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1. Introduction 

This document describes the compiler directives, library routines and environment variables 

that collectively define the OpenACC™ Application Programming Interface (OpenACC API) 

for offloading programs written in C, C++ and Fortran programs from a host CPU to an 

attached accelerator device.  The method outlined provides a model for accelerator 

programming that is portable across operating systems and various types of host CPUs and 

accelerators.  The directives extend the ISO/ANSI standard C, C++ and Fortran base 

languages in a way that allows a programmer to migrate applications incrementally to 

accelerator targets using standards-based C, C++ or Fortran. 

The directives and programming model defined in this document allow programmers to create 

applications capable of using accelerators, without the need to explicitly manage data or 

program transfers between the host and accelerator, or initiate accelerator startup and 

shutdown.  Rather, these details are implicit in the programming model and are managed by 

the OpenACC API-enabled compilers and runtime environments.  The programming model 

allows the programmer to augment information available to the compilers, including 

specification of data local to an accelerator, guidance on mapping of loops onto an 

accelerator, and similar performance-related details. 

1.1 Scope 

This OpenACC API document covers only user-directed accelerator programming, where the 

user specifies the regions of a host program to be targeted for offloading to an accelerator 

device. The remainder of the program will be executed on the host.  This document does not 

describe features or limitations of the host programming environment as a whole; it is limited 

to specification of loops and regions of code to be offloaded to an accelerator.   

This document does not describe automatic detection and offloading of regions of code to an 

accelerator by a compiler or other tool.  This document does not describe splitting loops or 

code regions to multiple accelerators attached to a single host.  While future compilers may 

allow for automatic offloading, or offloading to multiple accelerators of the same type, or to 

multiple accelerators of different types, these possibilities are not addressed in this document. 

1.2 Execution Model 

The execution model targeted by OpenACC API-enabled implementations is host-directed 

execution with an attached accelerator device, such as a GPU. Much of a user application 

executes on the host.  Compute intensive regions are offloaded to the accelerator device under 

control of the host. The device executes parallel regions, which typically contain work-

sharing loops, or kernels regions, which typically contain one or more loops which are 

executed as kernels on the accelerator.  Even in accelerator-targeted regions, the host may 

orchestrate the execution by allocating memory on the accelerator device, initiating data 

transfer, sending the code to the accelerator, passing arguments to the compute region, 

queuing the device code, waiting for completion, transferring results back to the host, and 

deallocating memory.  In most cases, the host can queue a sequence of operations to be 

executed on the device, one after the other. 

Most current accelerators support two or three levels of parallelism.  Most accelerators 

support coarse-grain parallelism, which is fully parallel execution across execution units.  
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There may be limited support for synchronization across coarse-grain parallel operations.  

Many accelerators also support fine-grain parallelism, often implemented as multiple threads 

of execution within a single execution unit, which are typically rapidly switched on the 

execution unit to tolerate long latency memory operations.  Finally, most accelerators also 

support SIMD or vector operations within each execution unit.  The execution model exposes 

these multiple levels of parallelism on the device and the programmer is required to 

understand the difference between, for example, a fully parallel loop and a loop that is 

vectorizable but requires synchronization between statements.  A fully parallel loop can be 

programmed for coarse-grain parallel execution.  Loops with dependences must either be split 

to allow coarse-grain parallel execution, or be programmed to execute on a single execution 

unit using fine-grain parallelism, vector parallelism, or sequentially. 

OpenACC exposes these three levels of parallelism via gang, worker and vector parallelism.  

Gang parallelism is coarse-grain.  A number of gangs will be launched on the accelerator.  

Worker parallelism is fine-grain.  Each gang will have one or more workers.  Vector 

parallelism is for SIMD or vector operations within a worker. 

When executing a compute region on the device, one or more gangs are launched, each with 

one or more workers, where each worker may have vector execution capability with one or 

more vector lanes.  The gangs start executing in gang-redundant mode (GR mode), meaning 

one vector lane of one worker in each gang executes the same code, redundantly.  When the 

program reaches a loop or loop nest marked for gang-level work-sharing, the program starts to 

execute in gang-partitioned mode (GP mode), where the iterations of the loop or loops are 

partitioned across gangs for truly parallel execution, but still with only one vector lane per 

worker and one worker per gang active. 

When only one worker is active, in either GR or GP mode, the program is in worker-single 

mode (WS mode).  When only one vector lane is active, the program is in vector-single mode 

(VS mode).  If a gang reaches a loop or loop nest marked for worker-level work-sharing, the 

gang transitions to worker-partitioned mode (WP mode), which activates all the workers of 

the gang.  The iterations of the loop or loops are partitioned across the workers of this gang.  

If the same loop is marked for both gang-partitioning and worker-partitioning, then the 

iterations of the loop are spread across all the workers of all the gangs.  If a worker reaches a 

loop or loop nest marked for vector-level work-sharing, the worker will transition to vector-

partitioned mode (VP mode).  Similar to WP mode, the transition to VP mode activates all the 

vector lanes of the worker.  The iterations of the loop or loops will be partitioned across the 

vector lanes using vector or SIMD operations.  Again, a single loop may be marked for one, 

two or all three of gang, worker and vector parallelism, and the iterations of that loop will be 

spread across the gangs, workers and vector lanes as appropriate.   

The host program starts executing with a single thread, identified by a program counter and its 

stack.  The thread may spawn additional threads, for instance using the OpenMP API.  On the 

accelerator, a single vector lane of a single worker of a single gang is called a thread.  When 

executing on the device, a parallel execution context is created and may contain many such 

threads. 

The user should not attempt to implement barrier synchronization, critical sections or locks 

across any of gang, worker or vector parallelism.  The execution model allows for an 

implementation that executes some gangs to completion before starting to execute other 

gangs.  This means that trying to implement synchronization between gangs is likely to fail.  

In particular, a barrier across gangs cannot be implemented in a portable fashion, since all 

gangs may not ever be active at the same time.  Similarly, the execution model allows for an 
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implementation that executes some workers within a gang or vector lanes within a worker to 

completion before starting other workers or vector lanes, or for some workers or vector lanes 

to be suspended until other workers or vector lanes complete.  This means that trying to 

implement synchronization across workers or vector lanes is likely to fail.  In particular, 

implementing a barrier or critical section across workers or vector lanes using atomic 

operations and a busy-wait loop may never succeed, since the scheduler may suspend the 

worker or vector lane that owns the lock, and the worker or vector lane waiting on the lock 

can never complete. 

On some devices, the accelerator may also create and launch parallel kernels, allowing for 

nested parallelism.  In that case, the OpenACC directives may be executed by a host thread or 

an accelerator thread.  This specification uses the term local thread or local memory to mean 

the thread that executes the directive, or the memory associated with that thread, whether that 

thread executes on the host or on the accelerator. 

Most accelerators can operate asynchronously with respect to the host thread.  With such 

devices, the accelerator has one or more activity queues.  The host thread will enqueue 

operations onto the device activity queues, such as data transfers and procedure execution.  

After enqueuing the operation, the host thread can continue execution while the device 

operates independently and asynchronously.  The host thread may query the device activity 

queue(s) and wait for all the operations in a queue to complete.  Operations on a single device 

activity queue will complete before starting the next operation on the same queue; operations 

on different activity queues may be active simultaneously and may complete in any order. 

 

1.3 Memory Model 

The most significant difference between a host-only program and a host+accelerator program 

is that the memory on the accelerator may be completely separate from host memory. This is 

the case with most current GPUs, for example.  In this case, the host thread may not be able to 

read or write device memory directly because it is not mapped into the host thread’s virtual 

memory space. All data movement between host memory and device memory must be 

performed by the host thread through system calls that explicitly move data between the 

separate memories, typically using direct memory access (DMA) transfers.  Similarly, it is not 

valid to assume the accelerator can read or write host memory, though this is supported by 

some accelerator devices, often with significant performance penalty.  

The concept of separate host and accelerator memories is very apparent in low-level 

accelerator programming languages such as CUDA or OpenCL, in which data movement 

between the memories can dominate user code.  In the OpenACC model, data movement 

between the memories can be implicit and managed by the compiler, based on directives from 

the programmer. However, the programmer must be aware of the potentially separate 

memories for many reasons, including but not limited to: 

 Memory bandwidth between host memory and device memory determines the level of 

compute intensity required to effectively accelerate a given region of code, and 

 The limited device memory size may prohibit offloading of regions of code that 

operate on very large amounts of data. 

 Host addresses stored to pointers on the host may only be valid on the host; addresses 

stored to pointers on the device may only be valid on the device.  Dereferencing host 
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pointers on the device or dereferencing device pointers on the host is likely to be 

invalid on such targets. 

OpenACC exposes the separate memories through the use of a device data environment.  

Device data has an explicit lifetime, from when it is allocated or created until it is deleted.  If 

the device shares physical and virtual memory with the local thread, the device data 

environment will be shared with the local thread.  In that case, the implementation need not 

create new copies of the data for the device and no data movement need be done.  If the 

device has a physically or virtually separate memory from the local thread, the 

implementation will allocate new data in the device memory and copy data from the local 

memory to the device environment. 

Some accelerators (such as current GPUs) implement a weak memory model. In particular, 

they do not support memory coherence between operations executed by different threads; 

even on the same execution unit, memory coherence is only guaranteed when the memory 

operations are separated by an explicit memory fence. Otherwise, if one thread updates a 

memory location and another reads the same location, or two threads store a value to the same 

location, the hardware may not guarantee the same result for each execution. While a 

compiler can detect some potential errors of this nature, it is nonetheless possible to write an 

accelerator parallel or kernels region that produces inconsistent numerical results. 

Some current accelerators have a software-managed cache, some have hardware managed 

caches, and most have hardware caches that can be used only in certain situations and are 

limited to read-only data. In low-level programming models such as CUDA or OpenCL 

languages, it is up to the programmer to manage these caches.  In the OpenACC model, these 

caches are managed by the compiler with hints from the programmer in the form of directives. 

1.4 Conventions used in this document 

Keywords and punctuation that are part of the actual specification will appear in typewriter 

font:  

    #pragma acc  

Italic font is used where a keyword or other name must be used: 

    #pragma acc directive-name 

For C and C++, new-line means the newline character at the end of a line: 

    #pragma acc directive-name new-line 

Optional syntax is enclosed in square brackets; where an option that may be repeated more 

than once is followed by ellipses: 

    #pragma acc directive-name [clause [[,] clause]…] new-line 

To simplify the specification and convey appropriate constraint information, a pqr-list is a 

comma-separated list of pqr items.  For example, an int-expr-list is a comma-separated list of 

one or more integer expressions.  A var-list is a comma-separated list of one or more variable 

names or array names; in some clauses, a var-list may include subarrays with subscript ranges 

or may include common block names between slashes.  The one exception is clause-list, 

which is a list of one or more clauses optionally separated by commas. 

    #pragma acc directive-name [clause-list] new-line 
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1.5 Organization of this document 

The rest of this document is organized as follows: 

Chapter 2. Directives, describes the C, C++ and Fortran directives used to delineate 

accelerator regions and augment information available to the compiler for scheduling of loops 

and classification of data. 

Chapter 3. Runtime Library, defines user-callable functions and library routines to query the 

accelerator device features and control behavior of accelerator-enabled programs at runtime. 

Chapter 4. Environment Variables, defines user-settable environment variables used to control 

behavior of accelerator-enabled programs at execution. 

Chapter 5. Glossary, defines common terms used in this document. 

Chapter Appendix A. Recommendations for Target-Specific Implementations, gives advice to 

implementers to support more portability across implementations and interoperability with 

other accelerator APIs. 

 

1.6 References 

 American National Standard Programming Language C, ANSI X3.159-1989 (ANSI 

C). 

 ISO/IEC 9899:1999, Information Technology – Programming Languages – C (C99). 

 ISO/IEC 14882:1998, Information Technology – Programming Languages – C++. 

 ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran 

– Part 1: Base Language, (Fortran 2003). 

 OpenMP Application Program Interface, version 3.1, July 2011 

 PGI Accelerator Programming Model for Fortran & C, version 1.3, November 2011 

 NVIDIA CUDA™ C Programming Guide, version 5.0, October 2012. 

 The OpenCL Specification, version 1.2, Khronos OpenCL Working Group, November 

2011. 

1.7 Changes from Version 1.0 to 2.0 

 _OPENACC value updated to 201306 

 default(none) clause on parallel and kernels directives 

 the implicit data attribute for scalars in parallel constructs has changed 

 the implicit data attribute for scalars in loops with loop directives with the 

independent attribute has been clarified 

 acc_async_sync and acc_async_noval values for async clauses 

 Clarified the behavior of the reduction clause on a gang loop 

 Clarified allowable loop nesting (gang may not appear inside worker, which may 

not appear within vector) 
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 wait clause on parallel, kernels and update directives 

 async clause on the wait directive 

 enter data and exit data directives 

 Fortran common block names may now be specified in many data clauses 

 link clause for the declare directive 

 the behavior of the declare directive for global data 

 the behavior of a data clause with a C or C++ pointer variable has been clarified 

 predefined data attributes 

 support for multidimensional dynamic C/C++ arrays 

 tile and auto loop clauses 

 update self introduced as a preferred synonym for update host 

 routine directive and support for separate compilation 

 device_type clause and support for multiple device types 

 nested parallelism using parallel or kernels region containing another parallel or 

kernels region 

 atomic constructs 

 new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; 

vector-single, vector-partitioned; thread 

 new API routines: 

 acc_wait, acc_wait_all instead of acc_async_wait and 

acc_async_wait_all 

 acc_wait_async 

 acc_copyin, acc_present_or_copyin 

 acc_create, acc_present_or_create 

 acc_copyout, acc_delete 

 acc_map_data, acc_unmap_data 

 acc_deviceptr, acc_hostptr 

 acc_is_present 

 acc_memcpy_to_device, acc_memcpy_from_device 

 acc_update_device, acc_update_self 

 defined behavior with multiple host threads, such as with OpenMP 

 recommendations for specific implementations 

1.8 Corrections in the August 2013 document 

 corrected the atomic capture syntax for C/C++ 
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 fixed the name of the acc_wait and acc_wait_all procedures 

 fixed description of the acc_hostptr procedure 

1.9 Topics Deferred For a Future Revision 

The following topics are under discussion for a future revision.  Some of these are known to 

be important, while others will depend on feedback from users.  Readers who have feedback 

or want to participate may post a message at the forum at www.openacc.org, or may send 

email to feedback@openacc.org.  No promises are made or implied that all these items will be 

available in the next revision. 

 Full support for C and C++ structs and struct members, including pointer members. 

 Full support for Fortran derived types and derived type members, including 

allocatable and pointer members. 

 Defined support with multiple host threads. 

 Optionally removing the synchronization or barrier at the end of vector and worker 

loops. 

 Allowing an if clause after a device_type clause. 

 A default(none) clause for the loop directive. 

 A shared clause (or something similar) for the loop directive. 

 A standard interface for a profiler or trace or other runtime data collection tool. 

 Better support for multiple devices from a single thread, whether of the same type or 

of different types. 

http://www.openacc.org/
mailto:feedback@openacc.org
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2. Directives 

This chapter describes the syntax and behavior of the OpenACC directives.  In C and C++, 

OpenACC directives are specified using the #pragma mechanism provided by the language.  

In Fortran, OpenACC directives are specified using special comments that are identified by a 

unique sentinel.  Compilers will typically ignore OpenACC directives if support is disabled or 

not provided.   

