The OpenACC®
Application Programming Interface

Version 3.4

OpenACC-Standard.org

June 2025
Updated: October 2025

The OpanCC® API Version 3.4

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,
no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form
or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express

written permission of the authors.

© 2011-2025 OpenACC-Standard.org. All rights reserved.

-

2

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

The OpenACC® API Version 3.4

Contents
1._Introduction

11
13
13

13
15
15

17
18
18
19
20

21
22

|2 2. Conditional Comoilatioq

2.3._Internal Control Variables

23
24
25
27
27

The OpenACC® API Version 3.4

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

The OpenACC® API Version 3.4

The OpenACC® API Version 3.4

151 [3.2.27. acc memcpy from devicd oo 128
152 [3.2.28. acc memepy devicd e 129
153 130
154 132
155 1 35
156 135
157 135
158 135
159 137
160 137
161 138
162 138
163 139
164 139
165 [5.1.5. DataConstrucl 140
166 [5.1.6. _Update Directivel o v oo 140
167 5.1.7. Compute Construct . . .« . . o v oo 140
168 141
169 141
170 141
171 142
172 142
173 i : o0 143
174 ument: Event-Specific Information 144
175 i : i i 149

e [5.3. Loadingthe Library 150

177 5.3.1. Library Registration 151

178 5.3.2. _Statically-Linked Library Initializatiod 152
178 5.3.3. _Runtime Dynamic Library Loadinﬁ 152
180 534, Preloading with LD PRELOAD oo oooii oo oo 153
181 154
182 154
183 154
184 [5.4.2. Disabling and Enabling Callbackd o o oot 156
185 5.5, Advanced TODICY . . « o o v o o 157
186 5.5.1. Dynamic Behaviol 157
187 5.5.2. _OpenACC Events During Event Proceqqind 158
188 5.5.3. Multiple Host Threadso ovoe e 159
189 161
190 167
191 167
192 167
193 167
194 168

195
196
197
198
199
200
201
202

203

204

The OpenACC® API Version 3.4

A2

The OpanCC® API Version 3.4

205

206
207
208
209
210
211
212

213

214
215
216
217
218
219

220

221

222
223
224
225

226

227
228
229
230
231

232

234
235
236

237

239
240
241
242
243

244

The OpanCC® API Version 3.4 1.1. Scope

1. Introduction

This document describes the compiler directives, library routines, and environment variables that
collectively define the OpenACC™ Application Programming Interface (OpenACC API) for writ-
ing parallel programs in C, C++, and Fortran that run identified regions in parallel on multicore
CPUs or attached accelerators. The method described provides a model for parallel programming
that is portable across operating systems and various types of multicore CPUs and accelerators. The
directives extend the ISO/ANSI standard C, C++, and Fortran base languages in a way that allows
a programmer to migrate applications incrementally to parallel multicore and accelerator targets
using standards-based C, C++, or Fortran.

The directives and programming model defined in this document allow programmers to create appli-
cations capable of using accelerators without the need to explicitly manage data or program transfers
between a host and accelerator or to initiate accelerator startup and shutdown. Rather, these details
are implicit in the programming model and are managed by the OpenACC API-enabled compilers
and runtime environments. The programming model allows the programmer to augment informa-
tion available to the compilers, including specification of data local to an accelerator, guidance on
mapping of loops for parallel execution, and similar performance-related details.

1.1 Scope

This OpenACC API document covers only user-directed parallel and accelerator programming,
where the user specifies the regions of a program to be targeted for parallel execution. The remainder
of the program will be executed sequentially on the host. This document does not describe features
or limitations of the host programming environment as a whole; it is limited to specification of loops
and regions of code to be executed in parallel on a multicore CPU or an accelerator.

This document does not describe automatic detection of parallel regions or automatic offloading
of regions of code to an accelerator by a compiler or other tool. This document does not describe
splitting loops or code regions across multiple accelerators attached to a single host. While future
compilers may allow for automatic parallelization or automatic offloading, or parallelizing across
multiple accelerators of the same type, or across multiple accelerators of different types, these pos-
sibilities are not addressed in this document.

1.2 Execution Model

The execution model targeted by OpenACC API-enabled implementations is host-directed execu-
tion with an attached parallel accelerator, such as a GPU, or a multicore host with a host thread that
initiates parallel execution on the multiple cores, thus treating the multicore CPU itself as a device.
Much of a user application executes on a host thread. Compute intensive regions are offloaded to an
accelerator or executed on the multiple host cores under control of a host thread. A device, either
an attached accelerator or the multicore CPU, executes parallel regions, which typically contain
work-sharing loops, kernels regions, which typically contain one or more loops that may be exe-
cuted as kernels, or serial regions, which are blocks of sequential code. Even in accelerator-targeted
regions, the host thread may orchestrate the execution by allocating memory on the accelerator de-
vice, initiating data transfer, sending the code to the accelerator, passing arguments to the compute
region, queuing the accelerator code, waiting for completion, transferring results back to the host,

245

246

247
248
249

251
252
253
254
255

257
258

259

260
261
262
263
264
265
266

267

268
269
270
271
272
273
274
275
276
277
278

279

280
281
282
283

284

286
287
288

289

The OpanCC® API Version 3.4 1.2. Execution Model

and deallocating memory. In most cases, the host can queue a sequence of operations to be executed
on a device, one after the other.

Most current accelerators and many multicore CPUs support two or three levels of parallelism.
Most accelerators and multicore CPUs support coarse-grain parallelism, which is fully parallel exe-
cution across execution units. There may be limited support for synchronization across coarse-grain
parallel operations. Many accelerators and some CPUs also support fine-grain parallelism, often
implemented as multiple threads of execution within a single execution unit, which are typically
rapidly switched on the execution unit to tolerate long latency memory operations. Finally, most
accelerators and CPUs also support SIMD or vector operations within each execution unit. The
execution model exposes these multiple levels of parallelism on a device and the programmer is
required to understand the difference between, for example, a fully parallel loop and a loop that
is vectorizable but requires synchronization between statements. A fully parallel loop can be pro-
grammed for coarse-grain parallel execution. Loops with dependences must either be split to allow
coarse-grain parallel execution, or be programmed to execute on a single execution unit using fine-
grain parallelism, vector parallelism, or sequentially.

