync.

Many of the routines accept or return a value corresponding to the type of accelerator device.

In C and C++, the datatype used for device type values is acc_device_t; in Fortran, the

corresponding datatype is integer(kind=acc_device_kind). The possible values

for device type are implementation specific, and are listed in the C or C++ include file

openacc.h, the Fortran include file openacc_lib.h and the Fortran module openacc.

Four values are always supported: acc_device_none, acc_device_default,

acc_device_host and acc_device_not_host. For other values, look at the

appropriate files included with the implementation, or read the documentation for the

implementation. The value acc_device_default will never be returned by any

OpenACC Programming Interface 50

function; its use as an argument will tell the runtime library to use the default device type for

that implementation.

3.2 Runtime Library Routines

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to

designate a host address or device address, as if the following definitions were included:

 #define h_void void

 #define d_void void

Except for acc_on_device, these routines are only available on the host.

3.2.1 acc_get_num_devices

Summary

The acc_get_num_devices routine returns the number of accelerator devices of the

given type attached to the host.

Format

C or C++:

 int acc_get_num_devices(acc_device_t);

Fortran:

 integer function acc_get_num_devices(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_get_num_devices routine returns the number of accelerator devices of the

given type attached to the host. The argument tells what kind of device to count.

Restrictions

 This routine may not be called within an accelerator parallel or kernels region.

3.2.2 acc_set_device_type

Summary

The acc_set_device_type routine tells the runtime which type of device to use when

executing an accelerator parallel or kernels region. This is useful when the implementation

allows the program to be compiled to use more than one type of accelerator.

Format

C or C++:

 void acc_set_device_type(acc_device_t);

Fortran:

 subroutine acc_set_device_type(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_set_device_type routine tells the runtime which type of device to use among

those available.

OpenACC Programming Interface 51

Restrictions

 This routine may not be called within an accelerator parallel or kernels region.

 If the device type specified is not available, the behavior is implementation-defined;

in particular, the program may abort.

 If some accelerator regions are compiled to only use one device type, calling this

routine with a different device type may produce undefined behavior.

3.2.3 acc_get_device_type

Summary

The acc_get_device_type routine tells the program what type of device will be used to

run the next accelerator region, if one has been selected. This is useful when the

implementation allows the program to be compiled to use more than one type of accelerator.

Format

C or C++:

 acc_device_t acc_get_device_type(void);

Fortran:

 function acc_get_device_type()

 integer(acc_device_kind) acc_get_device_type

Description

The acc_get_device_type routine returns a value to tell the program what type of

device will be used to run the next accelerator parallel or kernels region, if one has been

selected. The device type may have been selected by the program with an

acc_set_device_type call, with an environment variable, or by the default behavior of

the program.

Restrictions

 This routine may not be called within an accelerator parallel or kernels region.

 If the device type has not yet been selected, the value acc_device_none may be

returned.

3.2.4 acc_set_device_num

Summary

The acc_set_device_num routine tells the runtime which device to use.

Format

C or C++

 void acc_set_device_num(int, acc_device_t);

Fortran:

 subroutine acc_set_device_num(devicenum, devicetype)

 integer devicenum

 integer(acc_device_kind) devicetype

Description

The acc_set_device_num routine tells the runtime which device to use among those

attached of the given type. If the value of devicenum is negative, the runtime will revert to

OpenACC Programming Interface 52

its default behavior, which is implementation-defined. If the value of the second argument is

zero, the selected device number will be used for all attached accelerator types.

Restrictions

 This routine may not be called within an accelerator parallel, kernels or data region.

 If the value of devicenum is greater than or equal to the value returned by

acc_get_num_devices for that device type, the behavior is implementation-

defined.

 Calling acc_set_device_num implies a call to acc_set_device_type with

that device type argument.

3.2.5 acc_get_device_num

Summary

The acc_get_device_num routine returns the device number of the specified device type

that will be used to run the next accelerator parallel or kernels region.

Format

C or C++:

 int acc_get_device_num(acc_device_t);

Fortran:

 integer function acc_get_device_num(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_get_device_num routine returns an integer corresponding to the device number

of the specified device type that will be used to execute the next accelerator parallel or kernels

region.

Restrictions

 This routine may not be called within an accelerator parallel or kernels region.

3.2.6 acc_async_test

Summary

The acc_async_test routine tests for completion of all associated asynchronous

operations.

Format

C or C++:

 int acc_async_test(int);

Fortran:

 logical function acc_async_test(arg)

 integer(acc_handle_kind) arg

Description

The argument must be an async-argument as defined in Section 2.14.1 async clause. If that

value appeared in one or more async clauses, and all such asynchronous operations have

completed, the acc_async_test routine will return with a nonzero value in C and C++,

or .true. in Fortran. If some such asynchronous operations have not completed, the

OpenACC Programming Interface 53

acc_async_test routine will return with a zero value in C and C++, or .false. in

Fortran. If two or more threads share the same accelerator, the acc_async_test routine

will return with a nonzero value or .true. only if all matching asynchronous operations

initiated by this thread have completed; there is no guarantee that all matching asynchronous

operations initiated by other threads have completed.

3.2.7 acc_async_test_all

Summary

The acc_async_test_all routine tests for completion of all asynchronous operations.