Restrictions 

 OpenACC directives may not appear in Fortran PURE or ELEMENTAL procedures. 

2.1 Directive Format 

In C and C++, OpenACC directives are specified with the #pragma mechanism. The syntax 

of an OpenACC directive is: 

 

  #pragma acc directive-name [clause-list] new-line 

 

Each directive starts with #pragma acc.  The remainder of the directive follows the C and 

C++ conventions for pragmas.  White space may be used before and after the #; white space 

may be required to separate words in a directive.  Preprocessing tokens following the 

#pragma acc are subject to macro replacement.  Directives are case sensitive.  An 

OpenACC directive applies to the immediately following statement, structured block or loop. 

In Fortran, OpenACC directives are specified in free-form source files as 

 

  !$acc directive-name [clause-list] 

 

The comment prefix (!) may appear in any column, but may only be preceded by white space 

(spaces and tabs).  The sentinel (!$acc) must appear as a single word, with no intervening 

white space.  Line length, white space, and continuation rules apply to the directive line. 

Initial directive lines must have white space after the sentinel.  Continued directive lines must 

have an ampersand (&) as the last nonblank character on the line, prior to any comment placed 

in the directive.  Continuation directive lines must begin with the sentinel (possibly preceded 

by white space) and may have an ampersand as the first non-white space character after the 

sentinel.  Comments may appear on the same line as a directive, starting with an exclamation 

point and extending to the end of the line.  If the first nonblank character after the sentinel is 

an exclamation point, the line is ignored. 

In Fortran fixed-form source files, OpenACC directives are specified as one of 

 

  !$acc directive-name [clause-list] 

  c$acc directive-name [clause-list] 

  *$acc directive-name [clause-list] 

 

The sentinel (!$acc, c$acc, or *$acc) must occupy columns 1-5. Fixed form line length, 

white space, continuation, and column rules apply to the directive line.  Initial directive lines 
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must have a space or zero in column 6, and continuation directive lines must have a character 

other than a space or zero in column 6.  Comments may appear on the same line as a directive, 

starting with an exclamation point on or after column 7 and continuing to the end of the line. 

In Fortran, directives are case-insensitive.  Directives cannot be embedded within continued 

statements, and statements must not be embedded within continued directives.  In this 

document, free form is used for all Fortran OpenACC directive examples. 

Only one directive-name can be specified per directive, except that a combined directive name 

is considered a single directive-name.  The order in which clauses appear is not significant 

unless otherwise specified.  Clauses may be repeated unless otherwise specified. Some clauses 

have an argument that can contain a list.   

2.2 Conditional Compilation 

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and 

mm is the month designation of the version of the OpenACC directives supported by the 

implementation.  This macro must be defined by a compiler only when OpenACC directives 

are enabled. The version described here is 201306. 

2.3 Internal Control Variables 

An OpenACC implementation acts as if there are internal control variables (ICVs) that control 

the behavior of the program.  These ICVs are initialized by the implementation, and may be 

given values through environment variables and through calls to OpenACC API routines.  The 

program can retrieve values through calls to OpenACC API routines. 

The ICVs are: 

 acc-device-type-var - controls which type of accelerator device is used. 

 acc-device-num-var - controls which accelerator device of the selected type is used. 

2.3.1 Modifying and Retrieving ICV Values 

The following table shows environment variables or procedures to modify the values of the 

internal control variables, and procedures to retrieve the values: 

ICV Ways to modify values Way to retrieve value 

acc-device-type-var ACC_DEVICE_TYPE 

acc_set_device_type 

acc_get_device_type 

acc-device-num-var ACC_DEVICE_NUM 

acc_set_device_num 

acc_get_device_num 

 

The initial values are implementation-defined.  After initial values are assigned, but before 

any OpenACC construct or API routine is executed, the values of any environment variables 

that were set by the user are read and the associated ICVs are modified accordingly.  Clauses 

on OpenACC constructs do not modify the ICV values.  There is one copy of each ICV for 

each host thread.  An ICV value for a device thread may not be modified. 
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2.4 Device-Specific Clauses 

OpenACC directives can specify different clauses or clause arguments for different 

accelerators using the device_type clause.  The argument to the device_type clause is 

a comma-separated list of one or more accelerator architecture name identifiers, or an asterisk.  

A single directive may have one or several device_type clauses.  Clauses on a directive 

with no device_type clause apply to all accelerator device types.  Clauses that follow a 

device_type clause up to the end of the directive or up to the next device_type clause 

are associated with this device_type clause.  Clauses associated with a device_type 

clause apply only when compiling for the named accelerator device type.  Clauses associated 

with a device_type clause that has an asterisk argument apply to any accelerator device 

type that was not named in any device_type clause on that directive.  The 

device_type clauses may appear in any order.  For each directive, only certain clauses 

may follow a device_type clause. 

Clauses that precede any device_type clause are default values.  If the same clause is 

associated with a device_type clause, the specific value from the clause associated with 

the device_type is used for that device.  If no device_type clause applies for a device, 

or a device_type clause applies but the same clause is not associated with this 

device_type clause, the default value is used. 

The supported accelerator device types are implementation-defined.  Depending on the 

implementation and the compiling environment, an implementation may support only a single 

accelerator device type, or may support multiple accelerator device types but only one at a 

time, or many support multiple accelerator device types in a single compilation. 

An accelerator architecture name may be generic, such as a vendor, or more specific, such as 

a particular generation of device; see Appendix A.1 Target Devices for recommended names.  

When compiling for a particular device, the implementation will use the clauses associated 

with the device_type clause that specifies most specific architecture name that applies for 

this device; clauses associated with any other device_type clause are ignored.  In this 

context, the asterisk is the least specific architecture name. 

Syntax 

The syntax of the device_type clause is 

    device_type( * ) 

    device_type( device-type-list  )  

 

The device_type clause may be abbreviated to dtype.   

 

2.5 Accelerator Compute Constructs 

2.5.1 Parallel Construct 

Summary 

This fundamental construct starts parallel execution on the accelerator device. 

Syntax 

In C and C++, the syntax of the OpenACC parallel directive is 

 

    #pragma acc parallel [clause-list] new-line 
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      structured block 

 

and in Fortran, the syntax is 

 

   !$acc parallel [clause-list]  

         structured block 

   !$acc end parallel 

 

where clause is one of the following: 

    async [( int-expr )]  

    wait [( int-expr-list )]    

    num_gangs( int-expr ) 

    num_workers( int-expr ) 

    vector_length( int-expr ) 

    device_type( device-type-list ) 

    if( condition )  

    reduction( operator : var-list )  

    copy( var-list )  

    copyin( var-list ) 

    copyout( var-list ) 

    create( var-list )  

    present( var-list ) 

    present_or_copy( var-list ) 

    present_or_copyin( var-list ) 

    present_or_copyout( var-list ) 

    present_or_create( var-list ) 

    deviceptr( var-list ) 

    private( var-list ) 

    firstprivate( var-list )  

    default( none ) 

      

Description 
When the program encounters an accelerator parallel construct, one or more gangs are 

created to execute the accelerator parallel region.  The number of gangs, the number of 

workers per gang and the number of vector lanes per worker remain constant for the duration 

of that parallel region.  Each gang begins executing the code in the structured block in gang-

redundant mode.  This means that code within the parallel region, but outside of a loop with a 

loop directive and gang-level worksharing, will be executed redundantly by all gangs. 

If the async clause is not present, there is an implicit barrier at the end of the accelerator 

parallel region, and the execution of the local thread will not proceed until all gangs have 

reached the end of the parallel region. 

If there is no default(none) clause on the construct, the compiler will implicitly 

determine data attributes for variables that are referenced in the compute construct that do not 

appear in a data clause on the compute construct or a lexically containing data construct and 

do not have predetermined data attributes.  An array or variable of aggregate data type 

referenced in the parallel construct that does not appear in a data clause for the construct 

or any enclosing data construct will be treated as if it appeared in a present_or_copy 
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clause for the parallel construct.  A scalar variable referenced in the parallel construct 

that does not appear in a data clause for the construct or any enclosing data construct will be 

treated as if it appeared in a firstprivate clause.   

Restrictions 

 A program may not branch into or out of an OpenACC parallel construct. 

 A program must not depend on the order of evaluation of the clauses, or on any side 

effects of the evaluations. 

 Only the async, wait, num_gangs, num_workers, and vector_length 

clauses may follow a device_type clause.  

 At most one if clause may appear.  In Fortran, the condition must evaluate to a 

scalar logical value; in C or C++, the condition must evaluate to a scalar integer 

value. 

The copy, copyin, copyout, create, present, present_or_copy, 

present_or_copyin, present_or_copyout, present_or_create, 

deviceptr, firstprivate, and private data clauses are described in Section 2.6 

Data Environment.  The device_type clause is described in Section  2.4 Device-Specific 

Clauses. 

 

2.5.2 Kernels Construct 

Summary 

This construct defines a region of the program that is to be compiled into a sequence of 

kernels for execution on the accelerator device. 

Syntax 

In C and C++, the syntax of the OpenACC kernels directive is 

 

   #pragma acc kernels [clause-list] new-line 

      structured block 

 

and in Fortran, the syntax is 

 

   !$acc kernels [clause-list]  

       structured block 

   !$acc end kernels 

 

where clause is one of the following: 

    async [( int-expr )]  

    wait [( int-expr-list )] 

    device_type( device-type-list )  

    if( condition )  

    copy( var-list )  

    copyin( var-list ) 

    copyout( var-list ) 

    create( var-list )  

    present( var-list ) 

    present_or_copy( var-list ) 
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    present_or_copyin( var-list ) 

    present_or_copyout( var-list ) 

    present_or_create( var-list ) 

    deviceptr( var-list )  

    default( none )  

Description 

The compiler will split the code in the kernels region into a sequence of accelerator kernels.  

Typically, each loop nest will be a distinct kernel.  When the program encounters a kernels 

construct, it will launch the sequence of kernels in order on the device.  The number and 

configuration of gangs of workers and vector length may be different for each kernel. 

If the async clause is not present, there is an implicit barrier at the end of the kernels region, 

and the local thread execution will not proceed until all kernels have completed execution. 

If there is no default(none) clause on the construct, the compiler will implicitly 

determine data attributes for variables that are referenced in the compute construct that do not 

appear in a data clause on the compute construct or a lexically containing data construct and 

do not have predetermined data attributes.  An array or variable of aggregate data type 

referenced in the kernels construct that does not appear in a data clause for the construct or 

any enclosing data construct will be treated as if it appeared in a present_or_copy 

clause for the kernels construct.   A scalar variable referenced in the kernels construct 

that does not appear in a data clause for the construct or any enclosing data construct will be 

treated as if it appeared in a copy clause.  

Restrictions 

 A program may not branch into or out of an OpenACC kernels construct. 

 A program must not depend on the order of evaluation of the clauses, or on any side 

effects of the evaluations. 

 Only the async and wait clauses may follow a device_type clause.  

 At most one if clause may appear.  In Fortran, the condition must evaluate to a 

scalar logical value; in C or C++, the condition must evaluate to a scalar integer 

value. 

The copy, copyin, copyout, create, present, present_or_copy, 

present_or_copyin, present_or_copyout, present_or_create, and 

deviceptr data clauses are described in Section 2.6 Data Environment.  The 

device_type clause is described in Section  2.4 Device-Specific Clauses. 

 

2.5.3 if clause 

The if clause is optional on the parallel and kernels constructs; when there is no if 

clause, the compiler will generate code to execute the region on the accelerator device. 

When an if clause appears, the compiler will generate two copies of the construct, one copy 

to execute on the accelerator and one copy to execute on the encountering local thread.  When 

the condition evaluates to nonzero in C or C++, or .true. in Fortran, the accelerator copy 

will be executed.  When the condition in the if clause evaluates to zero in C or C++, or 

.false. in Fortran, the encountering local thread will execute the construct.   
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2.5.4 async clause 

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.  

 

2.5.5 wait clause 

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.  

 

2.5.6 num_gangs clause 

The num_gangs clause is allowed on the parallel construct.  The value of the integer 

expression defines the number of parallel gangs that will execute the region.  If the clause is 

not specified, an implementation-defined default will be used; the default may depend on the 

code within the construct. 

 

2.5.7 num_workers clause 

The num_workers clause is allowed on the parallel construct.  The value of the integer 

expression defines the number of workers within each gang that will be active after a gang 

transitions from worker-single mode to worker-partitioned mode.  If the clause is not 

specified, an implementation-defined default will be used; the default value may be 1, and 

may be different for each parallel construct.  

 

2.5.8 vector_length clause 

The vector_length clause is allowed on the parallel construct.  The value of the 

integer expression defines the number of vector lanes that will be active after a worker 

transitions from vector-single mode to vector-partitioned mode.  This clause determines the 

vector length to use for vector or SIMD operations. If the clause is not specified, an 

implementation-defined default will be used.  This vector length will be used for loops 

annotated with the vector clause on a loop directive, as well as loops automatically 

vectorized by the compiler.  There may be implementation-defined limits on the allowed 

values for the vector length expression. 

 

2.5.9 private clause 

The private clause is allowed on the parallel construct; it declares that a copy of each 

item on the list will be created for each parallel gang. 

 

2.5.10 firstprivate clause 

The firstprivate clause is allowed on the parallel construct; it declares that a copy 

of each item on the list will be created for each parallel gang, and that the copy will be 

initialized with the value of that item on the host when the parallel construct is 

encountered. 

 

2.5.11 reduction clause 

The reduction clause is allowed on the parallel construct.  It specifies a reduction 

operator and one or more scalar variables.  For each variable, a private copy is created for 

each parallel gang and initialized for that operator.  At the end of the region, the values for 
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each gang are combined using the reduction operator, and the result combined with the value 

of the original variable and stored in the original variable.  The reduction result is available 

after the region. 

The following table lists the operators that are valid and the initialization values; in each case, 

the initialization value will be cast into the variable type.  For max and min reductions, the 

initialization values are the least representable value and the largest representable value for 

the variable’s data type, respectively.  Supported data types are the numerical data types in C 

and C++ (int, float, double, complex) and Fortran (integer, real, double precision, complex). 

C and C++ Fortran 

operator initialization 

value 

operator initialization 

value 

+ 0 + 0 

* 1 * 1 

max least max least 

min largest min largest 

& ~0 iand all bits on 

| 0 ior 0 

^ 0 ieor 0 

&& 1 .and. .true. 

|| 0 .or. .false. 

  .eqv. .true. 

  .neqv. .false. 

 

2.5.12 default(none) clause 

The default(none) clause is optional.  It tells the compiler not to implicitly determine a 

data attribute for any variable, but to require that all variables or arrays used in the compute 

region that do not have predetermined data attributes to explicitly appear in a data clause for 

the compute construct or for a data construct that lexically contains the parallel or 

kernels construct. 

2.6 Data Environment 

This section describes the data attributes for variables.  The data attributes for a variable may 

be predetermined, implicitly determined, or explicitly determined.  Variables with 

predetermined data attributes may not appear in a data clause that conflicts with that data 

attribute.  Variables with implicitly determined data attributes may appear in a data clause that 

overrides the implicit attribute.  Variables with explicitly determined data attributes are those 

which appear in a data clause on a data construct, a compute construct, or a declare directive. 