OpenACC exposes these three levels of parallelism via gang, worker, and vector parallelism. Gang
parallelism is coarse-grain. A number of gangs will be launched on the accelerator. The gangs are
organized in a one-, two-, or three-dimensional grid, where dimension one corresponds to the inner
level of gang parallelism; the default is to only use dimension one. Worker parallelism is fine-grain.
Each gang will have one or more workers. Vector parallelism is for SIMD or vector operations
within a worker. In this way, OpenACC provides six levels of parallelism, which are arranged
from highest to lowest as follows: gang dimension three, gang dimension two, gang dimension one,
worker, vector, and sequential, which corresponds to no parallelism.

When executing a compute region on a device, one or more gangs are launched, each with one or
more workers, where each worker may have vector execution capability with one or more vector
lanes. The gangs start executing in gang-redundant mode (GR mode), meaning one vector lane of
one worker in each gang executes the same code, redundantly. Each gang dimension is associated
with a gang-redundant mode dimension, denoted GR1, GR2, and GR3. When the program reaches
a loop or loop nest marked for gang-level work-sharing at some dimension, the program starts to
execute in gang-partitioned mode for that dimension, denoted GP1, GP2, or GP3 mode, where the
iterations of the loop or loops are partitioned across the gangs in that dimension for truly parallel
execution, but still with only one worker per gang and one vector lane per worker active. The
program may be simultaneously in different gang modes for different dimensions. For instance,
after entering a loop partitioned for gang-level work-sharing at dimension 3, the program will be in
GP3, GR2, GR1 mode.

When only one worker is active, in any gang-level execution mode, the program is in worker-single
mode (WS mode). When only one vector lane is active, the program is in vector-single mode
(VS mode). If a gang reaches a loop or loop nest marked for worker-level work-sharing, the gang
transitions to worker-partitioned mode (WP mode), which activates all the workers of the gang. The
iterations of the loop or loops are partitioned across the workers of this gang. If the same loop is
marked for both gang-partitioning in dimension d and worker-partitioning, then the iterations of the
loop are spread across all the workers of all the gangs of dimension d. If a worker reaches a loop
or loop nest marked for vector-level work-sharing, the worker will transition to vector-partitioned
mode (VP mode). Similar to WP mode, the transition to VP mode activates all the vector lanes of
the worker. The iterations of the loop or loops will be partitioned across the vector lanes using vector
or SIMD operations. Again, a single loop may be marked for one, two, or all three of gang, worker,

10

291

292

293
294

295

297

298

300
301
302
303
304
305
306
307
308
309

311
312
313
314
315

316

317
318

319

321
322
323

324

325

327
328
329
330
331
332

333

The OpanCC® API Version 3.4 1.3. Memory Model

and vector parallelism, and the iterations of that loop will be spread across the gangs, workers, and
vector lanes as appropriate.

The program starts executing with a single initial host thread, identified by a program counter and
its stack. The initial host thread may spawn additional host threads, using OpenACC or another
mechanism, such as with the OpenMP API. On a device, a single vector lane of a single worker of a
single gang is called a device thread. When executing on an accelerator, a parallel execution context
is created on the accelerator and may contain many such threads.

Attempting to implement barrier synchronization, critical sections, or locks across any of gang,
worker, or vector parallelism might result in deadlock or non-portable code. The execution model
allows for an implementation that executes some gangs to completion before starting to execute
other gangs. This means that trying to implement synchronization between gangs is likely to fail. In
particular, a barrier across gangs cannot be implemented in a portable fashion, since all gangs may
not ever be active at the same time. Similarly, the execution model allows for an implementation
that executes some workers within a gang or vector lanes within a worker to completion before
starting other workers or vector lanes, or for some workers or vector lanes to be suspended until
other workers or vector lanes complete. This means that trying to implement synchronization across
workers or vector lanes is likely to fail. In particular, implementing a barrier or critical section across
workers or vector lanes using atomic operations and a busy-wait loop may never succeed, since the
scheduler may suspend the worker or vector lane that owns the lock, and the worker or vector lane
waiting on the lock can never complete.

Some devices, such as a multicore CPU, may also create and launch additional compute regions,
allowing for nested parallelism. In that case, the OpenACC directives may be executed by a host
thread or a device thread. This specification uses the term local thread or local memory to mean the
thread that executes the directive, or the memory associated with that thread, whether that thread
executes on the host or on the accelerator. The specification uses the term local device to mean the
device on which the local thread is executing.

Most accelerators can operate asynchronously with respect to the host thread. Such devices have one
or more activity queues. The host thread will enqueue operations onto the device activity queues,
such as data transfers and procedure execution. After enqueuing the operation, the host thread can
continue execution while the device operates independently and asynchronously. The host thread
may query the device activity queue(s) and wait for all the operations in a queue to complete.
Operations on a single device activity queue will complete before starting the next operation on the
same queue; operations on different activity queues may be active simultaneously and may complete
in any order.

1.3 Memory Model

The most significant difference between a host-only program and a host+accelerator program is that
the memory on an accelerator may be discrete from host memory. This is the case with most current
GPUs, for example. In this case, the host thread may not be able to read or write device memory
directly because it is not mapped into the host thread’s virtual memory space. All data movement
between host memory and accelerator memory must be performed by the host thread through system
calls that explicitly move data between the separate memories, typically using direct memory access
(DMA) transfers. Similarly, the accelerator may not be able to read or write host memory; though
this is supported by some accelerators, it may incur significant performance penalty.

The concept of discrete host and accelerator memories is very apparent in low-level accelerator

11

335
336
337
338
339

340

341

342

346
347

348

349
350
351
352
353
354
355
356
357

358

359
360
361
362
363
364
365

366
367
368
369

370

371
372
373
374

375

The OpenACC® API Version 3.4 1.4. Language Interoperability

programming languages such as CUDA or OpenCL, in which data movement between the memories
can dominate user code. In the OpenACC model, data movement between the memories can be
implicit and managed by the compiler, based on directives from the programmer. However, the
programmer must be aware of the potentially discrete memories for many reasons, including but
not limited to:

* Memory bandwidth between host memory and accelerator memory determines the level of
compute intensity required to effectively accelerate a given region of code.

* Discrete accelerator memory is usually significantly smaller than the host memory, possibly
prohibiting the offloading of regions of code that operate on very large amounts of data.

* Data in host memory may only be accessible on the host; data in accelerator memory may
only be accessible on that accelerator. Explicitly transferring pointer values between host and
accelerator memory is not advised. Dereferencing pointers to host memory on an accelerator
or dereferencing pointers to accelerator memory on the host is likely to result in a runtime
error or incorrect results on such targets.