Format

C or C++:

 int acc_async_test_all();

Fortran:

 logical function acc_async_test_all()

Description

If all outstanding asynchronous operations have completed, the acc_async_test_all

routine will return with a nonzero value in C and C++, or .true. in Fortran. If some

asynchronous operations have not completed, the acc_async_test_all routine will

return with a zero value in C and C++, or .false. in Fortran. If two or more threads share

the same accelerator, the acc_async_test_all routine will return with a nonzero value

or .true. only if all outstanding asynchronous operations initiated by this thread have

completed; there is no guarantee that all asynchronous operations initiated by other threads

have completed.

3.2.8 acc_wait

Summary

The acc_wait routine waits for completion of all associated asynchronous operations.

Format

C or C++:

 void acc_wait(int);

Fortran:

 subroutine acc_wait(arg)

 integer(acc_handle_kind) arg

Description

The argument must be an async-argument as defined in Section 2.14.1 async clause. If that

value appeared in one or more async clauses, the acc_wait routine will not return until

the latest such asynchronous operation has completed. If two or more threads share the same

accelerator, the acc_wait routine will return only if all matching asynchronous operations

initiated by this thread have completed; there is no guarantee that all matching asynchronous

operations initiated by other threads have completed. For compatibility with version 1.0, this

routine may also be spelled acc_async_wait.

OpenACC Programming Interface 54

3.2.9 acc_wait_async

Summary

The acc_wait_async routine enqueues a wait operation on one async queue for the

operations previously enqueued on another async queue.

Format

C or C++:

 void acc_wait_async(int, int);

Fortran:

 subroutine acc_wait_async(arg, async)

 integer(acc_handle_kind) arg, async

Description

The acc_wait_async routine is equivalent to the wait directive with an async clause.

The arguments must be async-arguments, as defined in Section 2.14.1 async clause. The

routine will enqueue a wait operation on the appropriate device queue associated with the

second argument, which will wait for operations enqueued on the device queue associated

with the first argument. See section 2.14 Asynchronous Behavior for more information.

3.2.10 acc_wait_all

Summary

The acc_wait_all routine waits for completion of all asynchronous operations.

Format

C or C++:

 void acc_wait_all();

Fortran:

 subroutine acc_wait_all()

Description

The acc_wait_all routine will not return until the all asynchronous operations have

completed. If two or more threads share the same accelerator, the acc_wait_all routine

will return only if all asynchronous operations initiated by this thread have completed; there is

no guarantee that all asynchronous operations initiated by other threads have completed. For

compatibility with version 1.0, this routine may also be spelled acc_async_wait_all.

3.2.11 acc_wait_all _async

Summary

The acc_wait_all_async routine enqueues wait operations on one async queue for the

operations previously enqueued on all other async queues.

Format

C or C++:

 void acc_wait_all_async(int);

OpenACC Programming Interface 55

Fortran:

 subroutine acc_wait_all_async(async)

 integer(acc_handle_kind) async

Description

The acc_wait_all_async routine is equivalent to the wait directive with an async

clause containing values for all other asynchronous activity queues. The argument must be an

async-argument as defined in Section 2.14.1 async clause. The routine will enqueue a wait

operation on the appropriate device queue for each other device queue; see section 2.14

Asynchronous Behavior for more information.

3.2.12 acc_init

Summary

The acc_init routine tells the runtime to initialize the runtime for that device type. This

can be used to isolate any initialization cost from the computational cost, when collecting

performance statistics.

Format

C or C++:

 void acc_init(acc_device_t);

Fortran:

 subroutine acc_init(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_init routine also implicitly calls acc_set_device_type.

Restrictions

 This routine may not be called within an accelerator parallel or kernels region.

 If the device type specified is not available, the behavior is implementation-defined;

in particular, the program may abort.

 If the routine is called more than once without an intervening acc_shutdown call,

with a different value for the device type argument, the behavior is implementation-

defined.

 If some accelerator regions are compiled to only use one device type, calling this

routine with a different device type may produce undefined behavior.

3.2.13 acc_shutdown

Summary

The acc_shutdown routine tells the runtime to shut down the connection to the given

accelerator device, and free up any runtime resources.

Format

C or C++:

 void acc_shutdown(acc_device_t);

OpenACC Programming Interface 56

Fortran:

 subroutine acc_shutdown(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_shutdown routine disconnects the program from the accelerator device.

Restrictions

 This routine may not be called during execution of an accelerator region.

3.2.14 acc_on_device

Summary

The acc_on_device routine tells the program whether it is executing on a particular

device.

Format

C or C++:

 int acc_on_device(acc_device_t);

Fortran:

 logical function acc_on_device(devicetype)

 integer(acc_device_kind) devicetype

Description

The acc_on_device routine may be used to execute different paths depending on whether

the code is running on the host or on some accelerator. If the acc_on_device routine has

a compile-time constant argument, it evaluates at compile time to a constant. The argument

must be one of the defined accelerator types. If the argument is acc_device_host, then

outside of an accelerator compute region or accelerator routine, or in an accelerator compute

region or accelerator routine that is executed on the host processor, this routine will evaluate

to nonzero for C or C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or

C++, and .false. for Fortran. If the argument is acc_device_not_host, the result is

the negation of the result with argument acc_device_host. If the argument is any

accelerator device type, then in an accelerator compute region or accelerator routine that is

executed on an accelerator of that device type, this routine will evaluate to nonzero for C or

C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or C++, and

.false. for Fortran. The result with argument acc_device_default is undefined.