OpenACC supports systems with accelerators that have distinct memory from the host, as 

well as systems with accelerators that share memory with the host.  In the former case, the 

system has separate host memory and device memory.  In the latter case, the system has one 

shared memory.  The latter case is called a shared memory device as the accelerator shares 
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memory with the host thread; the former case is called a non-shared memory device.  When a 

nested OpenACC construct is executed on the device, the default target device for that 

construct is the same device on which the encountering accelerator thread is executing.  In 

that case, the target device shares memory with the encountering thread. 

 

2.6.1 Variables with Predetermined Data Attributes 

The loop variable in a C for statement or Fortran do statement that is associated with a loop 

directive is predetermined to be private to each thread that will execute each iteration of the 

loop.  Loop variables in Fortran do statements within a parallel or kernels region are 

predetermined to be private to the thread that executes the loop. 

Variables declared in a C block within a compute construct are predetermined to be private to 

the thread that executes the block.  Variables declared in procedures called from a compute 

construct are predetermined to be private to the thread that executes the procedure call. 

 

2.6.2 Data Regions and Data Lifetimes 

There are four types of data regions.  When the program encounters a data construct, it creates 

a data region.  Data created on the accelerator for the data construct has a lifetime of the 

region associated with the construct; it remains live until the program exits the data region. 

When the program encounters a compute construct with explicit data clauses or with implicit 

data allocation added by the compiler, it creates a data region that has a lifetime of the 

compute construct.  Data created on the accelerator for the compute construct has a lifetime of 

the region associated with the construct, just as with a data construct. 

When the program enters a procedure, it creates an implicit data region that has a lifetime of 

the procedure.  That is, the implicit data region is created when the procedure is called, and 

exited when the program returns from that procedure invocation.  Data created on the 

accelerator for an implicit data region has a lifetime of that invocation of the procedure. 

There is also an implicit data region associated with the execution of the program itself.  The 

implicit program data region has a lifetime of the execution of the program.  Static or global 

data created on the accelerator has a lifetime of the execution of the program, or from the time 

the program attaches to and initializes the accelerator until it detaches and shuts the 

accelerator down. 

In addition to data regions, a program may create and delete data on the accelerator using 

enter data and exit data directives or using runtime API routines.  When the 

program executes an enter data directive, or executes a call to a runtime API 

acc_copyin or acc_create routine, the program enters a data lifetime for each variable, 

array or subarray on the directive or for the variable on the runtime API argument list.  Such 

data created on the accelerator has a lifetime from when the directive is executed or the 

runtime API routine is called until an exit data directive is executed or a runtime API 

acc_copyout or acc_delete routine is called for that data; if no exit data directive 

or appropriate runtime API routine is executed, the data lifetime on the accelerator continues 

until the program exits. 
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2.6.3 Data Construct 

Summary 

The data construct defines scalars, arrays and subarrays to be allocated in the device 

memory for the duration of the region, whether data should be copied from the host to the 

device memory upon region entry, and copied from the device to host memory upon region 

exit. 

Syntax 

In C and C++, the syntax of the OpenACC data directive is 

 

    #pragma acc data [clause-list] new-line 

      structured block 

 

and in Fortran, the syntax is 

 

   !$acc data [clause-list]  

         structured block 

   !$acc end data 

 

where clause is one of the following: 

    if( condition )  

    copy( var-list )  

    copyin( var-list ) 

    copyout( var-list )  

    create( var-list )  

    present( var-list ) 

    present_or_copy( var-list ) 

    present_or_copyin( var-list ) 

    present_or_copyout( var-list ) 

    present_or_create( var-list ) 

    deviceptr( var-list ) 

Description 
Data will be allocated in the device memory and copied from the host or local memory to the 

device, or copied back, as required.  The data clauses are described in Sections 2.6.5 Data 

Clauses. 

2.6.3.1 if clause 

The if clause is optional; when there is no if clause, the compiler will generate code to 

allocate memory on the accelerator device and move data from and to the local memory as 

required.  When an if clause appears, the program will conditionally allocate memory on, 

and move data to and/or from the device.  When the condition in the if clause evaluates to 

zero in C or C++, or .false. in Fortran, no device memory will be allocated, and no data 

will be moved.  When the condition evaluates to nonzero in C or C++, or .true. in Fortran, 

the data will be allocated and moved as specified.  At most one if clause may appear. 
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2.6.4 Enter Data and Exit Data Directives 

Summary 

An  enter data directive may be used to define scalars, arrays and subarrays to be 

allocated in the device memory for the remaining duration of the program, or until an exit 

data directive that deallocates the data.  They also tell whether data should be copied from 

the host to the device memory at the enter data directive, and copied from the device to 

host memory at the exit data directive.  The dynamic range of the program between the 

enter data directive and the matching exit data directive is the data lifetime for that 

data. 

Syntax 

In C and C++, the syntax of the OpenACC enter data directive is 

 

    #pragma acc enter data clause-list  new-line 

 

and in Fortran, the syntax is 

    !$acc enter data clause-list  

 

where clause is one of the following: 

    if( condition )  

    async [( int-expr )] 

    wait [( int-expr-list  )]    

    copyin( var-list ) 

    create( var-list ) 

    present_or_copyin( var-list ) 

    present_or_create( var-list ) 

In C and C++, the syntax of the OpenACC exit data directive is 

    #pragma acc exit data clause-list  new-line 

 

and in Fortran, the syntax is 

 

    !$acc exit data clause-list  

 

where clause is one of the following: 

    if( condition )  

    async [( int-expr )]   

    wait [( int-expr-list )] 

    copyout( var-list ) 

    delete( var-list ) 

Description 

At an enter data directive, data will be allocated in the device memory and optionally 

copied from the host or local memory to the device.  This action enters a data lifetime for 

those variables, arrays or subarrays, and will make the data available for present clauses on 

constructs within the data lifetime. 

At an exit data directive, data will be optionally copied from the device memory to the 

host or local memory and deallocated from device memory.  This action exits the 
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corresponding data lifetime.  An exit data directive may only be used to exit a data 

lifetime created by an enter data construct or a runtime API routine. 

The data clauses are described in Sections 2.6.5 Data Clauses. 

2.6.4.1 if clause 

The if clause is optional; when there is no if clause, the compiler will generate code to 

allocate or deallocate memory on the accelerator device and move data from and to the local 

memory.  When an if clause appears, the program will conditionally allocate or deallocate 

device memory and move data to and/or from the device.  When the condition in the if 

clause evaluates to zero in C or C++, or .false. in Fortran, no device memory will be 

allocated or deallocated, and no data will be moved.  When the condition evaluates to nonzero 

in C or C++, or .true. in Fortran, the data will be allocated or deallocated and moved as 

specified. 

2.6.4.2 async clause 

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.  

2.6.4.3 wait clause 

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.  

2.6.5 Data Clauses 

These data clauses may appear on the parallel construct, kernels construct, the data 

construct, and the enter data and exit data directives.  The list argument to each data 

clause is a comma-separated collection of variable names, array names, or subarray 

specifications.  For all clauses except deviceptr and present, the list argument may 

include a Fortran common block name enclosed within slashes, if that common block name 

also appears in a declare directive link clause.  In all cases, the compiler will allocate and 

manage a copy of the variable or array in device memory, creating a visible device copy of 

that variable or array. 

The intent is to support accelerators with physically and logically separate memories from the 

local thread.  However, if the accelerator can access the local memory directly, the 

implementation may avoid the memory allocation and data movement and simply share the 

data in local memory.  Therefore, a program that uses and assigns data on the host and uses 

and assigns the same data on the accelerator within a data region without update directives to 

manage the coherence of the two copies may get different answers on different accelerators or 

implementations. 

Restrictions 

 Data clauses may not follow a device_type clause. 

2.6.5.1 Data Specification in Data Clauses 

In C and C++, a subarray is an array name followed by an extended array range specification 

in brackets, with start and length, such as 

    AA[2:n] 

If the lower bound is missing, zero is used.  If the length is missing and the array has known 

size, the size of the array is used; otherwise the length is required.  The subarray AA[2:n] 

means element AA[2], AA[3], …, AA[2+n-1]. 

In C and C++, a two dimensional array may be declared in at least four ways: 

 Statically-sized array: float AA[100][200]; 
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 Pointer to statically sized rows: typedef float row[200]; row* BB; 

 Statically-sized array of pointers: float* CC[200]; 

 Pointer to pointers: float** DD; 

Each dimension may be statically sized, or a pointer to dynamically allocated memory.  Each 

of these may be included in a data clause using subarray notation to specify a rectangular 

array: 

 AA[2:n][0:200] 

 BB[2:n][0:m] 

 CC[2:n][0:m] 

 DD[2:n][0:m] 

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any 

combination of statically-sized or dynamically-allocated dimensions.  For statically sized 

dimensions, all dimensions except the first must specify the whole dimension, to preserve the 

contiguous data restriction, discussed below.  For dynamically allocated dimensions, the 

implementation will allocate pointers on the device corresponding to the pointers on the host, 

and will fill in those pointers as appropriate. 

In Fortran, a subarray is an array name followed by a comma-separated list of range 

specifications in parentheses, with lower and upper bound subscripts, such as 

    arr(1:high,low:100) 

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, 

if known, are used.  All dimensions except the last must specify the whole dimension, to 

preserve the contiguous data restriction, discussed below. 

Restrictions 

 In Fortran, the upper bound for the last dimension of an assumed-size dummy array 

must be specified. 

 In C and C++, the length for dynamically allocated dimensions of an array must be 

explicitly specified. 

 In C and C++, modifying pointers in pointer arrays during the data lifetime, either on 

the host or on the device, may result in undefined behavior. 

 If a subarray is specified in a data clause, the implementation may choose to allocate 

memory for only that subarray on the accelerator. 

 In Fortran, array pointers may be specified, but pointer association is not preserved in 

the device memory. 

 Any array or subarray in a data clause, including Fortran array pointers, must be a 

contiguous block of memory, except for dynamic multidimensional C arrays. 

 In C and C++, if a variable or array of struct or class type is specified, all the data 

members of the struct or class are allocated and copied, as appropriate.  If a struct or 

class member is a pointer type, the data addressed by that pointer are not implicitly 

copied. 

 In Fortran, if a variable or array with derived type is specified, all the members of that 

derived type are allocated and copied, as appropriate.  If any member has the 



OpenACC Programming Interface 27 

 

allocatable or pointer attribute, the data accessed through that member are 

not copied.    

 If an expression is used in a subscript or subarray expression in a clause on a data 

construct, the same value is used when copying data at the end of the data region, 

even if the values of variables in the expression change during the data region. 

2.6.5.2 deviceptr clause 

The deviceptr clause is used to declare that the pointers in the var-list are device pointers, 

so the data need not be allocated or moved between the host and device for this pointer.   

In C and C++, the variables in var-list must be pointer variables.   

In Fortran, the variable in var-list must be dummy arguments (arrays or scalars), and may not 

have the Fortran pointer, allocatable or value attributes. 

For a shared-memory device, host pointers are the same as device pointers, so this clause has 

no effect. 

2.6.5.3 copy clause 

The copy clause is used to declare that the variables, array, subarrays or common blocks in 

the var-list have values in the local memory that need to be copied to the device memory, for 

a non-shared memory accelerator, and are assigned values on the accelerator that need to be 

copied back to the local memory.  If a subarray is specified, then only that subarray of the 

array needs to be copied.  On a data construct or compute construct, the data is allocated and 

copied to the device memory upon entry to the region, and copied back to the local memory 

and deallocated upon exit from the region.  If the device shares memory with the local thread, 

the data in the copy clause will be shared; no memory is allocated or copied. 

2.6.5.4 copyin clause 

The copyin clause is used to declare that the variables, arrays, subarrays or common blocks 

in the var-list have values in the local memory that need to be copied to the device memory, 

for a non-shared memory accelerator.  If a subarray is specified, then only that subarray of the 

array needs to be copied.  If a variable, array or subarray appears in a copyin, the clause 

implies that the data need not be copied back from the device memory to the local memory, 

even if those values were changed on the accelerator.  On a data construct or compute 

construct, the data is allocated and copied to the device memory upon entry to the region and 

deallocated upon exit from the region.  On an enter data directive, the data is allocated 

and copied to the device memory.  If the device shares memory with the local thread, the data 

in the copyin clause will be shared; no memory is allocated or copied. 

2.6.5.5 copyout clause 

The copyout clause is used to declare that the variables, arrays, subarrays or common 

blocks in the var-list are assigned or contain values in the device memory that need to be 

copied back to the local memory at the end of the accelerator region, for a non-shared 

memory accelerator.  If a subarray is specified, then only that subarray of the array needs to 

be copied.  If a variable, array or subarray appears in a copyout, the clause implies that the 

data need not be copied to the device memory from the local memory, even if those values are 

used on the accelerator.  On a data construct or compute construct, the data is allocated upon 

entry to the region, and copied back to the local memory and deallocated upon exit from the 

region.  On an exit data directive, the data is copied back to the local memory and 

deallocated.  If the device shares memory with the local thread, the data in the copyout 

clause will be shared; no memory is allocated or copied. 
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2.6.5.6 create clause 

The create clause is used to declare that the variables, arrays, subarrays or common blocks 

in the var-list need to be allocated (created) in the device memory, for a non-shared memory 

accelerator, but the values in the local memory are not needed on the accelerator, and any 

values computed and assigned on the accelerator are not needed back in local memory.  On a 

data construct or compute construct, the data is allocated in device memory upon entry to the 

region, and deallocated upon exit from the region.  On an enter data directive, the data is 

allocated in device memory.  No data in this clause will be copied between the local and 

device memories. If the device shares memory with the local thread, the data in the create 

clause will be shared; no memory is allocated or copied. 

2.6.5.7 delete clause 

The delete clause is used on exit data directives to deallocate arrays, subarrays or 

common blocks without copying values back to local memory. The data is deallocated, on a 

non-shared memory device.  No action is required or taken if the device shares memory with 

the local thread. 

2.6.5.8 present clause 

The present clause is used to tell the implementation on a non-shared memory device that 

the variables or arrays in the var-list are already present in device memory due to data regions 

or data lifetimes that contain this region, such as data constructs within procedures that call 

the procedure containing this construct, or an enter data directive or runtime API routine 

called before this routine.  The implementation will find and use that existing accelerator data.  

If there is no active data lifetime that has placed any of the variables or arrays on the 

accelerator, the behavior is unspecified; in particular, the program may halt with a runtime 

error. 

If a containing data lifetime specifies a subarray, the present clause must specify the same 

subarray, or a subarray that is a proper subset of the subarray in the data lifetime.  It is a 

runtime error if the subarray in the present clause includes array elements that are not part 

of the subarray specified in the data lifetime. 

2.6.5.9 present_or_copy clause 

The present_or_copy clause is used to tell the implementation on a non-shared memory 

accelerator to test whether each of the variables or arrays on the var-list is already present in 

the accelerator memory, as with the present clause. 

If the data is already present, the program behaves as with the present clause.  No new 

device memory will be allocated and no data will be moved to or from the device memory.   

If the data is not present, the program behaves as with the copy clause.  The data is allocated 

and copied to the device memory upon entry to the region, and copied back to the local 

memory and deallocated upon exit from the region. 

This clause may be shortened to pcopy.  The restrictions regarding subarrays in the 

present clause apply to this clause. 

2.6.5.10 present_or_copyin clause 

The present_or_copyin clause is used to tell the implementation on a non-shared 

memory accelerator to test whether each of the variables or arrays on the var-list is already 

present in the accelerator memory, as with the present clause. 
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If the data is already present, the program behaves as with the present clause.  No new 

device memory will be allocated and no data will be moved to or from the device memory.   