OpenACC exposes the discrete memories through the use of a device data environment. Device data
has an explicit lifetime, from when it is allocated or created until it is deleted. If a device shares
memory with the local thread, its device data environment will be shared with the local thread. In
that case, the implementation need not create new copies of the data for the device and no data
movement need be done. If a device has a discrete memory and shares no memory with the local
thread, the implementation will allocate space in device memory and copy data between the local
memory and device memory, as appropriate. The local thread may share some memory with a
device and also have some memory that is not shared with that device. In that case, data in shared
memory may be accessed by both the local thread and the device. Data not in shared memory will
be copied to device memory as necessary.

Some accelerators implement a weak memory model. In particular, they do not support memory
coherence between operations executed by different threads; even on the same execution unit, mem-
ory coherence is only guaranteed when the memory operations are separated by an explicit memory
fence. Otherwise, if one thread updates a memory location and another reads the same location, or
two threads store a value to the same location, the hardware may not guarantee the same result for
each execution. While a compiler can detect some potential errors of this nature, it is nonetheless
possible to write a compute region that produces inconsistent numerical results.

Similarly, some accelerators implement a weak memory model for memory shared between the
host and the accelerator, or memory shared between multiple accelerators. Programmers need to
be very careful that the program uses appropriate synchronization to ensure that an assignment or
modification by a thread on any device to data in shared memory is complete and available before
that data is used by another thread on the same or another device.

Some current accelerators have a software-managed cache, some have hardware managed caches,
and most have hardware caches that can be used only in certain situations and are limited to read-
only data. In low-level programming models such as CUDA or OpenCL languages, it is up to the
programmer to manage these caches. In the OpenACC model, these caches are managed by the
compiler with hints from the programmer in the form of directives.

12

376

377
378

379

380

382
383
384

385

386
387
388
389

390
391
392
393
394
395
396

397

398

399

400

401

402

403

404

406

407

408

410

411

412

413

The OpenACC® API Version 3.4 1.4. Language Interoperability

1.4 Language Interoperability

The specification supports programs written using OpenACC in two or more of Fortran, C, and
C++ languages. The parts of the program in any one base language will interoperate with the parts
written in the other base languages as described here. In particular:

* Data made present in one base language on a device will be seen as present by any base
language.

* A region that starts and ends in a procedure written in one base language may directly or
indirectly call procedures written in any base language. The execution of those procedures
are part of the region.

1.5 Runtime Errors

Common runtime errors are noted in this document. When one of these runtime errors is issued, one
or more error callback routines are called by the program. Error conditions are noted throughout
Chapter RlDirectivesl and Chapter BI[Runtime Library| along with the error code that gets set for the
error callback.

A list of error codes appears in Section Since device actions may occur asynchronously,
some errors may occur asynchronously as well. In such cases, the error callback routines may not
be called immediately when the error occurs, but at some point later when the error is detected
during program execution. In situations when more than one error may occur or has occurred,
any one of the errors may be issued and different implementations may issue different errors. An
acc_error_system error may be issued at any time if the current device becomes unavailable
due to underlying system issues.

The default error callback routine may print an error message and halt program execution. The ap-
plication can register one or more additional error callback routines, to allow a failing application to
release resources or to cleanly shut down a large parallel runtime with many threads and processes.
See Chapter[S]Profiling and Error Callback Interfacel The error callback mechanism is not intended
for error recovery. There is no support for restarting or retrying an OpenACC program, construct, or
API routine after an error condition has been detected and an error callback routine has been called.

1.6 Conventions used in this document

Some terms are used in this specification that conflict with their usage as defined in the base lan-
guages. When there is potential confusion, the term will appear in the

Keywords and punctuation that are part of the actual specification will appear in typewriter font:
#fpragma acc

Italic font is used where a keyword or other name must be used:
#pragma acc directive-name

For C and C++, new-line means the newline character at the end of a line:
#pragma acc directive-name new-line

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is
followed by ellipses:

13

414

4

5

416

417

418

419

420

421

422
423

424

425
426

427

428
429
430
431

432

433

434
435

436

437

438

439

440

441

442

443
444

445

446
447
448

449

450

451

The OpenACC® API Version 3.4 1.6. Conventions used in this document

#pragma acc directive-name [clause [[,]| clause]...]| new-line

In this spec, a var (in italics) is one of the following:

* avariable name (a scalar, array, or composite variable name);

* a subarray specification with subscript ranges;

* an array element;

* a member of a composite variable;

¢ a common block name between slashes;

* anamed constant in Fortran.

Not all options are allowed in all clauses; the allowable options are clarified for each use of the term
var. Unnamed common blocks (blank commons) are not permitted and common blocks of the same
name must be of the same size in all scoping units as required by the Fortran standard.

If during an optimization phase var is removed by the compiler, appearances of var in data clauses
are ignored. If a data action on var would result in writing to an unwritable/constant location, such
as a named constant in Fortran or a const variable in C or C++, the behavior is undefined.

To simplify the specification and convey appropriate constraint information, a pgr-list is a comma-
separated list of one or more pgr items. For example, an int-expr-list is a comma-separated list
of one or more integer expressions, and a var-list is a comma-separated list of one or more vars.
Elements of such a list must not be empty and must not be followed by a trailing comma. The one
exception is clause-list, which is a list of one or more clauses optionally separated by commas.

#pragma acc directive-name [clause-list] new-line

For C/C++, unless otherwise specified, each expression inside of the OpenACC clauses and direc-
tive arguments must be a valid assignment-expression. This avoids ambiguity between the comma
operator and comma-separated list items.

In this spec, a do loop (in italics) is the do construct as defined by the Fortran standard. The do-stmt
of the do construct must conform to one of the following forms:

do [label] do-var = Ib, ub [, incr]
do concurrent [label] concurrent-header [concurrent-locality]

The do-var is a variable name and the [b, ub, incr are scalar integer expressions. A do concurrent
is treated as if defining a loop for each index in the concurrent-header.

An italicized true is used for a condition that evaluates to nonzero in C or C++, or .true. in
Fortran. An italicized false is used for a condition that evaluates to zero in C or C++, or . false.
in Fortran.

When used as an argument to a clause, a condition is an expression that evalautes to true or false
according to the rules of the respective language. In Fortran, this is a scalar logical expression. In C,
a condition is an expression of scalar type. In C++, a condition is an expression that is contextually
convertible to bool.