3.2.15 acc_malloc

Summary

The acc_malloc routine allocates memory on the accelerator device.

Format

C or C++:

 d_void* acc_malloc(size_t);

Description

The acc_malloc routine may be used to allocate memory on the accelerator device.

Pointers assigned from this function may be used in deviceptr clauses to tell the compiler

that the pointer target is resident on the accelerator.

OpenACC Programming Interface 57

3.2.16 acc_free

Summary

The acc_free routine frees memory on the accelerator device.

Format

C or C++:

 void acc_free(d_void*);

Description

The acc_free routine will free previously allocated memory on the accelerator device; the

argument should be a pointer value that was returned by a call to acc_malloc.

3.2.17 acc_copyin

Summary

The acc_copyin routine allocates memory on the accelerator device to correspond to the

specified host memory, and copies the data to that device memory on a non-shared memory

accelerator.

Format

C or C++:

 void* acc_copyin(h_void*, size_t);

Fortran:

 subroutine acc_copyin(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_copyin(a, len)

 type :: a

 integer :: len

Description

The acc_copyin routine is equivalent to the enter data directive with a copyin

clause. In C, the arguments are a pointer to the data and length in bytes; the function returns a

pointer to the allocated space, as with acc_malloc. Pointers assigned from this function

may be used in deviceptr clauses to tell the compiler that the pointer target is resident on

the accelerator. In Fortran, two forms are supported. In the first, the argument is a contiguous

array section of intrinsic type. In the second, the first argument is a variable or array element

and the second is the length in bytes. Memory is allocated on the device, and the data is

copied from the host memory to the newly allocated device memory. A call to this routine

starts a data lifetime for the specified data. This data may be accessed in using the present

data clause. It is a runtime error to call this routine if the data is already present on the device.

3.2.18 acc_present_or_copyin

Summary

The acc_present_or_copyin routine tests to see if the data is already present on the

device; if not, it allocates memory on the accelerator device to correspond to the specified

host memory, and copies the data to that device memory, on a non-shared memory device.

OpenACC Programming Interface 58

Format

C or C++:

 void* acc_present_or_copyin(h_void*, size_t);

 void* acc_pcopyin(h_void*, size_t);

Fortran:

 subroutine acc_present_or_copyin(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_present_or_copyin(a, len)

 type :: a

 integer :: len

 subroutine acc_pcopyin(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_pcopyin(a, len)

 type :: a

 integer :: len

Description

The acc_present_or_copyin routine is equivalent to the enter data directive with

a present_or_copyin clause. The arguments are as for the acc_copyin routine. If

the data is already present on the device, or if the device shares memory with the caller, no

action is taken. On a non-shared memory device where the data is not present, memory is

allocated on the device, and the data is copied to the newly allocated device memory. In the

latter case, a call to this routine starts a data lifetime for the specified data. This data may be

accessed in using the present data clause.

3.2.19 acc_create

Summary

The acc_create routine allocates memory on the accelerator device to correspond to the

specified host memory on a non-shared memory accelerator.

Format

C or C++:

 void* acc_create(h_void*, size_t);

Fortran:

 subroutine acc_create(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_create(a, len)

 type :: a

 integer :: len

Description

The acc_create routine is equivalent to the enter data directive with a create

clause. In C, the arguments are a pointer to the data and length in bytes; the function returns a

pointer to the allocated space, as with acc_malloc. Pointers assigned from this function

may be used in deviceptr clauses to tell the compiler that the pointer target is resident on

the accelerator. In Fortran, two forms are supported. In the first, the argument is a contiguous

array section of intrinsic type. In the second, the first argument is a variable or array element

and the second is the length in bytes. On a non-shared memory device, memory is allocated

OpenACC Programming Interface 59

on the device. A call to this routine starts a data lifetime for the specified data. This data may

be accessed in using the present data clause. It is a runtime error to call this routine if the

data is already present on the device.

3.2.20 acc_present_or_create

Summary

The acc_present_or_create routine tests to see if the data is already present on the

device; if not, it allocates memory on the accelerator device to correspond to the specified

host memory, on a non-shared memory device.

Format

C or C++:

 void* acc_present_or_create(h_void*, size_t);

 void* acc_pcreate(h_void*, size_t);

Fortran:

 subroutine acc_present_or_create(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_present_or_create(a, len)

 type :: a

 integer :: len

 subroutine acc_pcreate(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_pcreate(a, len)

 type :: a

 integer :: len

Description

The acc_present_or_create routine is equivalent to the enter data directive with

a present_or_create clause. The arguments are as for the acc_create routine. If

the data is already present on the device, or if the device shares memory with the caller, no

action is taken. On a non-shared memory device where the data is not present, memory is

allocated on the device. In the latter case, a call to this routine starts a data lifetime for the

specified data. This data may be accessed in using the present data clause.

3.2.21 acc_copyout

Summary

The acc_copyout routine copies data from device memory to the corresponding local

memory, then deallocates that memory from the accelerator device, on a non-shared memory

accelerator.