If the data is not present, the program behaves as with the copyin clause.  On a data 

construct or compute construct, the data is allocated and copied to the device memory upon 

entry to the region and deallocated upon exit from the region.  On an enter data directive, 

the data is allocated and copied to the device memory. 

This clause may be shortened to pcopyin.  The restrictions regarding subarrays in the 

present clause apply to this clause. 

2.6.5.11 present_or_copyout clause 

The present_or_copyout clause is used to tell the implementation on a non-shared 

memory accelerator to test whether each of the variables or arrays on the var-list is already 

present in the accelerator memory, as with the present clause.   

If the data is already present, the program behaves as with the present clause.  No new 

device memory will be allocated and no data will be moved to or from the device memory.   

If the data is not present, the program behaves as with the copyout clause.  The data is 

allocated upon entry to the region, and copied back to the local memory and deallocated upon 

exit from the region.   

This clause may be shortened to pcopyout.  The restrictions regarding subarrays in the 

present clause apply to this clause. 

2.6.5.12 present_or_create clause 

The present_or_create clause is used to tell the implementation on a non-shared 

memory accelerator to test whether each of the variables or arrays on the var-list is already 

present in the accelerator memory, as with the present clause. 

If the data is already present, the program behaves as with the present clause.  No new 

device memory will be allocated.   

If the data is not present, the program behaves as with the create clause.  On a data 

construct or compute construct, the data is allocated in device memory upon entry to the 

region, and deallocated upon exit from the region.  On an enter data directive, the data is 

allocated in device memory. 

This clause may be shortened to pcreate. The same restrictions about subarrays in the 

present clause apply to this clause. 

 

2.6.6 Host_Data Construct 

Summary 

The host_data construct makes the address of device data available on the host. 

Syntax 

In C and C++, the syntax of the OpenACC data directive is 

 

    #pragma acc host_data clause-list new-line 

      structured block 

 

and in Fortran, the syntax is 
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   !$acc host_data clause-list  

         structured block 

   !$acc end host_data 

 

where the only valid clause is: 

    use_device( var-list )  

Description 

This construct is used to make the device address of data available in host code. 

2.6.6.1 use_device clause 

The use_device tells the compiler to use the device address of any variable or array in the 

var-list in code within the construct.  In particular, this may be used to pass the device address 

of variables or arrays to optimized procedures written in a lower-level API.  The variables or 

arrays in var-list must be present in the accelerator memory due to data regions or data 

lifetimes that contain this construct.  On a shared memory accelerator, the device address may 

be the same as the host address. 

2.7 Loop Construct 

Summary 

The OpenACC loop directive applies to a loop which must immediately follow this 

directive.  The loop directive can describe what type of parallelism to use to execute the loop 

and declare loop-private variables and arrays and reduction operations. 

Syntax 

In C and C++, the syntax of the loop directive is 

       #pragma acc loop [clause-list] new-line 

            for loop 

In Fortran, the syntax of the loop directive is 

   !$acc loop [clause-list] 

            do loop 

where clause is one of the following: 

    collapse( n ) 

    gang [( gang-arg-list )] 

    worker [( [num:] int-expr )] 

    vector [( [length:] int-expr )] 

    seq 

    auto 

    tile( size-expr-list ) 

    device_type( device-type-list ) 

    independent 

    private( var-list ) 

    reduction( operator : var-list ) 

where gang-arg is one of: 

    [num:] int-expr 

    static: size-expr 
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and gang-arg-list may have at most one num and one static argument, 

and where size-expr is one of: 

    * 

    int-expr 

Some clauses are only valid in the context of a parallel region, and some only in the context of 

a kernels region; see the descriptions below.   

Restrictions 

 Only the collapse, gang, worker, vector, seq, auto and tile clauses may 

follow a device_type clause. 

 The int-expr argument to the worker and vector clauses must be invariant in the 

kernels region. 

 

2.7.1 collapse clause 

The collapse clause is used to specify how many tightly nested loops are associated with 

the loop construct.  The argument to the collapse clause must be a constant positive 

integer expression.  If no collapse clause is present, only the immediately following loop 

is associated with the loop directive. 

If more than one loop is associated with the loop construct, the iterations of all the 

associated loops are all scheduled according to the rest of the clauses.  The trip count for all 

loops associated with the collapse clause must be computable and invariant in all the 

loops. 

It is implementation-defined whether a gang, worker or vector clause on the directive is 

applied to each loop, or to the linearized iteration space.  

 

2.7.2 gang clause 

In an accelerator parallel region, the gang clause specifies that the iterations of the associated 

loop or loops are to be executed in parallel by distributing the iterations among the gangs 

created by the parallel construct.  A loop construct with the gang clause transitions a 

compute region from gang-redundant mode to gang-partitioned mode.  The number of gangs 

is controlled by the parallel construct; only the static argument is allowed.  The loop 

iterations must be data independent, except for variables specified in a reduction clause.  

The region of a loop with the gang clause may not contain another loop with the gang 

clause unless within a nested parallel or kernels region 

In an accelerator kernels region, the gang clause specifies that the iterations of the associated 

loop or loops are to be executed in parallel across the gangs created for any kernel contained 

within the loop or loops.  If an argument with no keyword or an argument after the num 

keyword is specified, it specifies how many gangs to use to execute the iterations of this loop.  

The region of a loop with the gang clause may not contain another loop with a gang clause 

unless within a nested parallel or kernels region. 

The scheduling of loop iterations to gangs is not specified unless the static argument 

appears as an argument.  If the static argument appears with an integer expression, that 

expression is used as a chunk size.  If the static argument appears with an asterisk, the 

implementation will select a chunk size.  The iterations are divided into chunks of the selected 
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chunk size, and the chunks are assigned to gangs starting with gang zero and continuing in 

round-robin fashion.  Two gang loops in the same parallel region with the same number 

of iterations, and with static clauses with the same argument, will assign the iterations to 

gangs in the same manner.  Two gang loops in the same kernels region with the same 

number of iterations, the same number of gangs to use, and with static clauses with the 

same argument, will assign the iterations to gangs in the same manner. 

 

2.7.3 worker clause 

In an accelerator parallel region, the worker clause specifies that the iterations of the 

associated loop or loops are to be executed in parallel by distributing the iterations among the 

multiple workers within a single gang.  A loop construct with a worker clause causes a gang 

to transition from worker-single mode to worker-partitioned mode.  In contrast to the gang 

clause, the worker clause first activates additional worker-level parallelism and then 

distributes the loop iterations across those workers.  No argument is allowed.  The loop 

iterations must be data independent, except for variables specified in a reduction clause.  

The region of a loop with the worker clause may not contain a loop with the gang or 

worker clause unless within a nested parallel or kernels region.  

In an accelerator kernels region, the worker clause specifies that the iterations of the 

associated loop or loops are to be executed in parallel across the workers within a gang 

created for any kernel contained within the loop or loops.  If an argument is specified, it 

specifies how many workers per gang to use to execute the iterations of this loop.  The region 

of a loop with the worker clause may not contain a loop with a gang or worker clause 

unless within a nested parallel or kernels region. 

All workers will complete execution of their assigned iterations before any worker proceeds 

beyond the end of the loop. 

 

2.7.4 vector clause 

In an accelerator parallel region, the vector clause specifies that the iterations of the 

associated loop or loops are to be executed in vector or SIMD mode.  A loop construct with a 

vector clause causes a worker to transition from vector-single mode to vector-partitioned 

mode.  Similar to the worker clause, the vector clause first activates additional vector-

level parallelism and then distributes the loop iterations across those vector lanes.  The 

operations will execute using vectors of the length specified or chosen for the parallel region.  

The region of a loop with the vector clause may not contain a loop with the gang, 

worker or vector clause unless within a nested parallel or kernels region. 

In an accelerator kernels region, the vector clause specifies that the iterations of the associated 

loop or loops are to be executed with vector or SIMD processing.  If an argument is specified, 

the iterations will be processed in vector strips of that length; if no argument is specified, the 

implementation will choose an appropriate vector length.  The region of a loop with the 

vector clause may not contain a loop with a gang, worker or vector clause unless 

within a nested parallel or kernels region.  

All vector lanes will complete execution of their assigned iterations before any vector lane 

proceeds beyond the end of the loop. 
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2.7.5 seq clause 

The seq clause specifies that the associated loop or loops are to be executed sequentially by 

the accelerator.  This clause will override any automatic parallelization or vectorization. 

 

2.7.6 auto clause 

The auto clause specifies that the implementation should select whether to apply gang, 

worker or vector parallelism to this loop.  The implementation may be restricted to the types 

of parallelism it can apply by the presence of loop directives with gang, worker or 

vector clauses for outer or inner loops.  This clause by itself does not tell the 

implementation that the loop iterations are data independent, and the implementation cannot 

apply any parallelism unless the loop has the independent clause, is implicitly 

independent because it is in a parallel construct, or the implementation can analyze the loop 

and determine that the loop iterations are data independent.  In a kernels construct, a loop 

directive with no gang, worker, vector or seq clause is treated as if it has the auto 

clause. 

 

2.7.7 tile clause 

The tile clause specifies that the implementation should split each loop in the loop nest into 

two loops, with an outer set of tile loops and an inner set of element loops.  The argument to 

the tile clause is a list of one or more tile sizes, where each tile size is a constant positive 

integer expression or an asterisk.  If there are n tile sizes in the list, the loop directive must be 

immediately followed by n tightly-nested loops.  The first argument in the size-expr-list 

corresponds to the innermost loop of the n associated loops, and the last element corresponds 

to the outermost associated loop.  If the tile size is specified with an asterisk, the 

implementation will choose an appropriate value.  Each loop in the nest will be split or strip-

mined into two loops, an outer tile loop and an inner element loop.  The trip count of the 

element loop will be limited to the corresponding tile size from the size-expr-list.  The tile 

loops will be reordered to be outside all the element loops, and the element loops will all be 

inside the tile loops. 

If the vector clause appears on the loop directive, the vector clause is applied to the 

element loops.  If the gang clause appears on the loop directive, the gang clause is applied 

to the tile loops.  If the worker clause appears on the loop directive, the worker clause is 

applied to the element loops if no vector clause appears, and to the tile loops otherwise. 

 

2.7.8 device_type clause 

The device_type clause is described in Section 2.4 Device-Specific Clauses. 

 

2.7.9 independent clause 

In a kernels construct, the independent clause tells the implementation that the 

iterations of this loop are data-independent with respect to each other.  This allows the 

implementation to generate code to execute the iterations in parallel with no synchronization.  

In a parallel construct, the independent clause is implied on all loop directives 

without a seq clause. 
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Restrictions 

 It is a programming error to use the independent clause on a loop in a kernels 

construct if any iteration writes to a variable or array element that any other iteration 

also writes or reads, except for variables in a reduction clause. 

 

2.7.10 private clause 

The private clause on a loop directive specifies that a copy of each item on the var-list 

will be created for each thread that executes one or more iterations of the associated loop or 

loops.  Variables referenced in the loop and not in a private clause or predetermined 

private are not privatized for a thread that execute the loop iterations. 

 

2.7.11 reduction clause 

The reduction clause specifies a reduction operator and one or more scalar variables.  For 

each reduction variable, a private copy is created for each thread that executes iterations of the 

associated loop or loops and initialized for that operator; see the table in section 2.5.11 

reduction clause.  At the end of the loop, the values for each thread are combined using the 

specified reduction operator, and the result stored in the original variable at the end of the 

parallel or kernels region. 

In a parallel region, if the reduction clause is used on a loop with the vector or worker 

clauses (and no gang clause), and the scalar variable also appears in a private clause on 

the parallel construct, the value of the private copy of the scalar will be updated at the 

exit of the loop.  If the scalar variable does not appear in a private clause on the 

parallel construct, or if the reduction clause is used on a loop with the gang clause, 

the value of the scalar will not be updated until the end of the parallel region. 

2.8 Cache Directive 

Summary 

The cache directive may appear at the top of (inside of) a loop. It specifies array elements or 

subarrays that should be fetched into the highest level of the cache for the body of the loop.  

Syntax 

In C and C++, the syntax of the cache directive is 

       #pragma acc cache( var-list ) new-line 

 

In Fortran, the syntax of the cache directive is 

   !$acc cache ( var-list )  

The entries in var-list must be single array elements or simple subarray.  In C and C++, a 

simple subarray is an array name followed by an extended array range specification in 

brackets, with start and length, such as 

    arr[lower:length] 

where the lower bound is a constant, loop invariant, or the for loop index variable plus or 

minus a constant or loop invariant, and the length is a constant. 

In Fortran, a simple subarray is an array name followed by a comma-separated list of range 

specifications in parentheses, with lower and upper bound subscripts, such as 
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    arr(lower:upper,lower2:upper2) 

The lower bounds must be constant, loop invariant, or the do loop index variable plus or 

minus a constant or loop invariant; moreover the difference between the corresponding upper 

and lower bounds must be a constant. 

2.9 Combined Directives 

Summary 

The combined OpenACC parallel loop and kernels loop directives are shortcuts 

for specifying a loop directive nested immediately inside a parallel or kernels 

construct.  The meaning is identical to explicitly specifying a parallel or kernels 

directive containing a loop directive.  Any clause that is allowed on a parallel or loop 

directive is allowed on the parallel loop directive, and any clause allowed on a 

kernels or loop directive are allowed on a kernels loop directive. 

Syntax 

In C and C++, the syntax of the parallel loop directive is 

       #pragma acc parallel loop [clause-list] new-line 

            for loop 

In Fortran, the syntax of the parallel loop directive is 

   !$acc parallel loop [clause-list] 

            do loop 

   [!$acc end parallel loop] 

The associated structured block is the loop which must immediately follow the directive.  Any 

of the parallel or loop clauses valid in a parallel region may appear.   

In C and C++, the syntax of the kernels loop directive is 

       #pragma acc kernels loop [clause-list] new-line 

            for loop 

In Fortran, the syntax of the kernels loop directive is 

   !$acc kernels loop [clause-list] 

            do loop 

   [!$acc end kernels loop] 

 

The associated structured block is the loop which must immediately follow the directive.  Any 

of the kernels or loop clauses valid in a kernels region may appear. 

Restrictions 

 The restrictions for the parallel, kernels and loop constructs apply. 

2.10 Atomic Directive 

Summary 

An atomic construct ensures that a specific storage location is accessed and/or updated 

atomically, preventing simultaneous reading and writing by gangs, workers and vector threads 

that could result in indeterminate values.  
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Syntax 

In C and C++, the syntax of the atomic constructs are: 

    #pragma acc atomic [ atomic-clause ] new-line  

        expression-stmt 

or: 

    #pragma acc atomic capture new-line  

        structured-block 

Where atomic-clause is one of read, write, update, or capture.  The expression-stmt 

is an expression statement with one of the following forms: 

If the atomic-clause is read: 

      v = x; 

If the atomic-clause is write: 

      x = expr; 

If the atomic-clause is update or not present: 

      x++; 

      x--; 

      ++x; 

      --x; 

      x binop= expr; 

      x = x binop expr; 

      x = expr binop x; 

If the atomic-clause is capture: 

      v = x++; 

      v = x--; 

      v = ++x; 

      v = --x; 

      v = x binop= expr; 

      v = x = x binop expr; 

      v = x = expr binop x;  

The structured-block is a structured block with one of the following forms: 

      {v = x; x binop= expr;} 

      {x binop= expr; v = x;} 

      {v = x; x = x binop expr;} 

      {v = x; x = expr binop x;} 

      {x = x binop expr; v = x;} 

      {x = expr binop x; v = x;} 

      {v = x; x = expr;} 

      {v = x; x++;} 

      {v = x; ++x;} 

      {++x; v = x;} 

      {x++; v = x;} 

      {v = x; x--;} 

      {v = x; --x;} 



OpenACC Programming Interface 37 

 

      {--x; v = x;} 

      {x--; v = x;} 

In the preceding expressions: 

 x and v (as applicable) are both l-value expressions with  scalar type. 

