
OpenACC 2.6 Proposed Features

OpenACC.org

June, 2017

1 Introduction

This document summarizes features and changes being proposed for the next version of
the OpenACC Application Programming Interface, tentatively titled OpenACC 2.6 and
tentatively scheduled for completion in 2017. Most of these features were proposed or
requested by OpenACC users. Each description includes an issue number, which is used for
internal OpenACC committee discussion.

We anticipate another minor release within 8-12 months after 2.6 which will address some
of the issues listed in the deferred feature section.

Feedback on any issue here and suggestions for improvements that don’t appear here are
welcome at feedback@openacc.org.

2 Features

2.1 Manual Deep Copy

Issue 1. Aggregate datatypes (classes and structs in C++, derived types in Fortran) with
pointers to other data types are used to create dynamically-linked data structures. Moving
these data structures between system and device memory is a challenge. We have been work-
ing on this issue for several years. Early in 2016, we produced a technical report proposing
two solutions (http://www.openacc.org/sites/default/files/TR-16-1.pdf). One was
supposed to be a relatively minor change to the OpenACC data clause behavior that would
allow a user to perform a manual deep copy. Support for manual deep copy turns out to be
a bit more involved than we’d first thought, and requires more support in the OpenACC
runtime for correctness. Nevertheless, we propose to add manual deep copy to the next
version.

The last section in the technical report was a much more significant change to allow for true
deep copy. We are continuing to investigate true deep copy, and are looking for a prototype
implementation before proposing adoption.

1



2.2 Serial Compute Construct

Issue 22. We are proposing a serial compute construct. A specific use case is a small
sequential code block between two parallel compute constructs, where the serial construct
avoids the need to move data from the device to the host for the sequential code, and back to
the device for the next compute construct. The serial compute construct is functionally
equivalent to a parallel num_gangs(1) num_workers(1) vector_length(1) construct.
Code in the construct is formally executing in gang-redundant mode, even though there is
only one gang. While peculiar, this definition allows code in a serial region to call an acc

routine gang procedure.

2.3 Device Query Routines

Issue 9. Other device APIs (OpenCL, CUDA) support query routines, so the application
can determine what device or devices are available and properties of this device. We are
proposing to add similar functionality, with a query routine that can be called from the
host to find properties about any device. We are also discussing another query routine that
can be called on the device to determine properties about itself.

2.4 Error Handling

Issue 10. We are proposing to add support for an error callback routine that an application
can register with the OpenACC runtime, where the error routine will be invoked by the
OpenACC runtime whenever an OpenACC error occurs. Examples of errors that can arise
from OpenACC are trying to update data when the data is not present, or when the code
was not compiled to run on the current device. The common use case is a large application
running on a large cluster, where one MPI rank on one node fails, but the rest of the
program continues to execute. If the application could trap or be notified of the error and
gracefully exit. We are not considering support for error recovery and retry at this time.

2.5 If Clause on Host Data Construct

Issue 46. We are proposing allowing the if and if_present clauses on the host_data

construct. This will allow a routine to call a procedure with with device addresses in some
cases, and with host addresses otherwise, depending on context. The specific use case was
a call to a GPU-aware MPI routine, where sometimes the data was present on the device,
and sometimes not.

2.6 NoCreate data clause

Issue 48. We are proposing adding a new data clause, no_create, on compute constructs.
If the current create clause acts like present-or-create, the no_create clause acts like
present-or-don’t-create. That is, if the data is present on the device, the device address will
be passed to the generated kernel. If the data is not present, no error is issued and also no

2



data is allocated or moved for this data. The use case is a parallel loop that conditionally
accesses some array. The application will move the data to the device when the condition
is true, but does not move the data when the condition is false. Currently, the application
must make that data present on the device even when it will not be accessed.

2.7 Data Clause Modifiers

Issue 17. We are proposing allowing modifiers on the data and cache clauses, such as
copyin(readonly:x). This may allow more aggressive code optimization, such as using a
read-only cache for that data.

3 Clarifications and Corrections

3.1 Fortran Bindings for all API Routines

Issue 25, 30. We are proposing to standardize on Fortran bindings for all the OpenACC
API routines.