The term integral-constant-expression is used in this document to refer to an expression that is a
compile-time constant. In C, it is equivalent to integer constant expression. In C++, it is equivalent

14

452

453

454
455
456

457

458

459

461
462
463

464

466

467

468

470

471

472

473

474

475

476

477

478

479

481

482

483

484

485

486

The OpenACC® API Version 3.4 1.7. Organization of this document

to integral constant expression. In Fortran, it is equivalent to a scalar constant expression of integer
type.

The term balanced-paren-token-sequence is used in this document to refer to any sequence of tokens
such that for every left parenthesis there is a corresponding right parenthesis (i.e., balanced); any
parenthesis contained within a string literal token is not considered when determining if a sequence
is balanced.

Further details of OpenACC directive syntax are presented in

1.7 Organization of this document
The rest of this document is organized as follows:

Chapter describes the C, C++, and Fortran directives used to delineate accelerator
regions and augment information available to the compiler for scheduling of loops and classification
of data.

Chapter BI[Runtime Libraryl defines user-callable functions and library routines to query the accel-
erator features and control behavior of accelerator-enabled programs at runtime.

Chapter 4] [Environment Variables, defines user-settable environment variables used to control be-
havior of accelerator-enabled programs at runtime.

Chapter [3][Profiling and Error Callback Interface] describes the OpenACC interface for tools that
can be used for profile and trace data collection.

Chapter [6]Glossary] defines common terms used in this document.

Appendix [Al[Recommendations for Implementers] gives advice to implementers to support more
portability across implementations and interoperability with other accelerator APIs.

1.8 References

Each language version inherits the limitations that remain in previous versions of the language in
this list.

* American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).

* ISO/IEC 9899:1999, Information Technology — Programming Languages — C, (C99).

* ISO/IEC 9899:2011, Information Technology — Programming Languages — C, (C11).
The use of the following C11 features may result in unspecified behavior.

Threads

Thread-local storage

Paralle] memory model

Atomic

* ISO/IEC 9899:2018, Information Technology — Programming Languages — C, (C18).
The use of the following C18 features may result in unspecified behavior.

— Thread related features

15

The OpanCC® API Version 3.4 1.8. References

487 » ISO/IEC 14882:1998, Information Technology — Programming Languages — C++.
488 * ISO/IEC 14882:2011, Information Technology — Programming Languages — C++, (C++11).

489 The use of the following C++11 features may result in unspecified behavior.
490 — Extern templates

491 — copy and rethrow exceptions

492 — memory model

493 — atomics

494 — move semantics

495 — std::thread

496 — thread-local storage

497 » ISO/IEC 14882:2014, Information Technology — Programming Languages — C++, (C++14).
498 * ISO/IEC 14882:2017, Information Technology — Programming Languages — C++, (C++17).

499 e ISO/IEC 1539-1:2004, Information Technology — Programming Languages — Fortran — Part
500 1: Base Language, (Fortran 2003).

501 * ISO/IEC 1539-1:2010, Information Technology — Programming Languages — Fortran — Part
502 1: Base Language, (Fortran 2008).

503 The use of the following Fortran 2008 features may result in unspecified behavior.

504 — Coarrays

505

Simply contiguous arrays rank remapping to rank>1 target

506 Allocatable components of recursive type

507 Polymorphic assignment

508 * ISO/IEC 1539-1:2018, Information Technology — Programming Languages — Fortran — Part
509 1: Base Language, (Fortran 2018).

510 The use of the following Fortran 2018 features may result in unspecified behavior.
511 — Interoperability with C

512 % C functions declared in ISO Fortran binding.h

513 * Assumed rank

514 — All additional parallel/coarray features

515 * OpenMP Application Program Interface, version 5.0, November 2018

516 * NVIDIA CUDA™ C Programming Guide, version 11.1.1, October 2020
517 * The OpenCL Specification, version 2.2, Khronos OpenCL Working Group, July 2019

518 e INCITS INCLUSIVE TERMINOLOGY GUIDELINES, version 2021.06.07, InterNational Com-
519 mittee for Information Technology Standards, June 2021

16

The OpenACC® API Version 3.4 1.9. Changes from Version 1.0 to 2.0

520 * Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, IETF Network Work-
521 ing Group, March 1997

2 1.9 Changes from Version 1.0 to 2.0

523 * _OPENACC value updated to 201306

524 * default (none) clause on parallel and kernels directives

525 * the implicit data attribute for scalars in parallel constructs has changed

526 * the implicit data attribute for scalars in loops with loop directives with the independent
527 attribute has been clarified

528 * acc_async_sync and acc_async_noval values for the async clause

529 * Clarified the behavior of the reduction clause on a gang loop

530 * Clarified allowable loop nesting (gang may not appear inside worker, which may not ap-
531 pear within vector)

532 * wait clause on parallel, kernels and update directives

533 * async clause on the wait directive

534 * enter data and exit data directives

535 * Fortran common block names may now appear in many data clauses

536 * link clause for the declare directive

537 * the behavior of the declare directive for global data

538 * the behavior of a data clause with a C or C++ pointer variable has been clarified

539 * predefined data attributes

540 * support for multidimensional dynamic C/C++ arrays

541 * tile and auto loop clauses

542 * update self introduced as a preferred synonym for update host

543 * routine directive and support for separate compilation

544 * device_type clause and support for multiple device types

545 * nested parallelism using parallel or kernels region containing another parallel or kernels re-
546 gion

547 e atomic constructs

548 * new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; vector-
549 single, vector-partitioned; thread

550 * new API routines:

551 — acc_wait,acc_wait_allinstead ofacc_async_wait andacc_async_wait_all
552 — acc_wait_async

17

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

571

572

573

574

576
577

578

579
580
581
582
583

584

585

586
587

The OpenACC® API Version 3.4 1.11. Changes from Version 2.0 to 2.5

— acc_copyin, acc_present_or_copyin

— acc_create, acc_present_or_create

— acc_copyout, acc_delete

— acc_map_data, acc_unmap_data

— acc_deviceptr, acc_hostptr

— acc_is_present

— acc_memcpy_to_device, acc_memcpy_from device

— acc_update_device, acc_update_self
defined behavior with multiple host threads, such as with OpenMP
recommendations for specific implementations

clarified that no arguments are allowed on the vector clause in a parallel region