 During the execution of an atomic region, multiple syntactic occurrences of x must 

designate the same storage location. 

 Neither of v and expr (as applicable) may access the storage location designated by x. 

 Neither of x and expr (as applicable) may access the storage location designated by v. 

 expr is an expression with scalar type. 

 binop is one of +, *, -, /, &, ^, |, <<, or >>. 

 binop, binop=, ++, and -- are not overloaded operators. 

 The expression x binop expr must be mathematically equivalent to x binop (expr). 

This requirement is satisfied if the operators in expr have precedence greater than 

binop, or by using parentheses around expr or subexpressions of expr. 

 The expression expr binop x must be mathematically equivalent to (expr) binop x. 

This requirement is satisfied if the operators in expr have precedence equal to or 

greater than binop, or by using parentheses around expr or subexpressions of expr. 

 For forms that allow multiple occurrences of x, the number of times that x is 

evaluated is unspecified. 

In Fortran the syntax of the atomic constructs are:  

    !$acc atomic read 

      capture-statement 
    [!$acc end atomic] 

  or 

    !$acc atomic write  

      write-statement 
    [!$acc end atomic] 

  or 

    !$acc atomic [update] 

      update-statement 
    [!$acc end atomic] 

  or 

    !$acc atomic capture 

      update-statement 

      capture-statement 
    !$acc end atomic 

  or 

    !$acc atomic capture  

      capture-statement 

      update-statement 
    !$acc end atomic 

  or 
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    !$acc atomic capture  

      capture-statement 

      write-statement 
    !$acc end atomic 

where write-statement has the following form (if clause is write or capture): 

    x = expr 

where capture-statement has the following form (if clause is capture or read): 

    v = x 

and where update-statement has one of the following forms (if clause is update, capture, 

or not present): 

    x = x operator expr 

    x = expr operator x 

    x = intrinsic_procedure_name(x, expr-list) 

    x = intrinsic_procedure_name(expr-list, x) 

  In the preceding statements: 

 x and v (as applicable) are both scalar variables of intrinsic type. 

 x must not be an allocatable variable. 

 During the execution of an atomic region, multiple syntactic occurrences of x must 

designate the same storage location. 

 None of v, expr and expr-list (as applicable) may access the same storage location as 

x. 

 None of x, expr and expr-list (as applicable) may access the same storage location as 

v. 

 expr is a scalar expression. 

 expr-list is a comma-separated, non-empty list of scalar expressions. If 

intrinsic_procedure_name refers to iand, ior, or ieor, exactly one expression 

must appear in expr-list. 

 intrinsic_procedure_name is one of max, min, iand, ior, or ieor. operator is one 

of +, *, -, /, .and., .or., .eqv., or .neqv. . 

 The expression x operator expr must be mathematically equivalent to x operator 

(expr). This requirement is satisfied if the operators in expr have precedence greater 

than operator, or by using parentheses around expr or subexpressions of expr. 

 The expression expr operator x must be mathematically equivalent to (expr) 

operator x. This requirement is satisfied if the operators in expr have precedence 

equal to or greater than operator, or by using parentheses around expr or 

subexpressions of expr. 

 intrinsic_procedure_name must refer to the intrinsic procedure name and not to other 

program entities. 

 operator must refer to the intrinsic operator and not to a user-defined operator. All 

assignments must be intrinsic assignments. 

 For forms that allow multiple occurrences of x, the number of times that x is 

evaluated is unspecified. 
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An atomic construct with the read clause forces an atomic read of the location designated by 

x.   An atomic construct with the write clause forces an atomic write of the location 

designated by x. 

An atomic construct with the update clause forces an atomic update of the location 

designated by x using the designated operator or intrinsic.  Note that when no clause is 

present, the semantics are equivalent to atomic update. Only the read and write of the 

location designated by x are performed mutually atomically. The evaluation of expr or expr-

list need not be atomic with respect to the read or write of the location designated by x. 

An atomic construct with the capture clause forces an atomic update of the location 

designated by x using the designated operator or intrinsic while also capturing the original or 

final value of the location designated by x with respect to the atomic update. The original or 

final value of the location designated by x is written into the location designated by v 

depending on the form of the atomic construct structured block or statements following the 

usual language semantics. Only the read and write of the location designated by x are 

performed mutually atomically. Neither the evaluation of expr or expr-list, nor the write to the 

location designated by v, need to be atomic. 

For all forms of the atomic construct, any combination of two or more of these atomic 

constructs enforces mutually exclusive access to the locations designated by x. To avoid race 

conditions, all accesses of the locations designated by x that could potentially occur in 

parallel must be protected with an atomic construct. 

Atomic regions do not guarantee exclusive access with respect to any accesses outside of 

atomic regions to the same storage location x even if those accesses occur during the 

execution of a reduction clause. 

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is 

not a multiple of the size of x), then the behavior of the atomic region is implementation-

defined. 

Restrictions 

The following restriction applies to the atomic construct: 

 All atomic accesses to the storage locations designated by x throughout the program 

are required to have the same type and type parameters. 

 Storage locations designated by x must be less than or equal in size to the largest 

available native atomic operator width.  

2.11 Declare Directive 

Summary 

A declare directive is used in the declaration section of a Fortran subroutine, function, or 

module, or following a variable declaration in C or C++.  It can specify that a variable or 

array is to be allocated in the device memory for the duration of the implicit data region of a 

function, subroutine or program, and specify whether the data values are to be transferred 

from the host to the device memory upon entry to the implicit data region, and from the 

device to the host memory upon exit from the implicit data region.  These directives create a 

visible device copy of the variable or array. 

Syntax 

In C and C++, the syntax of the declare directive is: 
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    #pragma acc declare clause-list new-line  

In Fortran the syntax of the declare directive is:  

    !$acc declare clause-list 

where clause is one of the following: 

    copy( var-list )  

    copyin( var-list ) 

    copyout( var-list ) 

    create( var-list )  

    present( var-list ) 

    present_or_copy( var-list ) 

    present_or_copyin( var-list ) 

    present_or_copyout( var-list ) 

    present_or_create( var-list ) 

    deviceptr( var-list ) 

    device_resident( var-list ) 

    link( var-list )  

The associated region is the implicit region associated with the function, subroutine, or 

program in which the directive appears.  If the directive appears in the declaration section of a 

Fortran module subprogram or in a C or C++ global scope, the associated region is the 

implicit region for the whole program.  Otherwise, the clauses have exactly the same behavior 

as having an explicit data construct surrounding the body of the procedure with these clauses.  

The data clauses are described in section 2.6.5 Data Clauses. 

Restrictions 

 A variable or array may appear at most once in all the clauses of declare directives 

for a function, subroutine, program, or module. 

 Subarrays are not allowed in declare directives. 

 In Fortran, assumed-size dummy arrays may not appear in a declare directive.  

 In Fortran, pointer arrays may be specified, but pointer association is not preserved in 

the device memory. 

 In a Fortran module declaration section, only create, copyin, 

device_resident and link clauses are allowed. 

 In C or C++ global scope, only create, copyin, deviceptr, 

device_resident and link clauses are allowed. 

 C and C++ extern variables may only appear in create, copyin, deviceptr, 

device_resident and link clauses on a declare directive. 

 

2.11.1 device_resident clause 

Summary 

The device_resident clause specifies that the memory for the named variables should 

be allocated in the accelerator device memory and not in the host memory.  The names in the 

argument list may be variable or array names, or Fortran common block names enclosed 

between slashes; subarrays are not allowed.  The host may not be able to access variables in a 
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device_resident clause.  The accelerator data lifetime of global variables or common 

blocks specified in a device_resident clause is the entire execution of the program.   

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable 

will be allocated in and deallocated from the accelerator device memory when the host 

program executes an allocate or deallocate statement for that variable.  If the variable 

has the Fortran pointer attribute, it may be allocated or deallocated by the host in the 

accelerator device memory, or may appear on the left hand side of a pointer assignment 

statement, if the right hand side variable itself appears in a device_resident clause. 

In Fortran, the argument to a device_resident clause may be a common block name 

enclosed in slashes; in this case, all declarations of the common block must have a matching 

device_resident clause.  In this case, the common block will be statically allocated in 

device memory, and not in host memory.  The common block will be available to accelerator 

routines; see 2.13 Procedure Calls in Compute Regions. 

In a Fortran module declaration section, a variable or array in a device_resident clause 

will be available to accelerator routines.  

In C or C++ global scope, a variable or array in a device_resident clause will be 

available to accelerator routines .  A C or C++ extern variable may appear in a 

device_resident clause only if the actual declaration and all extern declarations are also 

followed by device_resident clauses. 

 

2.11.2 link clause 

The link clause is used for large global host static data that is referenced within an 

accelerator routine and that should have a dynamic data lifetime on the device.  The link 

clause specifies that only a global link for the named variables should be statically created in 

accelerator memory.  The host data structure remains statically allocated and globally 

available.  The device data memory will be allocated only when the global variable appears on 

a data clause for a data construct, compute construct or enter data directive.  The 

arguments to the link clause must be global data.  In C or C++, the link clause must appear 

on global scope, or the arguments must be extern variables.  In Fortran, the link clause must 

appear in a module declaration section, or the arguments must be common block names 

enclosed in slashes.  A declare link clause must be visible everywhere the global 

variables or common block variables are explicitly or implicitly used in a data clause, 

compute construct, or accelerator routine. The global variable or common block variables may 

be used in accelerator routines.  The accelerator data lifetime of variables or common blocks 

specified in a link clause is the data region that allocates the variable or common block with 

a data clause, or from the execution of the enter data directive that allocates the data until 

an exit data directive deallocates it or until the end of the program. 

 

2.12 Executable Directives 

2.12.1 Update Directive 

Summary 

The update directive is used during the lifetime of accelerator data to update all or part of 

local variables or arrays with values from the corresponding memory in device memory, or to 
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update all or part of device variables or arrays with values from the corresponding local 

memory. 

Syntax 

In C and C++, the syntax of the update directive is: 

    #pragma acc update clause-list new-line 

In Fortran the syntax of the update data directive is:  

    !$acc update clause-list 

where clause is one of the following: 

    async [( int-expr )]  

    wait [( int-expr-list )] 

    device_type( device-type-list ) 

    if( condition )  

    self( var-list )  

    host( var-list ) 

    device( var-list )    

The var-list argument to an update clause is a comma-separated collection of variable 

names, array names, or subarray specifications.  Multiple subarrays of the same array may 

appear in a var-list of the same or different clauses on the same directive.  The effect of an 

update clause is to copy data from the accelerator device memory to the local memory for 

update self, and from local memory to accelerator device memory for update 

device.  The updates are done in the order in which they appear on the directive.  There 

must be a device copy of the variables or arrays that appear in the self or device clauses. 

At least one self, host or device clause must appear. 

2.12.1.1 self clause 

The self clause specifies that the variables, arrays or subarrays in the var-list are to be 

copied from the accelerator device memory to the local memory for a non-shared memory 

accelerator.  If the accelerator shares the same memory with the encountering thread, no 

action is taken. 

2.12.1.2 host clause 

The host clause is a synonym for the self clause.  

2.12.1.3 device clause 

The device clause specifies that the variables, arrays or subarrays in the var-list are to be 

copied from the local memory to the accelerator device memory, for a non-shared memory 

accelerator.  If the accelerator shares the same memory with the encountering thread, no 

action is taken. 

2.12.1.4 if clause 

The if clause is optional; when there is no if clause, the implementation will generate code 

to perform the updates unconditionally.  When an if clause appears, the implementation will 

generate code to conditionally perform the updates only when the condition evaluates to 

nonzero in C or C++, or .true. in Fortran. 

2.12.1.5 async clause 

The async clause is optional; see section 2.14 Asynchronous Behavior for more information.   
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2.12.1.6 wait clause 

The wait clause is optional; see section 2.14 Asynchronous Behavior for more information.   

 

Restrictions 

 The update directive is executable.  It must not appear in place of the statement 

following an if, while, do, switch, or label in C or C++, or in place of the statement 

following a logical if in Fortran. 

 A variable or array which appears in the var-list of an update directive must have a 

device copy.  

 Only the async and wait clauses may follow a device_type clause. 

 At most one if clause may appear.  In Fortran, the condition must evaluate to a 

scalar logical value; in C or C++, the condition must evaluate to a scalar integer 

value. 

 Noncontiguous subarrays may be specified.  It is implementation-specific whether 

noncontiguous regions are updated by using one transfer for each contiguous 

subregion, or whether the noncontiguous data is packed, transferred once, and 

unpacked. 

 In C and C++, a member of a struct or class may be specified, including a subarray of 

a member.  Members of a subarray of struct or class type may not be specified. 

 In C and C++, if a subarray notation is used for a struct member, subarray notation 

may not be used for any parent of that struct member. 

 In Fortran, members of variables of derived type may be specified, including a 

subarray of a member.  Members of subarrays of derived type may not be specified. 

 In Fortran, if array or subarray notation is used for a derived type member, array or 

subarray notation may not be used for an parent of that derived type member. 

 

2.12.2 Wait Directive 

See section 2.14 Asynchronous Behavior for more information.  

 

2.12.3 Enter Data Directive 

See section 2.6.4 Enter Data and Exit Data Directives for more information.  

 

2.12.4 Exit Data Directive 

See section 2.6.4 Enter Data and Exit Data Directives for more information.  

 

2.13 Procedure Calls in Compute Regions 

This section describes how routines are compiled for an accelerator and how procedure calls 

are compiled in compute regions. 
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2.13.1 Routine Directive 

Summary 

The routine directive is used to tell the compiler to compile a given procedure for an 

accelerator as well as the host.  In a file or routine with a procedure call, the routine 

directive tells the implementation the attributes of the procedure when called on the 

accelerator. 

Syntax 

In C and C++, the syntax of the routine directive is: 

    #pragma acc routine clause-list new-line 

    #pragma acc routine( name ) clause-list  new-line 

In C and C++, the routine directive without a name may appear immediately before a 

function definition or just before a function prototype and applies to that immediately 

following function or prototype.  The routine directive with a name may appear anywhere 

that a function prototype is allowed and applies to the function in that scope with that name, 

but must appear before any definition or use of that function. 

In Fortran the syntax of the routine directive is:  

    !$acc routine clause-list 

    !$acc routine( name ) clause-list 

In Fortran, the routine directive without a name may appear within the specification part of 

a subroutine or function definition, or within an interface body for a subroutine or function in 

an interface block, and applies to the containing subroutine or function.  The routine 

directive with a name may appear in the specification part of a subroutine, function or 

module, and applies to the named subroutine or function. 

A C or C++ function or Fortran subprogram compiled with the routine directive for an 

accelerator is called an accelerator routine. 