Format

C or C++:

 void acc_copyout(h_void*, size_t);

OpenACC Programming Interface 60

Fortran:

 subroutine acc_copyout(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_copyout(a, len)

 type :: a

 integer :: len

Description

The acc_copyout routine is equivalent to the exit data directive with a copyout

clause. In C, the arguments are a pointer to the data and length in bytes. In Fortran, two

forms are supported. In the first, the argument is a contiguous array section of intrinsic type.

In the second, the first argument is a variable or array element and the second is the length in

bytes. A call to this routine copies the data from the accelerator device to the local memory,

then deallocates the accelerator memory. A call to this routine ends a data lifetime for the

specified data. It is a runtime error to call this routine if the data is not present on the device

or within a data region for the specified data.

3.2.22 acc_delete

Summary

The acc_delete routine deallocates the memory from the accelerator device corresponding

to the specified local memory, on a non-shared memory accelerator.

Format

C or C++:

 void acc_delete(h_void*, size_t);

Fortran:

 subroutine acc_delete(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_delete(a, len)

 type :: a

 integer :: len

Description

The acc_delete routine is equivalent to the exit data directive with a delete clause.

The arguments are as for acc_copyout. A call to this routine deallocates the accelerator

memory corresponding to the specified local memory. A call to this routine ends a data

lifetime for the specified data. It is a runtime error to call this routine if the data is not present

on the device or within a data region for the specified data.

3.2.23 acc_update_device

Summary

The acc_update_device routine updates the device copy of data from the corresponding

local memory on a non-shared memory accelerator.

Format

C or C++:

 void acc_update_device(h_void*, size_t);

OpenACC Programming Interface 61

Fortran:

 subroutine acc_update_device(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_update_device(a, len)

 type :: a

 integer :: len

Description

The acc_update_device routine is equivalent to the update directive with a device

clause. In C, the arguments are a pointer to the data and length in bytes. In Fortran, two

forms are supported. In the first, the argument is a contiguous array section of intrinsic type.

In the second, the first argument is a variable or array element and the second is the length in

bytes. On a non-shared memory device, the data in the local memory is copied to the

corresponding device memory. It is a runtime error to call this routine if the data is not

present on the device.

3.2.24 acc_update_self

Summary

The acc_update_self routine updates the device copy of data to the corresponding local

memory on a non-shared memory accelerator.

Format

C or C++:

 void acc_update_self(h_void*, size_t);

Fortran:

 subroutine acc_update_self(a)

 type, dimension(:[,:]…) :: a

 subroutine acc_update_self(a, len)

 type :: a

 integer :: len

Description

The acc_update_self routine is equivalent to the update directive with a self clause.

In C, the arguments are a pointer to the data and length in bytes. In Fortran, two forms are

supported. In the first, the argument is a contiguous array section of intrinsic type. In the

second, the first argument is a variable or array element and the second is the length in bytes.

On a non-shared memory device, the data in the local memory is copied to the corresponding

device memory. It is a runtime error to call this routine if the data is not present on the

device.

3.2.25 acc_map_data

Summary

The acc_map_data routine maps previously allocated device data to the specified host

data.

Format

C or C++:

 void acc_map_data(h_void*, d_void*, size_t);

OpenACC Programming Interface 62

Description

The acc_map_data routine is similar to an enter data directive with a create clause,

except instead of allocating new device memory to start a data lifetime, the device address to

use for the data lifetime is specified as an argument. The first argument is a host address,

followed by the corresponding device address and the data length in bytes. After this call,

when the host data appears in a data clause, the specified device memory will be used. It is an

error to call acc_map_data for host data that is already present on the device. It is

undefined to call acc_map_data with a device address that is already mapped to host data.

The device address may be the result of a call to acc_malloc, or may come from some

other device-specific API routine.

3.2.26 acc_unmap_data

Summary

The acc_unmap_data routine unmaps device data from the specified host data.

Format

C or C++:

 void acc_unmap_data(h_void*);

Description

The acc_unmap_data routine is similar to an exit data directive with a delete

clause, except the device memory is not deallocated. The argument is pointer to the host data.

A call to this routine ends the data lifetime for the specified host data. The device memory is

not deallocated. It is undefined behavior to call acc_unmap_data with a host address

unless that host address was mapped to device memory using acc_map_data.

3.2.27 acc_deviceptr

Summary

The acc_deviceptr routine returns the device pointer associated with a specific host

address.

Format

C or C++:

 d_void* acc_deviceptr(h_void*);

Description

The acc_deviceptr routine returns the device pointer associated with a host address. The

argument is the address of a host variable or array that has an active lifetime on the current

device. If the data is not present on the device, the routine returns a NULL value.

3.2.28 acc_hostptr

Summary

The acc_hostptr routine returns the host pointer associated with a specific device address.

Format

C or C++:

 h_void* acc_hostptr(d_void*);

OpenACC Programming Interface 63

Description

The acc_hostptr routine returns the host pointer associated with a device address. The

argument is the address of a device variable or array, such as that returned from

acc_deviceptr, acc_create or acc_copyin. If the device address is NULL, or

does not correspond to any host address, the routine returns a NULL value.

3.2.29 acc_is_present

Summary

The acc_is_present routine tests whether a host variable or array region is present on

the device.