1.10 Corrections in the August 2013 document

1.11

corrected the atomic capture syntax for C/C++
fixed the name of the acc_wait and acc_wait_all procedures

fixed description of the ace_hostptr procedure

Changes from Version 2.0 to 2.5
The _OPENACC value was updated to 201510; see Section [2.2][Conditional Compilation}

The num_gangs, num_workers, and vector_length clauses are now allowed on the

kernels construct; see Section[2.5.3|[Kernels Constructl

Reduction on C++ class members, array elements, and struct elements are explicitly disal-

lowed; see Section [2.5.15]freduction clausel

Reference counting is now used to manage the correspondence and lifetime of device data;

see Section[2.6.7|Reference Countersl

The behavior of the exit data directive has changed to decrement the dynamic reference
counter. A new optional £inalize clause was added to set the dynamic reference counter

to zero. See Section [2.6.6l[Enter Data and Exit Data Directivesl

The copy, copyin, copyout, and create data clauses were changed to behave like
present_or_copy, etc. The present_or_copy, pcopy, present_or_copyin,
pcopyin, present_or_ copyout, pcopyout, present_or_create, and pcreate
data clauses are no longer needed, though will be accepted for compatibility; see Section

Reductions on orphaned gang loops are explicitly disallowed; see Section
The description of the 1loop auto clause has changed; see Section [2.9.7|fauto clausel

Text was added to the private clause on a 1loop construct to clarify that a copy is made
for each gang or worker or vector lane, not each thread; see Section 2.9.10l|private clause]

18

The OpenACC® API Version 3.4 1.12. Changes from Version 2.5 to 2.6

588 * The description of the reduction clause on a loop construct was corrected; see Sec-
589 tion [2.9.11lireduction clausel

590 * A restriction was added to the cache clause that all references to that variable must lie within
591 the region being cached; see Section 2.10/[Cache Directivel

562 » Text was added to the private and reduction clauses on a combined construct to clarify
593 that they act like private and reduction on the loop, not private and reduction
504 onthe parallel or reduction onthe kernels; see Section[2. 11[Combined Constructsl
595 * The declare create directive with a Fortran allocatable has new behavior; see Sec-
596 tion [2.13.2]lcreate clausel

597 * New init, shutdown, set directives were added; see Section[2.14.1[Init Directivel [2.14.2
598 Shutdown Directivel and 2.14.3]

599 * Anew if_present clause was added to the update directive, which changes the behavior
600 when data is not present from a runtime error to a no-op; see Section[2.14.4{Update Directive]
601 * The routine bind clause definition changed; see Section [2.15.1|[Routine Directivel

602 * An acc routine without gang/worker/vector/seq is now defined as an error; see
603 Section [2.15. 1|[Routine Directivel

604 * A new default (present) clause was added for compute constructs; see Section
605

606 * The Fortran header file openacc_1ib. his no longer supported; see Section[3.1JRuntime Library Definitions|
607 * New API routines were added to get and set the default async queue value; see Section
608 [acc_get_default_async|and [3.2.14lfacc_set_default_async|

609 * The acc_copyin, acc_create, acc_copyout, and acc_delete API routines were
610 changed to behave like acc_present_or_copyin,etc. The acc_present_or_names
611 are no longer needed, though will be supported for compatibility. See Sections and fol-
612 lowing.

613 * Asynchronous versions of the data API routines were added; see Sections and follow-
614 ing.

615 * A new API routine added, acc_memcpy_device, to copy from one device address to
616 another device address; see Section [3.2.26[acc_memcpy_to_device|

617 * A new OpenACC interface for profile and trace tools was added;

618 see Chapter B||Profiling and Error Callback Interfacel

s 1.12 Changes from Version 2.5 to 2.6

620 * The _OPENACC value was updated to 201711.

621 * A new serial compute construct was added. See Section [2.5.2][Serial Constructl

622 * A new runtime API query routine was added. acc_get_property may be called from
623 the host and returns properties about any device. See Section[3.2.6l

19

624
625

626

627

628

629
630

631

632

633

634

635
636
637

638

639
640

641

642

643

644
645
646
647

648

649

650

651

652

653

654
655
656
657

658

659
660

661

662

The OpenACC® API Version 3.4 1.13. Changes from Version 2.6 to 2.7

The text has clarified that if a variable is in a reduction which spans two or more nested loops,
each loop directive on any of those loops must have a reduction clause that contains the

variable; see Section [2.9.1 llfreduction clausel

An optional i f or if present clause is now allowed on the host_data construct. See

Section 2.8|[Host _Data Constructl

A new no_create data clause is now allowed on compute and data constructs. See Sec-

tion[2.7.11llno create clausel

The behavior of Fortran optional arguments in data clauses and in routine calls has been
specified; see Section [2.17.1l[Optional Arguments|

The descriptions of some of the Fortran versions of the runtime library routines were simpli-
fied; see Section 3.2Runtime Library Routines|

To allow for manual deep copy of data structures with pointers, new attach and detach be-
havior was added to the data clauses, new attach and detach clauses were added, and
matching acc_attach and acc_detach runtime API routines were added; see Sections

2.6.4 2. 7.13H2.7.14 and[3.2.29

The Intel Coprocessor Offload Interface target and API routine sections were removed from
the Section [A]Recommendations for Implementers] since Intel no longer produces this prod-
uct.

1.13 Changes from Version 2.6 to 2.7

The _OPENACC value was updated to 201811.

The specification allows for hosts that share some memory with the device but not all memory.
The wording in the text now discusses whether local thread data is in shared memory (memory
shared between the local thread and the device) or discrete memory (local thread memory that
is not shared with the device), instead of shared-memory devices and non-shared memory

devices. See Sections [L.3|Memory Model|and [2.6[[Data Environment

The text was clarified to allow an implementation that treats a multicore CPU as a device,
either an additional device or the only device.

The readonly modifier was added to the copyin data clause and cache directive. See

Sections and
The term local device was defined; see Section [[.2[Execution Modell and the Glossary.

The term var is used more consistently throughout the specification to mean a variable name,
array name, subarray specification, array element, composite variable member, or Fortran
common block name between slashes. Some uses of var allow only a subset of these options,
and those limitations are given in those cases.