The clause is one of the following: 

    gang  

    worker  

    vector 

    seq 

    bind( name ) 

    bind( string ) 

    device_type( device-type-list ) 

    nohost  

Restrictions 

 Only the gang, worker, vector, seq and bind clauses may follow a 

device_type clause. 

 In C and C++, function static variables are not supported in functions to which a 

routine directive applies. 

 In Fortran, variables with the save attribute, either explicitly or implicitly, are not 

supported in subprograms to which a routine directive applies. 
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2.13.1.1 gang clause 

The gang clause specifies that the procedure contains, may contain, or may call another 

procedure that contains a loop with a gang clause.  A call to this procedure must appear in 

code that is executed in gang-redundant mode, and all gangs must execute the call.  For 

instance, a procedure with a routine gang directive may not be called from within a loop 

that has a gang clause.  Only one of gang, worker, vector and seq may be specified for 

each device type. 

2.13.1.2 worker clause 

The worker clause specifies that the procedure contains, may contain, or may call another 

procedure that contains a loop with a worker clause, but does not contain nor does it call 

another procedure that contains a loop with the gang clause.  A loop in this procedure with 

an auto clause may be selected by the compiler to execute in worker or vector mode.  A 

call to this procedure must appear in code that is executed in worker-single mode, though it 

may be in gang-redundant or gang-partitioned mode.  For instance, a procedure with a 

routine worker directive may be called from within a loop that has the gang clause, but 

not from within a loop that has the worker clause.  Only one of gang, worker, vector 

and seq may be specified for each device type. 

2.13.1.3 vector clause 

The vector clause specifies that the procedure contains, may contain, or may call another 

procedure that contains a loop with the vector clause, but does not contain nor does it call 

another procedure that contains a loop with either a gang or worker clause.  A loop in this 

procedure with an auto clause may be selected by the compiler to execute in vector mode, 

but not worker mode.  A call to this procedure must appear in code that is executed in 

vector-single mode, though it may be in gang-redundant or gang-partitioned mode, and in 

worker-single or worker-partitioned mode.  For instance, a procedure with a routine 

vector directive may be called from within a loop that has the gang clause or the worker 

clause, but not from within a loop that has the vector clause.  Only one of gang, worker, 

vector and seq may be specified for each device type. 

2.13.1.4 seq clause 

The seq clause specifies that the procedure does not contain nor does it call another 

procedure that contains a loop with a gang, worker or vector clause.  A loop in this 

procedure with an auto clause will be executed in seq mode.  A call to this procedure may 

appear in any mode.  Only one of gang, worker, vector and seq may be specified for 

each device type. 

2.13.1.5 bind clause 

The bind clause specifies the name to use when compiling or calling the procedure.  If the 

name is specified as an identifier, it is compiled or called as if that name were specified in the 

language being compiled.  If the name is specified as a string, the string is used for the 

procedure name unmodified. 

2.13.1.6 device_type clause 

The device_type clause is described in Section  2.4 Device-Specific Clauses. 

2.13.1.7 nohost clause 

The nohost tells the compiler not to compile a version of this procedure for the host.  All 

calls to this procedure must appear within accelerator compute regions.  If this procedure is 
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called from other procedures, those other procedures must also have a matching routine 

directive with the nohost clause. 

 

2.13.2 Global Data Access 

C or C++ global, file static or extern variables or array, and Fortran module or common block 

variables or arrays, that are used in accelerator routines must appear in a declare directive in a 

create, copyin, device_resident or link clause.  If the data appears in a 

device_resident clause, the routine directive for the procedure must include the 

nohost clause.  If the data appears in a link clause, that data must have an active 

accelerator data lifetime by virtue of appearing in a data clause for a data construct, compute 

construct or enter data directive. 

 

2.14 Asynchronous Behavior 

This section describes the async clause and the behavior of programs that use asynchronous 

data movement and compute constructs. 

 

2.14.1 async clause 

The async clause may appear on a parallel or kernels construct, or an enter data, 

exit data, update or wait directive.  In all cases, the async clause is optional; when 

there is no async clause, the local thread will wait until the compute construct or data 

operations are complete before executing any of the code that follows, or, on the wait 

directive, until all operations on the appropriate asynchronous activity queues are complete.  

When there is an async clause, the parallel or kernels region or data operations may be 

processed asynchronously while the local thread continues with the code following the 

construct or directive.   

The async clause may have a single async-argument, where an async-argument is a 

nonnegative scalar integer expression (int for C or C++, integer for Fortran), or one of the 

special async values defined below.  The behavior with a negative async-argument, except the 

special async values defined below, is implementation-defined.  The value of the async-

argument may be used in a wait directive, wait clause, or various runtime routines to test 

or wait for completion of the operation. 

Two special async values are defined in the C and Fortran header files and the Fortran 

openacc module.  These are negative values, so as not to conflict with a user-specified 

nonnegative async-argument.  An async clause with the async-argument 

acc_async_noval will behave the same as if the async clause had no argument.  An 

async clause with the async-argument acc_async_sync will behave the same as if no 

async clause appeared. 

The async-value of any operation is the value of the async-argument, if present, or 

acc_async_noval if the async clause had no value, or acc_async_sync if no 

async clause appeared.  If the device supports asynchronous operation with one or more 

device activity queues, the async-value is used to select the queue onto which to enqueue an 

operation.  The properties of the device and the implementation will determine how many 

actual activity queues are supported, and how the async-value is mapped onto the actual 

activity queues.  Two asynchronous operations with the same async-value will be enqueued 
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onto the same activity queue, and therefore will be executed on the device in the order they 

are encountered by the local thread.  Two asynchronous operations with different async-

values may be enqueued onto different activity queues, and therefore may be executed on the 

device in either order relative to each other.  If there are two or more threads executing and 

sharing the same accelerator device, two asynchronous operations with the same async-value 

will be enqueued on the same activity queue, but unless the threads are synchronized with 

respect to each other, the operations may be enqueued in either order and therefore may 

execute on the device in either order. 

 

2.14.2 wait clause 

The wait clause may appear on a parallel or kernels construct, or an enter data, 

exit data, or update directive.  In all cases, the wait clause is optional.  When there is 

no wait clause, the associated compute or update operations may be enqueued or launched 

or executed immediately on the device.  If there is an argument to the wait clause, it must be 

a list of one or more async-arguments.  The compute, data or update operation may not be 

launched or executed until all operations enqueued up to this point by this thread on the 

associated asynchronous device activity queues have completed.  One legal implementation is 

for the local thread to wait for all the associated asynchronous device activity queues.  

Another legal implementation is for the local thread to enqueue the compute or update 

operation in such a way that the operation will not start until the operations enqueued on the 

associated asynchronous device activity queues have completed. 

 

2.14.3 Wait Directive 

Summary 

The wait directive causes the local thread to wait for completion of asynchronous 

operations, such as an accelerator parallel or kernels region or an update directive, or causes 

one device activity queue to synchronize with one or more other activity queues. 

Syntax 

In C and C++, the syntax of the wait directive is: 

    #pragma acc wait  [( int-expr-list )] clause-list new-line 

In Fortran the syntax of the wait directive is: 

    !$acc wait [( int-expr-list )] clause-list  

where clause is: 

    async [( int-expr )]  

The wait argument, if present, must be one or more async-arguments. 

If there is no wait argument and no async clause, the local thread will wait until all 

operations enqueued by this thread on any device activity queue have completed. 

If there are one or more int-expr expressions and no async clause, the local thread will wait 

until all operations enqueued by this thread on each of the associated device activity queues 

have completed. 

If there are two or more threads executing and sharing the same accelerator device, a wait 

directive with no async clause will cause the local thread to wait until all of the appropriate 

asynchronous operations previously enqueued have completed.  To guarantee that operations 
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have been enqueued by other threads requires additional synchronization between those 

threads.   

If there is an async clause, no new operation may be launched or executed on the async 

device activity queue until all operations enqueued up to this point by this thread on the 

asynchronous activity queues associated with the wait argument have completed.  One legal 

implementation is for the local thread to wait for all the associated asynchronous device 

activity queues.  Another legal implementation is for the thread to enqueue a synchronization 

operation in such a way that no new operation will start until the operations enqueued on the 

associated asynchronous device activity queues have completed. 
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3. Runtime Library  

This chapter describes the OpenACC runtime library routines that are available for use by 

programmers.  Use of these routines may limit portability to systems that do not support the 

OpenACC API.  Conditional compilation using the _OPENACC preprocessor variable may 

preserve portability. 

This chapter has two sections: 

 Runtime library definitions 

 Runtime library routines 

Restrictions 

 In Fortran, none of the OpenACC runtime library routines may be called from a 

PURE or ELEMENTAL procedure. 

3.1 Runtime Library Definitions 

In C and C++, prototypes for the runtime library routines described in this chapter are 

provided in a header file named openacc.h.  All the library routines are extern functions 

with “C” linkage.  This file defines: 

 The prototypes of all routines in the chapter. 

 Any datatypes used in those prototypes, including an enumeration type to describe 

types of accelerators. 

 The values of acc_async_noval and acc_async_sync. 

In Fortran, interface declarations are provided in a Fortran include file named 

openacc_lib.h and in a Fortran module named openacc.  These files define: 

 Interfaces for all routines in the chapter. 

 The integer parameter openacc_version with a value yyyymm where yyyy and 

mm are the year and month designations of the version of the Accelerator 

programming model supported.  This value matches the value of the preprocessor 

variable _OPENACC. 

 Integer parameters to define integer kinds for arguments to those routines. 

 Integer parameters to describe types of accelerators. 

 The values of acc_async_noval and acc_async_sync. 

Many of the routines accept or return a value corresponding to the type of accelerator device.  

In C and C++, the datatype used for device type values is acc_device_t; in Fortran, the 

corresponding datatype is integer(kind=acc_device_kind).  The possible values 

for device type are implementation specific, and are listed in the C or C++ include file 

openacc.h, the Fortran include file openacc_lib.h and the Fortran module openacc.  

Four values are always supported: acc_device_none, acc_device_default, 

acc_device_host and acc_device_not_host.  For other values, look at the 

appropriate files included with the implementation, or read the documentation for the 

implementation.  The value acc_device_default will never be returned by any 
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function; its use as an argument will tell the runtime library to use the default device type for 

that implementation. 

3.2 Runtime Library Routines 

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to 

designate a host address or device address, as if the following definitions were included:  

    #define h_void void 

    #define d_void void 

Except for acc_on_device, these routines are only available on the host. 

 

3.2.1 acc_get_num_devices 

Summary 

The acc_get_num_devices routine returns the number of accelerator devices of the 

given type attached to the host. 

Format 

C or C++: 

    int acc_get_num_devices( acc_device_t ); 

Fortran: 

    integer function acc_get_num_devices( devicetype ) 

    integer(acc_device_kind) devicetype 

Description 

The acc_get_num_devices routine returns the number of accelerator devices of the 

given type attached to the host.  The argument tells what kind of device to count. 

Restrictions 

 This routine may not be called within an accelerator parallel or kernels region. 

 

3.2.2 acc_set_device_type 

Summary 

The acc_set_device_type routine tells the runtime which type of device to use when 

executing an accelerator parallel or kernels region.  This is useful when the implementation 

allows the program to be compiled to use more than one type of accelerator. 

Format 

C or C++: 

    void acc_set_device_type( acc_device_t ); 

Fortran: 

    subroutine acc_set_device_type( devicetype ) 

    integer(acc_device_kind) devicetype 

Description 

The acc_set_device_type routine tells the runtime which type of device to use among 

those available. 
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Restrictions 

 This routine may not be called within an accelerator parallel or kernels region. 

 If the device type specified is not available, the behavior is implementation-defined; 

in particular, the program may abort. 

 If some accelerator regions are compiled to only use one device type, calling this 

routine with a different device type may produce undefined behavior. 

3.2.3 acc_get_device_type 

Summary 

The acc_get_device_type routine tells the program what type of device will be used to 

run the next accelerator region, if one has been selected. This is useful when the 

implementation allows the program to be compiled to use more than one type of accelerator. 

Format 

C or C++: 

    acc_device_t acc_get_device_type( void ); 

Fortran: 

    function acc_get_device_type() 

    integer(acc_device_kind) acc_get_device_type 

 

Description 

The acc_get_device_type routine returns a value to tell the program what type of 

device will be used to run the next accelerator parallel or kernels region, if one has been 

selected.  The device type may have been selected by the program with an 

acc_set_device_type call, with an environment variable, or by the default behavior of 

the program. 

Restrictions 

 This routine may not be called within an accelerator parallel or kernels region. 

 If the device type has not yet been selected, the value acc_device_none may be 

returned. 

 

3.2.4 acc_set_device_num 

Summary 

The acc_set_device_num routine tells the runtime which device to use. 

Format 

C or C++ 

    void acc_set_device_num( int, acc_device_t ); 

Fortran: 

    subroutine acc_set_device_num( devicenum, devicetype ) 

    integer devicenum 

    integer(acc_device_kind) devicetype 

Description 

The acc_set_device_num routine tells the runtime which device to use among those 

attached of the given type.  If the value of devicenum is negative, the runtime will revert to 
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its default behavior, which is implementation-defined.  If the value of the second argument is 

zero, the selected device number will be used for all attached accelerator types. 

Restrictions 

 This routine may not be called within an accelerator parallel, kernels or data region. 

 If the value of devicenum is greater than or equal to the value returned by 

acc_get_num_devices for that device type, the behavior is implementation-

defined. 

 Calling acc_set_device_num implies a call to acc_set_device_type with 

that device type argument. 

 

3.2.5 acc_get_device_num 

Summary 

The acc_get_device_num routine returns the device number of the specified device type 

that will be used to run the next accelerator parallel or kernels region. 

Format 

C or C++: 

    int acc_get_device_num( acc_device_t ); 

Fortran: 

    integer function acc_get_device_num( devicetype ) 

    integer(acc_device_kind) devicetype 

Description 

The acc_get_device_num routine returns an integer corresponding to the device number 

of the specified device type that will be used to execute the next accelerator parallel or kernels 

region. 

Restrictions 

 This routine may not be called within an accelerator parallel or kernels region. 

 

3.2.6 acc_async_test 

Summary 

The acc_async_test routine tests for completion of all associated asynchronous 

operations. 

Format 

C or C++: 

    int acc_async_test( int ); 

Fortran: 

    logical function acc_async_test( arg ) 

    integer(acc_handle_kind) arg 

Description 

The argument must be an async-argument as defined in Section 2.14.1 async clause.  If that 

value appeared in one or more async clauses, and all such asynchronous operations have 

completed, the acc_async_test routine will return with a nonzero value in C and C++, 

or .true. in Fortran.  If some such asynchronous operations have not completed, the 
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acc_async_test routine will return with a zero value in C and C++, or .false. in 

Fortran.  If two or more threads share the same accelerator, the acc_async_test routine 

will return with a nonzero value or .true. only if all matching asynchronous operations 

initiated by this thread have completed; there is no guarantee that all matching asynchronous 

operations initiated by other threads have completed. 

 

3.2.7 acc_async_test_all 

Summary 

The acc_async_test_all routine tests for completion of all asynchronous operations. 