3.2 Fortran Optional Arguments in Data Clauses

Issue 43. We are proposing to define that when a Fortran optional argument appears in a
data clause, if the argument is not present (in the Fortran sense), no error will occur. Also,
the implementation must allow the Fortran present test on the device, and it must return
.false. if the argument was not present on the host.

4 Deferred Topics

Issues which we have discussed and are potential topics for addition in the next minor
release are listed first. Major issues that would be appropriate for a major revision are
listed later in this section.

4.1 Partially Shared Memory

Issue 63. We are proposing to allow devices where some of the memory is shared with the
host and some is not. Current, OpenACC defines behavior for shared memory devices and
non-shared memory devices. It does not define the behavior for a device where some of the
address space is shared with the CPU, but not all. The use case today is NVIDIA GPUs
with CUDA Unified Memory. This requires changes throughout the specification. There are
open problems with the proposed changes, such as when a pointer lives in shared memory,
but points to data that is in non-shared memory. Currently, the device would get a private
copy of the pointer, which can be filled with the device address of the device copy of the

3



data. If the pointer lives in shared memory, it can only hold a single address, so there’s no
way for both the host and device to use that pointer.

4.2 Reductions Across Multiple Loops

Issue 21. We will clarify that a nested reduction should have a reduction clause on all the
acc loop directives for loops that participate in the reduction. If a compiler autoparallelizes
loops with reductions, the compiler must detect and implement the reduction properly. This
is a relatively small change to the specification.

4.3 Asynchronous Data Constructs and the Present Table

Issue 45. We are proposing to clarify when data becomes and stops being present with
asynchronous data constructs. Specifically, with acc enter data async, will the data be
present immediately after the enter data directive, or will it be present only after the data
movement is complete? Similarly, with acc exit data async, does the data become not
present immediately, or only when the asynchronous data movement and deallocation is
done? The changes for this issue are relatively small.

4.4 Reductions as a Data Clause

Issue 53. We will clarify that a reduction clause on a compute construct will imply that
the data appears in a copy clause. We also agree that a reduction clause on the outermost
loop construct of a compute construct also implies that the data appears in a copy clause
for the compute construct. This is potentially a breaking change, because if the variable
is already present on the device, the result would not get copied back to the host. The
example is:

float x = 0.0;

#pragma acc data copy(x)

{
...

#pragma acc parallel loop reduction(+:x) present(a)

for (i = 0; i < n; ++i )

x += a[i];

...

}

After the loop, currently OpenACC 2.5 says that the value for x will be copied to the host.
If, as proposed, reduction(+:x) implies copy(x), then because x is already present on the
device, the device value will be used and no data will be copied to the host. The advantage
is asynchronous loops with reductions will no longer need to synchronize with the host, and
there can be less data movement, if the data is only used on the device. The disadvantage

4



is that if the value is required on the host, an extra update operation is needed. Perhaps
an additional clause would be appropriate when the data is always needed on the host.

4.5 Array Reductions

Issue 15. We are exploring allowing arrays in reductions. We have deferred this until
now because of the potential high cost due to the high parallel ratio on current accelerator
devices. There is a prototype implementation of this, and indeed the memory cost can be
high. Nevertheless, users have long requested array reductions, and we are committed to
adding it.

4.6 Reduction for C++ Complex

Issue 6. One missing piece for OpenACC is support for reductions for the C++ complex

class. The problem is that from the implementation or compiler point of view, a C++
complex class is just a struct with multiple data elements. OpenMP addressed this problem
with user-defined reductions. Since the only useful reduction for complex is a sum, a simpler
method may be possible as well, such as treating it like an array reduction (element-by-
element).

4.7 Aliasing in Data Clauses

Issue 14. Users have seen different behavior in different implementations when different
arrays on data clauses are aliased to the same actual data. The simplest example is acc

parallel loop copyin(a...) copyout(b...), where a and b are pointers or reference
arguments that actually point to the same array. Depending on the implementation, the
copyin(a) may happen while the copyout(b) sees that the data is already present, or both
copyin and copyout may happen (which is probably what the user wants and expects).
We are discussing how to best resolve this case.