The self clause was added to the compute constructs; see Section

The appearance of a reduction clause on a compute construct implies a copy clause for

each reduction variable; see Sections[2.5.15lreduction clause]and [2.11l[Combined Constructsl

The default (none) and default (present) clauses were added to the data con-

struct; see Section[2.6.5[Data Constructl

20

663

664

665
666

667

668

669
670

671

672

673

674

675

676

677

678

679
680

681

682
683

684

685

686

687

688
689

690
691

692
693

694

695
696

697
698
699

The OpanCC® API Version 3.4

1.14. Changes from Version 2.7 to 3.0

Data is defined to be present based on the values of the structured and dynamic reference
counters; see Section [2.6.7|[Reference Counters|and the Glossary.

The interaction of the acc_map_data and acc_unmap_data runtime API calls on the
present counters is defined; see Section B3.2.21] and[3.2.22]

A restriction clarifying that a host_data construct must have at least one use_device
clause was added.

Arrays, subarrays and composite variables are now allowed in reduction clauses; see

Sections [2.9.1 1llreduction clauseland [2.5.15lreduction clausel

Changed behavior of ICVs to support nested compute regions and host as a device semantics.
See Section

1.14 Changes from Version 2.7 to 3.0

Updated _OPENACC value to 201911.

Updated the normative references to the most recent standards for all base languages. See
Section[L.8]

Changed the text to clarify uses and limitations of the device_type clause and added
examples; see Section 2.4

Clarified the conflict between the implicit copy clause for variables in a reduction clause
and the implicit firstprivate for scalar variables not in a data clause but used in a
parallel or serial construct; see Sections[2.5.1land 2.3.2

Required at least one data clause on a data construct, an enter data directive, or an exit
data directive; see Sections [2.6.5/and [2.6.6

Added text describing how a C++ lambda invoked in a compute region and the variables
captured by the lambda are handled; see Section [2.6.2]

Added a zero modifier to create and copyout data clauses that zeros the device memory
after it is allocated; see Sections and

Added a new restriction on the 1oop directive allowing only one of the seq, independent,
and auto clauses to appear; see Section

Added a new restriction on the loop directive disallowing a gang, worker, or vector
clause to appear if a seq clause appears; see Section 2.9

Allowed variables to be modified in an atomic region in a loop where the iterations must
otherwise be data independent, such as loops with a 1loop independent clause or a loop
directive in a parallel construct; see Sections[2.9.21 2.9.31[2.9.4] and2.9.6

Clarified the behavior of the auto and independent clauses on the loop directive; see

Sections and[2.9.6

Clarified that an orphaned loop construct, or a loop construct in a parallel construct
with no auto or seq clauses is treated as if an independent clause appears; see Sec-

tion

21

700

701

702

703

704

705

706

707
708

709
710

711

712

713

714

715

716
77

718

719

720

721

722

723

724

725

726

727
728

729

731

732

733

734

735
736

737

The OpenACC® API Version 3.4 1.15. Changes from Version 3.0 to 3.1

For a variable in a reduction clause, clarified when the update to the original variable is
complete, and added examples; see Section[2.9.111

Clarified that a variable in an orphaned reduction clause must be private; see Section[2.9.11
Required at least one clause on a declare directive; see Section

Added an if clause to init, shutdown, set, and wait directives; see Sections 2.14.1]
21472 and 2.16.3]

Required at least one clause on a set directive; see Section

Added a devnum modifier to the wait directive and clause to specify a device to which the
wait operation applies; see Section

Allowed a routine directive to include a C++ lambda name or to appear before a C++
lambda definition, and defined implicit routine directive behavior when a C++ lambda is
called in a compute region or an accelerator routine; see Section [2.1J]

Added runtime API routine ace_memcpy_d2d for copying data directly between two de-
vice arrays on the same or different devices; see Section [3.2.301

Defined the values for the ace_construct_t and acc_device_api enumerations for
cross-implementation compatibility; see Sections [5.2.2]and [5.2.31

Changed the return type of acc_set_cuda_streamfrom int (values were not specified)
to void; see Section

Edited and expanded Section [I.20|[Topics Deferred For a Future Revision|

1.15 Changes from Version 3.0 to 3.1

Updated _OPENACC value to 202011.

Clarified that Fortran blank common blocks are not permitted and that same-named common
blocks must have the same size. See Section[L.6l

Clarified that a parallel construct’s block is considered to start in gang-redundant mode
even if there’s just a single gang. See Section

Added support for the Fortran BLOCK construct. See Sections[2.5.11 D.6.1] 2.8
and [6l

Defined the serial construct in terms of the parallel construct to improve readability.
Instead of defining it in terms of clauses num_gangs (1) num_workers (1)
vector_length (1), defined the serial construct as executing with a single gang of a
single worker with a vector length of one. See Section[2.3.21

Consolidated compute construct restrictions into a new section to improve readability. See

Section2.5.4]

Clarified that a default clause may appear at most once on a compute construct. See

Section[2.5.16]

Consolidated discussions of implicit data attributes on compute and combined constructs into
a separate section. Clarified the conditions under which each data attribute is implied. See

Section

22

738
739

740

741
742
743
744
745

746

747

748

749

750

751

752

753

754

756
757

758

760

761

762

763

764

765

766

767

768

770

771

772

773

774

775

The OpenACC® API Version 3.4 1.16. Changes from Version 3.1 to 3.2

Added a restriction that certain loop reduction variables must have explicit data clauses on
their parent compute constructs. This change addresses portability across existing OpenACC
implementations. See Sections and

Restored the OpenACC 2.5 behavior of the present, copy, copyin, copyout, create,
no_create, delete data clauses at exit from a region, or on an exit data directive, as
applicable, and create clause at exit from an implicit data region where a declare di-
rective appears, and acc_copyout, acc_delete routines, such that no action is taken if
the appropriate reference counter is zero, instead of a runtime error being issued if data is not

present. See Sections 2.13.2] and

Clarified restrictions on loop forms that can be associated with loop constructs, including
the case of C++ range-based for loops. See Section

Specified where gang clauses are implied on loop constructs. This change standardizes
behavior of existing OpenACC implementations. See Section

Corrected C/C++ syntax for atomic capture with a structured block. See Section
Added the behavior of the Fortran do concurrent construct. See Section [2.17.2]

Changed the Fortran run-time procedures: acc_device_property has been renamed to
acc_device_property kindand acc_get_property uses a different integer kind
for the result. See Section

Added or changed argument names for the Runtime Library routines to be descriptive and
consistent. This mostly impacts Fortran programs, which can pass arguments by name. See
Section[3.2

Replaced composite variable by aggregate variable in reduction, default, and private
clauses and in implicitly determined data attributes; the new wording also includes Fortran
character and allocatable/pointer variables. See glossary in Section [6l

1.16 Changes from Version 3.1 to 3.2

Updated _ OPENACC value to 202111.
Modified specification to comply with INCITS standard for inclusive terminology.