Format 

C or C++: 

    int acc_async_test_all( ); 

Fortran: 

    logical function acc_async_test_all( ) 

Description 

If all outstanding asynchronous operations have completed, the acc_async_test_all 

routine will return with a nonzero value in C and C++, or .true. in Fortran.  If some 

asynchronous operations have not completed, the acc_async_test_all routine will 

return with a zero value in C and C++,  or .false. in Fortran.  If two or more threads share 

the same accelerator, the acc_async_test_all routine will return with a nonzero value 

or .true. only if all outstanding asynchronous operations initiated by this thread have 

completed; there is no guarantee that all asynchronous operations initiated by other threads 

have completed. 

 

3.2.8 acc_wait 

Summary 

The acc_wait routine waits for completion of all associated asynchronous operations. 

Format 

C or C++: 

    void acc_wait( int ); 

Fortran: 

    subroutine acc_wait( arg ) 

    integer(acc_handle_kind) arg 

Description 

The argument must be an async-argument as defined in Section 2.14.1 async clause.  If that 

value appeared in one or more async clauses, the acc_wait routine will not return until 

the latest such asynchronous operation has completed. If two or more threads share the same 

accelerator, the acc_wait routine will return only if all matching asynchronous operations 

initiated by this thread have completed; there is no guarantee that all matching asynchronous 

operations initiated by other threads have completed.  For compatibility with version 1.0, this 

routine may also be spelled acc_async_wait. 
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3.2.9 acc_wait_async 

Summary 

The acc_wait_async routine enqueues a wait operation on one async queue for the 

operations previously enqueued on another async queue. 

Format 

C or C++: 

    void acc_wait_async( int, int ); 

Fortran: 

    subroutine acc_wait_async( arg, async ) 

    integer(acc_handle_kind) arg, async 

Description 

The acc_wait_async routine is equivalent to the wait directive with an async clause.  

The arguments must be async-arguments, as defined in Section 2.14.1 async clause. The 

routine will enqueue a wait operation on the appropriate device queue associated with the 

second argument, which will wait for operations enqueued on the device queue associated 

with the first argument.  See section 2.14 Asynchronous Behavior for more information.  

 

 

3.2.10 acc_wait_all 

Summary 

The acc_wait_all routine waits for completion of all asynchronous operations. 

Format 

C or C++: 

    void acc_wait_all( ); 

Fortran: 

    subroutine acc_wait_all( ) 

 

Description 

The acc_wait_all routine will not return until the all asynchronous operations have 

completed.  If two or more threads share the same accelerator, the acc_wait_all routine 

will return only if all asynchronous operations initiated by this thread have completed; there is 

no guarantee that all asynchronous operations initiated by other threads have completed.  For 

compatibility with version 1.0, this routine may also be spelled acc_async_wait_all. 

 

 

3.2.11 acc_wait_all _async 

Summary 

The acc_wait_all_async routine enqueues wait operations on one async queue for the 

operations previously enqueued on all other async queues.  

Format 

C or C++: 

    void acc_wait_all_async( int ); 
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Fortran: 

    subroutine acc_wait_all_async( async ) 

    integer(acc_handle_kind) async 

Description 

The acc_wait_all_async routine is equivalent to the wait directive with an async 

clause containing values for all other asynchronous activity queues.  The argument must be an 

async-argument as defined in Section 2.14.1 async clause.  The routine will enqueue a wait 

operation on the appropriate device queue for each other device queue; see section 2.14 

Asynchronous Behavior for more information.  

 

3.2.12 acc_init 

Summary 

The acc_init routine tells the runtime to initialize the runtime for that device type.  This 

can be used to isolate any initialization cost from the computational cost, when collecting 

performance statistics. 

Format 

C or C++: 

    void acc_init( acc_device_t ); 

Fortran: 

    subroutine acc_init( devicetype ) 

    integer(acc_device_kind) devicetype 

Description 

The acc_init routine also implicitly calls acc_set_device_type.   

Restrictions 

 This routine may not be called within an accelerator parallel or kernels region. 

 If the device type specified is not available, the behavior is implementation-defined; 

in particular, the program may abort. 

 If the routine is called more than once without an intervening acc_shutdown call, 

with a different value for the device type argument, the behavior is implementation-

defined. 

 If some accelerator regions are compiled to only use one device type, calling this 

routine with a different device type may produce undefined behavior. 

 

3.2.13 acc_shutdown 

Summary 

The acc_shutdown routine tells the runtime to shut down the connection to the given 

accelerator device, and free up any runtime resources. 

Format 

C or C++: 

    void acc_shutdown( acc_device_t ); 
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Fortran: 

    subroutine acc_shutdown( devicetype ) 

    integer(acc_device_kind) devicetype 

Description 

The acc_shutdown routine disconnects the program from the accelerator device. 

Restrictions 

 This routine may not be called during execution of an accelerator region. 

 

3.2.14 acc_on_device 

Summary 

The acc_on_device routine tells the program whether it is executing on a particular 

device. 

Format 

C or C++: 

    int acc_on_device( acc_device_t ); 

Fortran: 

    logical function acc_on_device( devicetype ) 

    integer(acc_device_kind) devicetype    

Description 

The acc_on_device routine may be used to execute different paths depending on whether 

the code is running on the host or on some accelerator.  If the acc_on_device routine has 

a compile-time constant argument, it evaluates at compile time to a constant.  The argument 

must be one of the defined accelerator types.  If the argument is acc_device_host, then 

outside of an accelerator compute region or accelerator routine, or in an accelerator compute 

region or accelerator routine that is executed on the host processor, this routine will evaluate 

to nonzero for C or C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or 

C++, and .false. for Fortran.  If the argument is acc_device_not_host, the result is 

the negation of the result with argument acc_device_host.  If the argument is any 

accelerator device type, then in an accelerator compute region or accelerator routine that is 

executed on an accelerator of that device type, this routine will evaluate to nonzero for C or 

C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or C++, and 

.false. for Fortran.  The result with argument acc_device_default is undefined. 

 

3.2.15 acc_malloc 

Summary 

The acc_malloc routine allocates memory on the accelerator device. 

Format 

C or C++: 

    d_void* acc_malloc( size_t ); 

Description 

The acc_malloc routine may be used to allocate memory on the accelerator device.  

Pointers assigned from this function may be used in deviceptr clauses to tell the compiler 

that the pointer target is resident on the accelerator. 
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3.2.16 acc_free 

Summary 

The acc_free routine frees memory on the accelerator device. 

Format 

C or C++: 

    void acc_free( d_void* ); 

Description 

The acc_free routine will free previously allocated memory on the accelerator device; the 

argument should be a pointer value that was returned by a call to acc_malloc. 

 

3.2.17 acc_copyin 

Summary 

The acc_copyin routine allocates memory on the accelerator device to correspond to the 

specified host memory, and copies the data to that device memory on a non-shared memory 

accelerator. 

Format 

C or C++: 

    void* acc_copyin( h_void*, size_t ); 

 

Fortran:   

    subroutine acc_copyin( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_copyin( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_copyin routine is equivalent to the enter data directive with a copyin 

clause.  In C, the arguments are a pointer to the data and length in bytes; the function returns a 

pointer to the allocated space, as with acc_malloc.  Pointers assigned from this function 

may be used in deviceptr clauses to tell the compiler that the pointer target is resident on 

the accelerator.  In Fortran, two forms are supported.  In the first, the argument is a contiguous 

array section of intrinsic type.  In the second, the first argument is a variable or array element 

and the second is the length in bytes.  Memory is allocated on the device, and the data is 

copied from the host memory to the newly allocated device memory.  A call to this routine 

starts a data lifetime for the specified data.  This data may be accessed in using the present 

data clause.  It is a runtime error to call this routine if the data is already present on the device. 

 

3.2.18 acc_present_or_copyin 

Summary 

The acc_present_or_copyin routine tests to see if the data is already present on the 

device; if not, it allocates memory on the accelerator device to correspond to the specified 

host memory, and copies the data to that device memory, on a non-shared memory device. 
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Format 

C or C++: 

    void* acc_present_or_copyin( h_void*, size_t ); 

    void* acc_pcopyin( h_void*, size_t ); 

Fortran:   

    subroutine acc_present_or_copyin( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_present_or_copyin( a, len ) 

     type :: a 

     integer :: len 

    subroutine acc_pcopyin( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_pcopyin( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_present_or_copyin routine is equivalent to the enter data directive with 

a present_or_copyin clause.  The arguments are as for the acc_copyin routine.  If 

the data is already present on the device, or if the device shares memory with the caller, no 

action is taken.  On a non-shared memory device where the data is not present, memory is 

allocated on the device, and the data is copied to the newly allocated device memory.  In the 

latter case, a call to this routine starts a data lifetime for the specified data.  This data may be 

accessed in using the present data clause. 

 

3.2.19 acc_create 

Summary 

The acc_create routine allocates memory on the accelerator device to correspond to the 

specified host memory on a non-shared memory accelerator. 

Format 

C or C++: 

    void* acc_create( h_void*, size_t ); 

Fortran:   

    subroutine acc_create( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_create( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_create routine is equivalent to the enter data directive with a create 

clause.  In C, the arguments are a pointer to the data and length in bytes; the function returns a 

pointer to the allocated space, as with acc_malloc.  Pointers assigned from this function 

may be used in deviceptr clauses to tell the compiler that the pointer target is resident on 

the accelerator.  In Fortran, two forms are supported.  In the first, the argument is a contiguous 

array section of intrinsic type.  In the second, the first argument is a variable or array element 

and the second is the length in bytes.  On a non-shared memory device, memory is allocated 
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on the device.  A call to this routine starts a data lifetime for the specified data.  This data may 

be accessed in using the present data clause.  It is a runtime error to call this routine if the 

data is already present on the device. 

 

3.2.20 acc_present_or_create 

Summary 

The acc_present_or_create routine tests to see if the data is already present on the 

device; if not, it allocates memory on the accelerator device to correspond to the specified 

host memory, on a non-shared memory device. 

Format 

C or C++: 

    void* acc_present_or_create( h_void*, size_t ); 

    void* acc_pcreate( h_void*, size_t ); 

Fortran:   

    subroutine acc_present_or_create( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_present_or_create( a, len ) 

     type :: a 

     integer :: len 

    subroutine acc_pcreate( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_pcreate( a, len ) 

     type :: a 

     integer :: len 

 

Description 

The acc_present_or_create routine is equivalent to the enter data directive with 

a present_or_create clause.  The arguments are as for the acc_create routine.  If 

the data is already present on the device, or if the device shares memory with the caller, no 

action is taken.  On a non-shared memory device where the data is not present, memory is 

allocated on the device.  In the latter case, a call to this routine starts a data lifetime for the 

specified data.  This data may be accessed in using the present data clause. 

 

3.2.21 acc_copyout 

Summary 

The acc_copyout routine copies data from device memory to the corresponding local 

memory, then deallocates that memory from the accelerator device, on a non-shared memory 

accelerator. 

Format 

C or C++: 

    void acc_copyout( h_void*, size_t ); 
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Fortran:   

    subroutine acc_copyout( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_copyout( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_copyout routine is equivalent to the exit data directive with a copyout 

clause.  In C, the arguments are a pointer to the data and length in bytes.  In Fortran, two 

forms are supported.  In the first, the argument is a contiguous array section of intrinsic type.  

In the second, the first argument is a variable or array element and the second is the length in 

bytes.  A call to this routine copies the data from the accelerator device to the local memory, 

then deallocates the accelerator memory.  A call to this routine ends a data lifetime for the 

specified data.  It is a runtime error to call this routine if the data is not present on the device 

or within a data region for the specified data. 

3.2.22 acc_delete 

Summary 

The acc_delete routine deallocates the memory from the accelerator device corresponding 

to the specified local memory, on a non-shared memory accelerator. 

Format 

C or C++: 

    void acc_delete( h_void*, size_t ); 

Fortran:   

    subroutine acc_delete( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_delete( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_delete routine is equivalent to the exit data directive with a delete clause.  

The arguments are as for acc_copyout.  A call to this routine deallocates the accelerator 

memory corresponding to the specified local memory.  A call to this routine ends a data 

lifetime for the specified data.  It is a runtime error to call this routine if the data is not present 

on the device or within a data region for the specified data. 

 

3.2.23 acc_update_device 

Summary 

The acc_update_device routine updates the device copy of data from the corresponding 

local memory on a non-shared memory accelerator. 

Format 

C or C++: 

    void acc_update_device( h_void*, size_t ); 
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Fortran:   

    subroutine acc_update_device( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_update_device( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_update_device routine is equivalent to the update directive with a device 

clause.  In C, the arguments are a pointer to the data and length in bytes.  In Fortran, two 

forms are supported.  In the first, the argument is a contiguous array section of intrinsic type.  

In the second, the first argument is a variable or array element and the second is the length in 

bytes.  On a non-shared memory device, the data in the local memory is copied to the 

corresponding device memory.  It is a runtime error to call this routine if the data is not 

present on the device. 

3.2.24 acc_update_self 

Summary 

The acc_update_self routine updates the device copy of data to the corresponding local 

memory on a non-shared memory accelerator. 

Format 

C or C++: 

    void acc_update_self( h_void*, size_t ); 

Fortran:   

    subroutine acc_update_self( a ) 

     type, dimension(:[,:]…) :: a 

    subroutine acc_update_self( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_update_self routine is equivalent to the update directive with a self clause.  

In C, the arguments are a pointer to the data and length in bytes.  In Fortran, two forms are 

supported.  In the first, the argument is a contiguous array section of intrinsic type.  In the 

second, the first argument is a variable or array element and the second is the length in bytes.  

On a non-shared memory device, the data in the local memory is copied to the corresponding 

device memory.  It is a runtime error to call this routine if the data is not present on the 

device. 

 

3.2.25 acc_map_data 

Summary 

The acc_map_data routine maps previously allocated device data to the specified host 

data. 

Format 

C or C++: 

    void acc_map_data( h_void*, d_void*, size_t ); 
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Description 

The acc_map_data routine is similar to an enter data directive with a create clause, 

except instead of allocating new device memory to start a data lifetime, the device address to 

use for the data lifetime is specified as an argument.  The first argument is a host address, 

followed by the corresponding device address and the data length in bytes.  After this call, 

when the host data appears in a data clause, the specified device memory will be used.  It is an 

error to call acc_map_data for host data that is already present on the device.  It is 

undefined to call acc_map_data with a device address that is already mapped to host data.  

The device address may be the result of a call to acc_malloc, or may come from some 

other device-specific API routine. 

 

3.2.26 acc_unmap_data 

Summary 

The acc_unmap_data routine unmaps device data from the specified host data. 

Format 

C or C++: 

    void acc_unmap_data( h_void* ); 

Description 

The acc_unmap_data routine is similar to an exit data directive with a delete 

clause, except the device memory is not deallocated.  The argument is pointer to the host data.  

A call to this routine ends the data lifetime for the specified host data.  The device memory is 

not deallocated.  It is undefined behavior to call acc_unmap_data with a host address 

unless that host address was mapped to device memory using acc_map_data. 

 

3.2.27 acc_deviceptr 

Summary 

The acc_deviceptr routine returns the device pointer associated with a specific host 

address. 

Format 

C or C++: 

    d_void* acc_deviceptr( h_void* ); 

Description 

The acc_deviceptr routine returns the device pointer associated with a host address.  The 

argument is the address of a host variable or array that has an active lifetime on the current 

device.  If the data is not present on the device, the routine returns a NULL value. 

 

3.2.28 acc_hostptr 

Summary 

The acc_hostptr routine returns the host pointer associated with a specific device address. 