4.8 Improved Support for Fortran Pointers

Issue 5, 57. Fortran array pointers have different semantics than C or C++ pointers, and
we need to review how the data clauses interact with Fortran pointers. In particular, since
there is no Fortran syntax to distinguish a reference to the pointee array from the pointer
itself, how can a program create a private pointer without copying the pointee, or a private
unassociated pointer?

4.9 Polymorphic Routine Compilation

Issue 18, 50. The acc routine directive tells the compiler to generate device code for a
procedure and the context in which a call to this procedure can be made. However, there
are times when an application will want multiple versions of a procedure. A specific use

5



case is the BLAS routine saxpy. An application may call a seq version of this in one place,
but want to call a vector version in another place, and even a worker version in a third. In
particular, library routines should be as flexible as possible. Since nested parallelism is so
expensive, and these routines have no way to self-determine the context in which they were
called, we are looking at proposing a way to have multiple execution modes (gang, worker,
vector, seq) on the acc routine directive, with rules as how this modifies the behavior of
contained loops and procedure calls inside this routine.

4.10 True Deep Copy

Issue 1. As mentioned above, we are deferring adoption of true deep copy into OpenACC
until we see experience with a prototype implementation.

4.11 Multiple Devices

Issue 2. OpenACC supports multiple devices today with the acc_set_device_num API call
and the acc set directive. Currently, this is usually done by having multiple threads, or
multiple MPI processes, with each thread or process selecting a different device. However,
it is inconvenient to use multiple devices in a single thread. There are systems today with
more then 8 accelerator devices per node, and many future systems are being proposed
and designed with multiple devices per node. Adding a clause on the various OpenACC
constructs to select a device, as is done with the OpenMP target constructs, is difficult
to manage. The problem is properly managing and optimizing the data, making sure the
correct data is present on each device, and then balancing the load across devices.

4.12 Host as a Device

Issue 7, 24. Some current implementations already support OpenACC parallel execution on
the host. We are also looking at treating the host just like another device. In such a mode,
the system would look like it had just one more device with different execution characteristics
and memory behavior. As with multiple devices, the problem will be managing the data
and balancing the load. When treating the host as a device, we also must decide whether
the original host thread participates in the parallel execution, as with OpenMP parallel

constructs, or whether the compute constructs can be launched on the host asynchronously,
as with accelerator devices.

4.13 Memory Hierarchy

Issue 3. The split between host and device memory has some of the characteristics of a
memory hierarchy, with a large but low bandwidth system memory and a smaller but higher
bandwidth device memory. Current and future systems are being designed with an exposed
memory hierarchy, even without accelerators, such as the Intel Xeon Phi x200 (Knights
Landing) nodes. Future systems may also include an even larger nonvolatile memory. We

6



are exploring how to expose and exploit these features, without requiring the user to change
the application for each target.

4.14 Synonyms for acc loop: acc do and acc for

Issue 47. To make porting between OpenMP and OpenACC more straightforward, we have
discussed making acc do (in Fortran) and acc for be synonyms for acc loop.

4.15 Tasking

Issue 52. We are exploring whether and how tasks might make sense in the highly parallel
future that OpenACC targets.

4.16 Debugger Interface

Issue 35. OpenACC added a profiler tool interface in the 2.5 specification. We have also
discussed a debugger interface, though we need more input from the debugger community.

c© 2016 OpenACC-Standard.org. All rights reserved.

7


	Introduction
	Features
	Manual Deep Copy
	Serial Compute Construct
	Device Query Routines
	Error Handling
	If Clause on Host Data Construct
	NoCreate data clause
	Data Clause Modifiers

	Clarifications and Corrections
	Fortran Bindings for all API Routines
	Fortran Optional Arguments in Data Clauses

	Deferred Topics
	Partially Shared Memory
	Reductions Across Multiple Loops
	Asynchronous Data Constructs and the Present Table
	Reductions as a Data Clause
	Array Reductions
	Reduction for C++ Complex
	Aliasing in Data Clauses
	Improved Support for Fortran Pointers
	Polymorphic Routine Compilation
	True Deep Copy
	Multiple Devices
	Host as a Device
	Memory Hierarchy
	Synonyms for acc loop: acc do and acc for
	Tasking
	Debugger Interface