The text was changed to state that certain runtime errors, when detected, result in a call to the
current runtime error callback routines. See Section

An ambiguity issue with the C/C++ comma operator was resolved. See Section

The terms true and false were defined and used throughout to shorten the descriptions. See
Section

Implicitly determined data attributes on compute constructs were clarified. See
Clarified that the default (none) clause applies to scalar variables. See[Section 2.6.21

The async, wait, and device_type clauses may be specified on data constructs. See
Section

The behavior of data clauses and data API routines with a null pointer in the clause or as a
routine argument is defined. See Sections[2.7.612.7.12] and[3.2.16H3.2.30

23

The OpenACC® API Version 3.4 1.17. Changes from Version 3.2 to 3.3

776 * Precision issues with the loop trip count calculation were clarified. See Section 2.9

777 » Text in Section was moved and reorganized to improve clarity and reduce redundancy.
778 * Some runtime routine descriptions were expanded and clarified. See Section

779 e The acc_init_device and acc_shutdown_device routines were added to initialize
780 and shut down individual devices. See Section and Section[3.2.8]

781 * Some runtime routine sections were reorganized and combined into a single section to sim-
782 plify maintenance and reduce redundant text:

783 — The sections for four ace_async_test routines were combined into a single section.
784 See Section

785 — The sections for four ace_wait routines were combined into a single section. See
786 Section

787 — The sections for four ace_wait_async routines were combined into a single section.
788 See Section

789 — The two sections for ace_copyin and acc_create were combined into a single
790 section. See Section[3.2.18]

791 — The two sections for acc_copyout and acc_delete were combined into a single
792 section. See Section[3.2.19]

793 — The two sections for acc_update_self and acc_update_device were com-
794 bined into a single section. See Section [3.2.20

795 — The two sections for acc_attach and acc_detach were combined into a single
796 section. See Section[3.2.29

797 * Added runtime API routine acc_wait_any. See section[3.2.12]

798 * The descriptions of the async and async_queue fields of acc_callback_info were
799 clarified. See Section[5.2.11

s 1.17 Changes from Version 3.2 to 3.3

801 * Updated _OPENACC value to 202211.

802 * Allowed three dimensions of gang parallelism:

803 — Defined multiple levels of gang-redundant and gang-partitioned execution modes. See
804 Section

805 Allowed multiple values in the num_gangs clauses on the parallel construct. See

806 Section [2.5.10

Allowed a dim argument to the gang clause on the 1oop construct. See Section[2.9.21

@

o

N
|

808 Allowed a dim argument to the gang clause on the routine directive. See Sec-

809 tion2.15.11

810 Changed the launch event information to include all three gang dimension sizes. See

811 Section[3.2.2]

24

The OpenACC® API Version 3.4 1.18. Changes from Version 3.3 to 3.4

812 * Clarified user-visible behavior of evaluation of expressions in clause arguments. See Sec-
813 tion[2.11

814 * Added the force modifier to the collapse clause on loops to enable collapsing non-
815 tightly nested loops. See[Section 2.9.11

816 * Generalized implicit rout ine directives for all procedures instead of just C++ lambdas. See

817
818 * Revised Section 2.15.1lfor clarity and conciseness, including:

819 — Specified predetermined routine directives that the implementation may apply.

820 — Clarified where routine directives must appear relative to definitions or uses of their
821 associated procedures in C and C++. This clarification includes the case of forward
822 references in C++ class member lists.

823 Clarified to which procedure a rout ine directive with a name applies in C and C++.

824 Clarified how a nohost clause affects a procedure’s use within a compute region.

825 * Added a Fortran interface for the following runtime routines (See [Chapter 3):

826 — acc_malloc

827 — acc_free

828 — acc_map_data

829 — acc_unmap_data

830 — acc_deviceptr

831 — acc_hostptr

832 — The two acc_memcpy_to_device routines

833 — The two acc_memcpy_from_device routines

834 — The two acc_memcpy_device routines

835 — The two ace_attach routines

836 — The four ace_detach routines

837 * Added a new error condition for acc_map_data when the bytes argument is zero. See
838 m

839 * Added recommendations for how a routine directive affects multicore host CPU compila-
840 tion. See

841 ¢ Recommended additional diagnostics promoting portable and readable OpenACC. See[Section A.3l

=2 1.18 Changes from Version 3.3 to 3.4

843 Clarified that a pgr-list must have at least one item and is not permitted to have a trailing
844 comma. See[Section 1.6

845 * Defined condition when used as an argument to a clause, and cleaned up the restrictions
846 around the if clause argument throughout the document. See

25

The OpenACC® API Version 3.4 1.18. Changes from Version 3.3 to 3.4

847 * (Clarified that a named constant in Fortran is allowed in data clauses and firstprivate
848 clauses. See

849 » Added the term integral-constant-expression to align better with base languages. See[Section 1.6l
850 * Clarified that the _Pragma operator form is supported for OpenACC directives in C and
851 C++. See Section 2.1l

852 * Clarified user-visible behavior of evaluation of expressions in directive arguments. See Section-
853 m

854 Updated _ OPENACC value to 202506. See[Section 2.2

855 * Clarified the analysis of implicit data attributes and parallelism across the boundaries of pro-
856 cedures that can appear within other procedures (e.g., C++ lambdas, C++ class member func-
857 tions, and Fortran internal procedures). See Sections 0.6.2] and[2.15.11

858 * Corrected the grammar for compute constructs to use async-argument and wait-argument,
859 consistent with the rest of the specification. See[Section 2.5l and [Section 2.16l

860 * Clarified and normalized the specification of only a single if clause being permitted on
861 data,enter data,exit data,andhost data clauses. SeelSection 2.6.5][Section 2.6.6
862 and [Section 2.8

863 * Restated data actions to improve data clause descriptions. See

864 * Added the capture modifier for specifying that a particular variable requires a discrete
865 copy in device-accessible memory, even when already in shared memory. See[Section 2.7.4]
866 Section 2.7.9/and |Section 2.7.10

867 * Added the always, alwaysin, and alwaysout modifiers to the copy, copyin, and
868 copyout data clauses. SeelSection 2.7.7} [Section 2.7.8l and [Section 2.7.91

869 Clarified that compatibility of nested levels of parallelism can be validated at compile time.
870 See Sections[2.9]and