Format 

C or C++: 

    h_void* acc_hostptr( d_void* ); 
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Description 

The acc_hostptr routine returns the host pointer associated with a device address.  The 

argument is the address of a device variable or array, such as that returned from 

acc_deviceptr, acc_create or acc_copyin.  If the device address is NULL, or 

does not correspond to any host address, the routine returns a NULL value. 

 

3.2.29 acc_is_present 

Summary 

The acc_is_present routine tests whether a host variable or array region is present on 

the device. 

Format 

C or C++: 

    int acc_is_present( h_void*, size_t ); 

Fortran:   

    logical function acc_is_present( a ) 

     type, dimension(:[,:]…) :: a 

    logical function acc_is_present( a, len ) 

     type :: a 

     integer :: len 

Description 

The acc_is_present routine tests whether the specified host data is present on the 

device.  In C, the arguments are a pointer to the data and length in bytes; the function returns 

nonzero if the specified data is fully present, and zero otherwise.  In Fortran, two forms are 

supported.  In the first, the argument is a contiguous array section of intrinsic type.  In the 

second, the first argument is a variable or array element and the second is the length in bytes.  

The function returns .true. if the specified data is fully present, and .false. otherwise.  

If the byte length is zero, the function returns nonzero in C or .true. in Fortran if the given 

address is present at all on the device. 

 

3.2.30 acc_memcpy_to_device 

Summary 

The acc_memcpy_to_device routine copies data from local memory to device memory. 

Format 

C or C++: 

    void acc_memcpy_to_device( d_void* dest, h_void* src, 

size_t bytes ); 

Description 

The acc_memcpy_to_device routine copies bytes data from the local address in src 

to the device address in dest.  The destination address must be a device address, such as 

would be returned from acc_malloc or acc_deviceptr. 
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3.2.31 acc_memcpy_from_device 

Summary 

The acc_memcpy_from_device routine copies data from device memory to local 

memory. 

Format 

C or C++: 

    void acc_memcpy_from_device( h_void* dest, d_void* src, 

size_t bytes ); 

Description 

The acc_memcpy_from_device routine copies bytes data from the device address in 

src to the local address in dest.  The source address must be a device address, such as 

would be returned from acc_malloc or acc_deviceptr. 
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4. Environment Variables 

This chapter describes the environment variables that modify the behavior of accelerator 

regions.  The names of the environment variables must be upper case.  The values assigned 

environment variables are case insensitive and may have leading and trailing white space.  If 

the values of the environment variables change after the program has started, even if the 

program itself modifies the values, the behavior is implementation-defined. 

4.1 ACC_DEVICE_TYPE 

The ACC_DEVICE_TYPE environment variable controls the default device type to use when 

executing accelerator parallel and kernels regions, if the program has been compiled to use 

more than one different type of device.  The allowed values of this environment variable are 

implementation-defined.  See the release notes for currently-supported values of this 

environment variable. 

Example: 

    setenv ACC_DEVICE_TYPE NVIDIA 

    export ACC_DEVICE_TYPE=NVIDIA 

4.2 ACC_DEVICE_NUM 

The ACC_DEVICE_NUM environment variable controls the default device number to use 

when executing accelerator regions.  The value of this environment variable must be a 

nonnegative integer between zero and the number of devices of the desired type attached to 

the host.  If the value is greater than or equal to the number of devices attached, the behavior 

is implementation-defined. 

Example: 

    setenv ACC_DEVICE_NUM 1 

    export ACC_DEVICE_NUM=1 
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5. Glossary 

Clear and consistent terminology is important in describing any programming model.  We 

define here the terms you must understand in order to make effective use of this document and 

the associated programming model. 

Accelerator – a special-purpose co-processor attached to a CPU and to which the CPU can 

offload data and compute kernels to perform compute-intensive calculations. 

Accelerator routine – a C or C++ function or Fortran subprogram compiled for the 

accelerator with the routine directive. 

Accelerator thread – a thread of execution that executes on the accelerator; a single vector 

lane of a single worker of a single gang. 

Async-argument –An async-argument is a nonnegative scalar integer expression (int for C or 

C++, integer for Fortran), or one of the special async values acc_async_noval or 

acc_async_sync. 

Barrier – a type of synchronization where all parallel execution units or threads must reach 

the barrier before any execution unit or thread is allowed to proceed beyond the barrier; 

modeled after the starting barrier on a horse race track. 

Compute intensity – for a given loop, region, or program unit, the ratio of the number of 

arithmetic operations performed on computed data divided by the number of memory 

transfers required to move that data between two levels of a memory hierarchy.  

Construct – a directive and the associated statement, loop or structured block, if any.  

Compute region – a parallel region or a kernels region.  

CUDA – the CUDA environment from NVIDIA is a C-like programming environment used 

to explicitly control and program an NVIDIA GPU. 

Data lifetime – the lifetime of a data object on the device, which may be begin at the entry to 

a data region, or at an enter data directive, or at a data API call such as acc_copyin or 

acc_create, and which may end at the exit from a data region, or at an exit data 

directive, or at a data API call such as acc_delete, acc_copyout or 

acc_shutdown, or at the end of the program execution. 

Data region – a region defined by an Accelerator data construct, or an implicit data region 

for a function or subroutine containing Accelerator directives.  Data constructs typically 

allocate device memory and copy data from host to device memory upon entry, and copy data 

from device to host memory and deallocate device memory upon exit.  Data regions may 

contain other data regions and compute regions. 

Device – a general reference to any type of accelerator. 

Device memory – memory attached to an accelerator, logically and physically separate from 

the host memory. 

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment 

statement, that is interpreted by a compiler to augment information about or specify the 

behavior of the program.   
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DMA – Direct Memory Access, a method to move data between physically separate 

memories; this is typically performed by a DMA engine, separate from the host CPU, that can 

access the host physical memory as well as an IO device or other physical memory. 

GPU – a Graphics Processing Unit; one type of accelerator device. 

GPGPU – General Purpose computation on Graphics Processing Units. 

Host – the main CPU that in this context has an attached accelerator device. The host CPU 

controls the program regions and data loaded into and executed on the device. 

Host thread – a thread of execution that executes on the host.  

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C 

function.  A call to a subprogram or function enters the implicit data region, and a return from 

the subprogram or function exits the implicit data region. 

Kernel  – a nested loop executed in parallel by the accelerator.  Typically the loops are 

divided into a parallel domain, and the body of the loop becomes the body of the kernel. 

Kernels region – a region defined by an Accelerator kernels construct.  A kernels region 

is a structured block which is compiled for the accelerator.  The code in the kernels region 

will be divided by the compiler into a sequence of kernels; typically each loop nest will 

become a single kernel.  A kernels region may require device memory to be allocated and data 

to be copied from host to device upon region entry, and data to be copied from device to host 

memory and device memory deallocated upon exit.   

Local memory – the memory associated with the local thread. 

Local thread – the host thread or the accelerator thread that executes an OpenACC directive 

or construct. 

Loop trip count – the number of times a particular loop executes. 

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different 

execution units or threads execute different instruction streams asynchronously with each 

other. 

OpenCL – short for Open Compute Language, a developing, portable standard C-like 

programming environment that enables low-level general-purpose programming on GPUs and 

other accelerators. 

Parallel region – a region defined by an Accelerator parallel construct.  A parallel region 

is a structured block which is compiled for the accelerator.  A parallel region typically 

contains one or more work-sharing loops.  A parallel region may require device memory to be 

allocated and data to be copied from host to device upon region entry, and data to be copied 

from device to host memory and device memory deallocated upon exit.   

Private data – with respect to an iterative loop, data which is used only during a particular 

loop iteration.  With respect to a more general region of code, data which is used within the 

region but is not initialized prior to the region and is re-initialized prior to any use after the 

region. 

Procedure – in C or C++, a function in the program; in Fortran, a subroutine or function. 

Region – all the code encountered during an instance of execution of a construct.  A region 

includes any code in called routines, and may be thought of as the dynamic extent of a 

construct.  This may be a parallel region, kernels region, data region or implicit data region. 
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SIMD – A method of parallel execution (single-instruction, multiple-data) where the same 

instruction is applied to multiple data elements simultaneously. 

SIMD operation – a vector operation implemented with SIMD instructions. 

Structured block – in C or C++, an executable statement, possibly compound, with a single 

entry at the top and a single exit at the bottom. In Fortran, a block of executable statements 

with a single entry at the top and a single exit at the bottom. 

Thread – On a host processor, a thread is defined by a program counter and stack location; 

several host threads may comprise a process and share host memory.  On an accelerator, a 

thread is any one vector lane of one worker of one gang on the device. 

Vector operation – a single operation or sequence of operations applied uniformly to each 

element of an array. 

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that 

is visible to the program unit being compiled. 
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Appendix A. Recommendations for Target-Specific 

Implementations 

This section gives recommendations for standard names and extensions to use for 

implementations for specific targets and target platforms, to promote portability across such 

implementations.  While this appendix is not part of the OpenACC specification, 

implementations that provide the functionality specified herein are strongly recommended to 

use the names in this section.  The first subsection describes target devices, such as NVIDIA 

GPUs and Intel Xeon Phi Coprocessor.  The second subsection describes additional API 

routines for target platforms, such as CUDA and OpenCL.  The third subsection lists several 

recommended options for implementations.  . 

 

A.1 Target Devices 

A.1.1 NVIDIA GPU Targets 

This section gives recommendations for implementations that target NVIDIA GPU devices. 

A.1.1.1 Accelerator Device Type 

These implementations should use the name acc_device_nvidia for the 

acc_device_t type or return values from OpenACC Runtime API routines. 

A.1.1.2 ACC_DEVICE_TYPE 

An implementation should use the case-insensitive name NVIDIA for the environment 

variable ACC_DEVICE_TYPE. 

A.1.1.3 device_type clause argument 

An implementation should use the name nvidia or NVIDIA as the argument to the 

device_type clause. 

 

A.1.2 AMD GPU Targets 

This section gives recommendations for implementations that target AMD GPUs. 

A.1.2.1  Accelerator Device Type 

These implementations should use the name acc_device_radeon for the 

acc_device_t type or return values from OpenACC Runtime API routines. 

A.1.2.2 ACC_DEVICE_TYPE 

These implementations should use the case-insensitive name RADEON for the environment 

variable ACC_DEVICE_TYPE. 

A.1.2.3 device_type clause argument 

An implementation should use the name radeon or RADEON as the argument to the 

device_type clause. 

 

A.1.3 Intel Xeon Phi Coprocessor Targets 

This section gives recommendations for implementations that target Intel Xeon Phi 

Coprocessors. 
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A.1.3.1 Accelerator Device Type 

These implementations should use the name acc_device_xeonphi for the 

acc_device_t type or return values from OpenACC Runtime API routines. 

A.1.3.2 ACC_DEVICE_TYPE 

These implementations should use the case-insensitive name XEONPHI for the environment 

variable ACC_DEVICE_TYPE. 

A.1.3.3 device_type clause argument 

An implementation should use the name xeonphi or XEONPHI as the argument to the 

device_type clause. 

 

A.2 API Routines for Target Platforms 

These runtime routines allow access to the interface between the OpenACC runtime API and 

the underlying target platform.  An implementation may not implement all these routines, but 

if it provides this functionality, it should use these function names. 

A.2.1 NVIDIA CUDA Platform 

This section gives runtime API routines for implementations that target the NVIDIA CUDA 

Runtime or Driver API. 

A.2.1.1 acc_get_current_cuda_device 

Summary 

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device 

handle for the current device. 

Format 

C or C++: 

    void* acc_get_current_cuda_device(); 

A.2.1.2 acc_get_current_cuda_context 

Summary 

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context 

handle in use for the current device. 

Format 

C or C++: 

    void* acc_get_current_cuda_context(); 

A.2.1.3 acc_get_cuda_stream 

Summary 

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for 

the current device for the specified async value. 

Format 

C or C++: 

    void* acc_get_cuda_stream( int async ); 
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A.2.1.4 acc_set_cuda_stream 

Summary 

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current 

device for the specified async value. 

Format 

C or C++: 

    int acc_set_cuda_stream( int async, void* stream ); 

 

A.2.2 OpenCL Target Platform 

This section gives runtime API routines for implementations that target the OpenCL API on 

any device. 

A.2.2.1 acc_get_current_opencl_device 

Summary 

The acc_get_current_opencl_device routine returns the OpenCL device handle for 

the current device. 

Format 

C or C++: 

    void* acc_get_current_opencl_device(); 

A.2.2.2 acc_get_current_opencl_context 

Summary 

The acc_get_current_opencl_context routine returns the OpenCL context handle 

in use for the current device. 

Format 

C or C++: 

    void* acc_get_current_opencl_context(); 

A.2.2.3 acc_get_opencl_queue 

Summary 

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use 

for the current device for the specified async value. 

Format 

C or C++: 

    cl_command_queue acc_get_opencl_queue( int async ); 

A.2.2.4 acc_set_opencl_queue 

Summary 

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use 

for the current device for the specified async value. 

Format 

C or C++: 

    void acc_set_opencl_queue( int async, cl_command_queue 

cmdqueue); 
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A.2.3 Intel Coprocessor Offload Infrastructure (COI) API 

These runtime routines allow access to the interface between the OpenACC runtime API and 

the underlying Intel COI API.   

A.2.3.1 acc_get_current_coi_device 

Summary 

The acc_get_current_coi_device routine returns the COI device handle for the 

current device. 

Format 

C or C++: 

    void* acc_get_current_coi_device(); 

A.2.3.2 acc_get_current_coi_context 

Summary 

The acc_get_current_coi_context routine returns the COI context handle in use for 

the current device. 

Format 

C or C++: 

    void* acc_get_current_coi_context(); 

A.2.3.3 acc_get_coi_pipeline 

Summary 

The acc_get_coi_pipeline routine returns the COI pipeline handle in use for the 

current device for the specified async value. 

Format 

C or C++: 

    void* acc_get_coi_pipeline( int async ); 

A.2.3.4 acc_set_coi_pipeline 

Summary 

The acc_set_coi_pipeline routine returns the COI pipeline handle in use for the 

current device for the specified async value. 

Format 

C or C++: 

    void acc_set_coi_pipeline( int async, void* pipeline ); 

 

A.3 Recommended Options 

The following options are recommended for implementations; for instance, these may be 

implemented as command-line options to a compiler or settings in an IDE. 

A.3.1 C Pointer in Present clause 

This revision of OpenACC clarifies the construct: 
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   void test(int n ){ 

      float* p; 

      … 

      #pragma acc data present(p) 

      { // code here… 

This example tests whether the pointer p itself is present on the device.  Implementations 

before this revision commonly implemented this by testing whether the pointer target p[0] 

was present on the device, and this appears in many programs assuming such.  Until such 

programs are modified to comply with this revision, an option to implement present(p) as 

present(p[0]) for C pointers may be helpful to users. 

A.3.2 Autoscoping 

If an implementation implements autoscoping to automatically determine variables that are 

private to a compute region or to a loop, or to recognize reductions in a compute region or a 

loop, an option to print a message telling what variables were affected by the analysis would 

be helpful to users.  An option to disable the autoscoping analysis would be helpful to 

promote program portability across implementations. 
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This is a preliminary document and may be changed substantially prior to any release of the 
software implementing this standard.  

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the 
rights under copyright, no part of this document may be reproduced, stored in, or introduced into a 
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, 
recording, or otherwise), or for any purpose, without the express written permission of the authors. 

© 2011-2013 OpenACC-Standard.org. All rights reserved. 
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