Format

C or C++:

 int acc_is_present(h_void*, size_t);

Fortran:

 logical function acc_is_present(a)

 type, dimension(:[,:]…) :: a

 logical function acc_is_present(a, len)

 type :: a

 integer :: len

Description

The acc_is_present routine tests whether the specified host data is present on the

device. In C, the arguments are a pointer to the data and length in bytes; the function returns

nonzero if the specified data is fully present, and zero otherwise. In Fortran, two forms are

supported. In the first, the argument is a contiguous array section of intrinsic type. In the

second, the first argument is a variable or array element and the second is the length in bytes.

The function returns .true. if the specified data is fully present, and .false. otherwise.

If the byte length is zero, the function returns nonzero in C or .true. in Fortran if the given

address is present at all on the device.

3.2.30 acc_memcpy_to_device

Summary

The acc_memcpy_to_device routine copies data from local memory to device memory.

Format

C or C++:

 void acc_memcpy_to_device(d_void* dest, h_void* src,

size_t bytes);

Description

The acc_memcpy_to_device routine copies bytes data from the local address in src

to the device address in dest. The destination address must be a device address, such as

would be returned from acc_malloc or acc_deviceptr.

OpenACC Programming Interface 64

3.2.31 acc_memcpy_from_device

Summary

The acc_memcpy_from_device routine copies data from device memory to local

memory.

Format

C or C++:

 void acc_memcpy_from_device(h_void* dest, d_void* src,

size_t bytes);

Description

The acc_memcpy_from_device routine copies bytes data from the device address in

src to the local address in dest. The source address must be a device address, such as

would be returned from acc_malloc or acc_deviceptr.

OpenACC Programming Interface 65

4. Environment Variables

This chapter describes the environment variables that modify the behavior of accelerator

regions. The names of the environment variables must be upper case. The values assigned

environment variables are case insensitive and may have leading and trailing white space. If

the values of the environment variables change after the program has started, even if the

program itself modifies the values, the behavior is implementation-defined.

4.1 ACC_DEVICE_TYPE

The ACC_DEVICE_TYPE environment variable controls the default device type to use when

executing accelerator parallel and kernels regions, if the program has been compiled to use

more than one different type of device. The allowed values of this environment variable are

implementation-defined. See the release notes for currently-supported values of this

environment variable.

Example:

 setenv ACC_DEVICE_TYPE NVIDIA

 export ACC_DEVICE_TYPE=NVIDIA

4.2 ACC_DEVICE_NUM

The ACC_DEVICE_NUM environment variable controls the default device number to use

when executing accelerator regions. The value of this environment variable must be a

nonnegative integer between zero and the number of devices of the desired type attached to

the host. If the value is greater than or equal to the number of devices attached, the behavior

is implementation-defined.

Example:

 setenv ACC_DEVICE_NUM 1

 export ACC_DEVICE_NUM=1

OpenACC Programming Interface 66

5. Glossary

Clear and consistent terminology is important in describing any programming model. We

define here the terms you must understand in order to make effective use of this document and

the associated programming model.

Accelerator – a special-purpose co-processor attached to a CPU and to which the CPU can

offload data and compute kernels to perform compute-intensive calculations.

Accelerator routine – a C or C++ function or Fortran subprogram compiled for the

accelerator with the routine directive.

Accelerator thread – a thread of execution that executes on the accelerator; a single vector

lane of a single worker of a single gang.

Async-argument –An async-argument is a nonnegative scalar integer expression (int for C or

C++, integer for Fortran), or one of the special async values acc_async_noval or

acc_async_sync.

Barrier – a type of synchronization where all parallel execution units or threads must reach

the barrier before any execution unit or thread is allowed to proceed beyond the barrier;

modeled after the starting barrier on a horse race track.

Compute intensity – for a given loop, region, or program unit, the ratio of the number of

arithmetic operations performed on computed data divided by the number of memory

transfers required to move that data between two levels of a memory hierarchy.

Construct – a directive and the associated statement, loop or structured block, if any.

Compute region – a parallel region or a kernels region.

CUDA – the CUDA environment from NVIDIA is a C-like programming environment used

to explicitly control and program an NVIDIA GPU.

Data lifetime – the lifetime of a data object on the device, which may be begin at the entry to

a data region, or at an enter data directive, or at a data API call such as acc_copyin or

acc_create, and which may end at the exit from a data region, or at an exit data

directive, or at a data API call such as acc_delete, acc_copyout or

acc_shutdown, or at the end of the program execution.

Data region – a region defined by an Accelerator data construct, or an implicit data region

for a function or subroutine containing Accelerator directives. Data constructs typically

allocate device memory and copy data from host to device memory upon entry, and copy data

from device to host memory and deallocate device memory upon exit. Data regions may

contain other data regions and compute regions.

Device – a general reference to any type of accelerator.

Device memory – memory attached to an accelerator, logically and physically separate from

the host memory.

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment

statement, that is interpreted by a compiler to augment information about or specify the

behavior of the program.

OpenACC Programming Interface 67

DMA – Direct Memory Access, a method to move data between physically separate

memories; this is typically performed by a DMA engine, separate from the host CPU, that can

access the host physical memory as well as an IO device or other physical memory.

GPU – a Graphics Processing Unit; one type of accelerator device.

GPGPU – General Purpose computation on Graphics Processing Units.

Host – the main CPU that in this context has an attached accelerator device. The host CPU

controls the program regions and data loaded into and executed on the device.

Host thread – a thread of execution that executes on the host.

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C

function. A call to a subprogram or function enters the implicit data region, and a return from

the subprogram or function exits the implicit data region.

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are

divided into a parallel domain, and the body of the loop becomes the body of the kernel.

Kernels region – a region defined by an Accelerator kernels construct. A kernels region

is a structured block which is compiled for the accelerator. The code in the kernels region

will be divided by the compiler into a sequence of kernels; typically each loop nest will

become a single kernel. A kernels region may require device memory to be allocated and data

to be copied from host to device upon region entry, and data to be copied from device to host

memory and device memory deallocated upon exit.

Local memory – the memory associated with the local thread.

Local thread – the host thread or the accelerator thread that executes an OpenACC directive

or construct.

Loop trip count – the number of times a particular loop executes.

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different

execution units or threads execute different instruction streams asynchronously with each

other.

OpenCL – short for Open Compute Language, a developing, portable standard C-like

programming environment that enables low-level general-purpose programming on GPUs and

other accelerators.

Parallel region – a region defined by an Accelerator parallel construct. A parallel region

is a structured block which is compiled for the accelerator. A parallel region typically

contains one or more work-sharing loops. A parallel region may require device memory to be

allocated and data to be copied from host to device upon region entry, and data to be copied

from device to host memory and device memory deallocated upon exit.

Private data – with respect to an iterative loop, data which is used only during a particular

loop iteration. With respect to a more general region of code, data which is used within the

region but is not initialized prior to the region and is re-initialized prior to any use after the

region.

Procedure – in C or C++, a function in the program; in Fortran, a subroutine or function.

Region – all the code encountered during an instance of execution of a construct. A region

includes any code in called routines, and may be thought of as the dynamic extent of a

construct. This may be a parallel region, kernels region, data region or implicit data region.

OpenACC Programming Interface 68

SIMD – A method of parallel execution (single-instruction, multiple-data) where the same

instruction is applied to multiple data elements simultaneously.

SIMD operation – a vector operation implemented with SIMD instructions.

Structured block – in C or C++, an executable statement, possibly compound, with a single

entry at the top and a single exit at the bottom. In Fortran, a block of executable statements

with a single entry at the top and a single exit at the bottom.

Thread – On a host processor, a thread is defined by a program counter and stack location;

several host threads may comprise a process and share host memory. On an accelerator, a

thread is any one vector lane of one worker of one gang on the device.

Vector operation – a single operation or sequence of operations applied uniformly to each

element of an array.

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that

is visible to the program unit being compiled.

OpenACC Programming Interface 69

Appendix A. Recommendations for Target-Specific

Implementations

This section gives recommendations for standard names and extensions to use for

implementations for specific targets and target platforms, to promote portability across such

implementations. While this appendix is not part of the OpenACC specification,

implementations that provide the functionality specified herein are strongly recommended to

use the names in this section. The first subsection describes target devices, such as NVIDIA

GPUs and Intel Xeon Phi Coprocessor. The second subsection describes additional API

routines for target platforms, such as CUDA and OpenCL. The third subsection lists several

recommended options for implementations. .

A.1 Target Devices

A.1.1 NVIDIA GPU Targets

This section gives recommendations for implementations that target NVIDIA GPU devices.

A.1.1.1 Accelerator Device Type

These implementations should use the name acc_device_nvidia for the

acc_device_t type or return values from OpenACC Runtime API routines.

A.1.1.2 ACC_DEVICE_TYPE

An implementation should use the case-insensitive name NVIDIA for the environment

variable ACC_DEVICE_TYPE.

A.1.1.3 device_type clause argument

An implementation should use the name nvidia or NVIDIA as the argument to the

device_type clause.

A.1.2 AMD GPU Targets

This section gives recommendations for implementations that target AMD GPUs.

A.1.2.1 Accelerator Device Type

These implementations should use the name acc_device_radeon for the

acc_device_t type or return values from OpenACC Runtime API routines.

A.1.2.2 ACC_DEVICE_TYPE

These implementations should use the case-insensitive name RADEON for the environment

variable ACC_DEVICE_TYPE.

A.1.2.3 device_type clause argument

An implementation should use the name radeon or RADEON as the argument to the

device_type clause.

A.1.3 Intel Xeon Phi Coprocessor Targets

This section gives recommendations for implementations that target Intel Xeon Phi

Coprocessors.

OpenACC Programming Interface 70

A.1.3.1 Accelerator Device Type

These implementations should use the name acc_device_xeonphi for the

acc_device_t type or return values from OpenACC Runtime API routines.

A.1.3.2 ACC_DEVICE_TYPE

These implementations should use the case-insensitive name XEONPHI for the environment

variable ACC_DEVICE_TYPE.

A.1.3.3 device_type clause argument

An implementation should use the name xeonphi or XEONPHI as the argument to the

device_type clause.

A.2 API Routines for Target Platforms

These runtime routines allow access to the interface between the OpenACC runtime API and

the underlying target platform. An implementation may not implement all these routines, but

if it provides this functionality, it should use these function names.

A.2.1 NVIDIA CUDA Platform

This section gives runtime API routines for implementations that target the NVIDIA CUDA

Runtime or Driver API.

A.2.1.1 acc_get_current_cuda_device

Summary

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device

handle for the current device.

Format

C or C++:

 void* acc_get_current_cuda_device();

A.2.1.2 acc_get_current_cuda_context

Summary

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context

handle in use for the current device.

Format

C or C++:

 void* acc_get_current_cuda_context();

A.2.1.3 acc_get_cuda_stream

Summary

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for

the current device for the specified async value.

Format

C or C++:

 void* acc_get_cuda_stream(int async);

OpenACC Programming Interface 71

A.2.1.4 acc_set_cuda_stream

Summary

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current

device for the specified async value.

Format

C or C++:

 int acc_set_cuda_stream(int async, void* stream);

A.2.2 OpenCL Target Platform

This section gives runtime API routines for implementations that target the OpenCL API on

any device.

A.2.2.1 acc_get_current_opencl_device

Summary

The acc_get_current_opencl_device routine returns the OpenCL device handle for

the current device.

Format

C or C++:

 void* acc_get_current_opencl_device();

A.2.2.2 acc_get_current_opencl_context

Summary

The acc_get_current_opencl_context routine returns the OpenCL context handle

in use for the current device.

Format

C or C++:

 void* acc_get_current_opencl_context();

A.2.2.3 acc_get_opencl_queue

Summary

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use

for the current device for the specified async value.

Format

C or C++:

 cl_command_queue acc_get_opencl_queue(int async);

A.2.2.4 acc_set_opencl_queue

Summary

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use

for the current device for the specified async value.

Format

C or C++:

 void acc_set_opencl_queue(int async, cl_command_queue

cmdqueue);

OpenACC Programming Interface 72

A.2.3 Intel Coprocessor Offload Infrastructure (COI) API

These runtime routines allow access to the interface between the OpenACC runtime API and

the underlying Intel COI API.

A.2.3.1 acc_get_current_coi_device

Summary

The acc_get_current_coi_device routine returns the COI device handle for the

current device.

Format

C or C++:

 void* acc_get_current_coi_device();

A.2.3.2 acc_get_current_coi_context

Summary

The acc_get_current_coi_context routine returns the COI context handle in use for

the current device.

Format

C or C++:

 void* acc_get_current_coi_context();

A.2.3.3 acc_get_coi_pipeline

Summary

The acc_get_coi_pipeline routine returns the COI pipeline handle in use for the

current device for the specified async value.

Format

C or C++:

 void* acc_get_coi_pipeline(int async);

A.2.3.4 acc_set_coi_pipeline

Summary

The acc_set_coi_pipeline routine returns the COI pipeline handle in use for the

current device for the specified async value.

Format

C or C++:

 void acc_set_coi_pipeline(int async, void* pipeline);

A.3 Recommended Options

The following options are recommended for implementations; for instance, these may be

implemented as command-line options to a compiler or settings in an IDE.

A.3.1 C Pointer in Present clause

This revision of OpenACC clarifies the construct:

OpenACC Programming Interface 73

 void test(int n){

 float* p;

 …

 #pragma acc data present(p)

 { // code here…

This example tests whether the pointer p itself is present on the device. Implementations

before this revision commonly implemented this by testing whether the pointer target p[0]

was present on the device, and this appears in many programs assuming such. Until such

programs are modified to comply with this revision, an option to implement present(p) as

present(p[0]) for C pointers may be helpful to users.

A.3.2 Autoscoping

If an implementation implements autoscoping to automatically determine variables that are

private to a compute region or to a loop, or to recognize reductions in a compute region or a

loop, an option to print a message telling what variables were affected by the analysis would

be helpful to users. An option to disable the autoscoping analysis would be helpful to

promote program portability across implementations.

OpenACC Programming Interface 74

This is a preliminary document and may be changed substantially prior to any release of the
software implementing this standard.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in, or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of the authors.

© 2011-2013 OpenACC-Standard.org. All rights reserved.

	1. Introduction
	1.1 Scope
	1.2 Execution Model
	1.3 Memory Model
	1.4 Conventions used in this document
	1.5 Organization of this document
	1.6 References
	1.7 Changes from Version 1.0 to 2.0
	1.8 Corrections in the August 2013 document
	1.9 Topics Deferred For a Future Revision

	2. Directives
	2.1 Directive Format
	2.2 Conditional Compilation
	2.3 Internal Control Variables
	2.3.1 Modifying and Retrieving ICV Values

	2.4 Device-Specific Clauses
	2.5 Accelerator Compute Constructs
	2.5.1 Parallel Construct
	2.5.2 Kernels Construct
	2.5.3 if clause
	2.5.4 async clause
	2.5.5 wait clause
	2.5.6 num_gangs clause
	2.5.7 num_workers clause
	2.5.8 vector_length clause
	2.5.9 private clause
	2.5.10 firstprivate clause
	2.5.11 reduction clause
	2.5.12 default(none) clause

	2.6 Data Environment
	2.6.1 Variables with Predetermined Data Attributes
	2.6.2 Data Regions and Data Lifetimes
	2.6.3 Data Construct
	2.6.3.1 if clause

	2.6.4 Enter Data and Exit Data Directives
	2.6.4.1 if clause
	2.6.4.2 async clause
	2.6.4.3 wait clause

	2.6.5 Data Clauses
	2.6.5.1 Data Specification in Data Clauses
	2.6.5.2 deviceptr clause
	2.6.5.3 copy clause
	2.6.5.4 copyin clause
	2.6.5.5 copyout clause
	2.6.5.6 create clause
	2.6.5.7 delete clause
	2.6.5.8 present clause
	2.6.5.9 present_or_copy clause
	2.6.5.10 present_or_copyin clause
	2.6.5.11 present_or_copyout clause
	2.6.5.12 present_or_create clause

	2.6.6 Host_Data Construct
	2.6.6.1 use_device clause

	2.7 Loop Construct
	2.7.1 collapse clause
	2.7.2 gang clause
	2.7.3 worker clause
	2.7.4 vector clause
	2.7.5 seq clause
	2.7.6 auto clause
	2.7.7 tile clause
	2.7.8 device_type clause
	2.7.9 independent clause
	2.7.10 private clause
	2.7.11 reduction clause

	2.8 Cache Directive
	2.9 Combined Directives
	2.10 Atomic Directive
	2.11 Declare Directive
	2.11.1 device_resident clause
	2.11.2 link clause

	2.12 Executable Directives
	2.12.1 Update Directive
	2.12.1.1 self clause
	2.12.1.2 host clause
	2.12.1.3 device clause
	2.12.1.4 if clause
	2.12.1.5 async clause
	2.12.1.6 wait clause

	2.12.2 Wait Directive
	2.12.3 Enter Data Directive
	2.12.4 Exit Data Directive

	2.13 Procedure Calls in Compute Regions
	2.13.1 Routine Directive
	2.13.1.1 gang clause
	2.13.1.2 worker clause
	2.13.1.3 vector clause
	2.13.1.4 seq clause
	2.13.1.5 bind clause
	2.13.1.6 device_type clause
	2.13.1.7 nohost clause

	2.13.2 Global Data Access

	2.14 Asynchronous Behavior
	2.14.1 async clause
	2.14.2 wait clause
	2.14.3 Wait Directive

	3. Runtime Library
	3.1 Runtime Library Definitions
	3.2 Runtime Library Routines
	3.2.1 acc_get_num_devices
	3.2.2 acc_set_device_type
	3.2.3 acc_get_device_type
	3.2.4 acc_set_device_num
	3.2.5 acc_get_device_num
	3.2.6 acc_async_test
	3.2.7 acc_async_test_all
	3.2.8 acc_wait
	3.2.9 acc_wait_async
	3.2.10 acc_wait_all
	3.2.11 acc_wait_all _async
	3.2.12 acc_init
	3.2.13 acc_shutdown
	3.2.14 acc_on_device
	3.2.15 acc_malloc
	3.2.16 acc_free
	3.2.17 acc_copyin
	3.2.18 acc_present_or_copyin
	3.2.19 acc_create
	3.2.20 acc_present_or_create
	3.2.21 acc_copyout
	3.2.22 acc_delete
	3.2.23 acc_update_device
	3.2.24 acc_update_self
	3.2.25 acc_map_data
	3.2.26 acc_unmap_data
	3.2.27 acc_deviceptr
	3.2.28 acc_hostptr
	3.2.29 acc_is_present
	3.2.30 acc_memcpy_to_device
	3.2.31 acc_memcpy_from_device

	4. Environment Variables
	4.1 ACC_DEVICE_TYPE
	4.2 ACC_DEVICE_NUM

	5. Glossary
	Appendix A. Recommendations for Target-Specific Implementations
	A.1 Target Devices
	A.1.1 NVIDIA GPU Targets
	A.1.1.1 Accelerator Device Type
	A.1.1.2 ACC_DEVICE_TYPE
	A.1.1.3 device_type clause argument

	A.1.2 AMD GPU Targets
	A.1.2.1 Accelerator Device Type
	A.1.2.2 ACC_DEVICE_TYPE
	A.1.2.3 device_type clause argument

	A.1.3 Intel Xeon Phi Coprocessor Targets
	A.1.3.1 Accelerator Device Type
	A.1.3.2 ACC_DEVICE_TYPE
	A.1.3.3 device_type clause argument

	A.2 API Routines for Target Platforms
	A.2.1 NVIDIA CUDA Platform
	A.2.1.1 acc_get_current_cuda_device
	A.2.1.2 acc_get_current_cuda_context
	A.2.1.3 acc_get_cuda_stream
	A.2.1.4 acc_set_cuda_stream

	A.2.2 OpenCL Target Platform
	A.2.2.1 acc_get_current_opencl_device
	A.2.2.2 acc_get_current_opencl_context
	A.2.2.3 acc_get_opencl_queue
	A.2.2.4 acc_set_opencl_queue

	A.2.3 Intel Coprocessor Offload Infrastructure (COI) API
	A.2.3.1 acc_get_current_coi_device
	A.2.3.2 acc_get_current_coi_context
	A.2.3.3 acc_get_coi_pipeline
	A.2.3.4 acc_set_coi_pipeline

	A.3 Recommended Options
	A.3.1 C Pointer in Present clause
	A.3.2 Autoscoping