871 * Clarified that loops affected by a tile clause must be tightly nested. See[Section 2.9.8

872 * Clarified cache directive appertainment rules. See[Section 2.10;

873 * Clarified the syntax of subrarrays and single elements in cache directives. See[Section 2.10l

874 * Added the i £ clause to the atomic construct to enable conditional atomic operations based
875 on the parallelism strategy employed. See

876 * Clarified that in Fortran any declare directive with a create or device_resident
877 clause referencing a variable with the allocatable or pointer attributes must be visible when
878 the variable is allocated or deallocated. See

879 * Clarified that intrinsic assignment of declare create variable in Fortran will result in memory
880 allocation and/or deallocation on the device if memory is allocated and/or deallocated on the
881 host. See[Section 2.13.2]

882 » Specified that routine directives are implicitly determined for C++ lambdas such that
883 gang, worker, vector, seq, and nohost clauses are selected based on their definitions.
884 See

26

885

886

887

888

889
890

892

893
894
895
896

897

898

899

900

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

The OpenACC® API Version 3.4 1.19. Corrections in the October 2025 document

* Clarified that a C++ lambda has an implicit routine directive with a nohost clause if an
enclosing accelerator routine has a nohost clause even if the lambda is unused. This case
might affect compilation of OpenACC programs during development. See

1.19 Corrections in the October 2025 document

* Restored the extension syntax and generalized routine inference, inadvertently excluded
from original document.

* Fixed modifier list for copyout clause.

1.20 Topics Deferred For a Future Revision

The following topics are under discussion for a future revision. Some of these are known to be
important, while others will depend on feedback from users. Readers who have feedback or want
to participate may send email to feedback @openacc.org. No promises are made or implied that all
these items will be available in a future revision.

* Directives to define implicit deep copy behavior for pointer-based data structures.
* Defined behavior when data in data clauses on a directive are aliases of each other.

* Clarifying when data becomes present or not present on the device for enter data orexit
data directives with an asyne clause.

* Clarifying the behavior of Fortran pointer variables in data clauses.

* Allowing Fortran pointer variables to appear in deviceptr clauses.

 Support for attaching C/C++ pointers that point to an address past the end of a memory region.
* Fully defined interaction with multiple host threads.

* Optionally removing the synchronization or barrier at the end of vector and worker loops.

* Allowing an if clause after a device_type clause.

* A shared clause (or something similar) for the loop directive.

* Better support for multiple devices from a single thread, whether of the same type or of
different types.

* An auto construct (by some name), to allow kernels-like auto-parallelization behavior
inside parallel constructs or accelerator routines.

* A begin declare ...end declare construct that behaves like putting any global vari-
ables declared inside the construct in a declare clause.

* Defining the behavior of additional parallelism constructs in the base languages when used
inside a compute construct or accelerator routine.

* Optimization directives or clauses, such as an unroll directive or clause.
* Extended reductions.
* Fortran bindings for all the API routines.

* A linear clause for the 1loop directive.

27

mailto:feedback@openacc.org

The OpenACC® API Version 3.4 1.20. Topics Deferred For a Future Revision

920 * Allowing two or more of gang, worker, vector, or seq clause on an acc routine
921 directive.

922 * A single list of all devices of all types, including the host device.

923 * A memory allocation API for specific types of memory, including device memory, host pinned
924 memory, and unified memory.

925 * Allowing non-contiguous Fortran array sections as arguments to some Runtime API routines,
926 such as acc_update_device.

927 * Bindings to other languages.

928 * Allowing capture modifier on unstructured data lifetimes.

28

929

930
931
932

933

934

935

936

937

938

939
940
941
942

943

944

945

946
947
948
949
950
951
952
953

954

955

956
957

958

959
960
961
962
963

964
965
966

The OpanCC® API Version 3.4 2.1. Directive Format

2. Directives

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++, Open-
ACC directives are specified using the pragma mechanism provided by the language. In Fortran,
OpenACC directives are specified using special comments that are identified by a unique sentinel.
Compilers will typically ignore OpenACC directives if support is disabled or not provided.

2.1 Directive Format

In C and C++, an OpenACC directive is specified as either a #pragma directive:
#fpragma acc directive-name [clause-list] new-line

or a _Pragma operator:
_Pragma ("acc directive-name [clause-list]")

While any OpenACC directive can be specified equivalently in either form, the convention in this
document is to show only the #pragma form. The first preprocessing token within either form is
acc. The remainder of the directive follows the C and C++ conventions for pragmas. Whitespace
may be used before and after the #; whitespace may be required to separate words in a directive.
Preprocessing tokens following acc are subject to macro replacement. Directives are case-sensitive.

In Fortran, OpenACC directives are specified in free-form source files as
'$Sacc directive-name [clause-list]

The comment prefix (!) may appear in any column, but may only be preceded by whitespace (spaces
and tabs). The sentinel (!$acc) must appear as a single word, with no intervening whitespace.
Line length, whitespace, and continuation rules apply to the directive line. Initial directive lines
must have whitespace after the sentinel. Continued directive lines must have an ampersand (&) as
the last nonblank character on the line, prior to any comment placed in the directive. Continuation
directive lines must begin with the sentinel (possibly preceded by whitespace) and may have an
ampersand as the first non-whitespace character after the sentinel. Comments may appear on the
same line as a directive, starting with an exclamation point and extending to the end of the line. If
the first nonblank character after the sentinel is an exclamation point, the line is ignored.

In Fortran fixed-form source files, OpenACC directives are specified as one of

' Sacc directive-name [clause-list]
c$acc directive-name [clause-list]
*$Sacc directive-name [clause-list]

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,
whitespace, continuation, and column rules apply to the directive line. Initial directive lines must
have a space or zero in column 6, and continuation directive lines must have a character other than
a space or zero in column 6. Comments may appear on the same line as a directive, starting with an
exclamation point on or after column 7 and continuing to the end of the line.

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued state-
ments, and statements must not be embedded within continued directives. In this document, free
form is used for all Fortran OpenACC directive examples.

29

967

968

969
970
971

972

973

974

976

977

978

979

980
981

982

983
984

985
986
987
988
989

990

991

992

993
994
995

996

997

998

999

1000

1001

1002
1003

The OpanCC® API Version 3.4 2.1. Directive Format

Only one directive-name can appear per directive, except that a combined directive name is consid-
ered a single directive-name.

The order in which clauses appear is not significant unless otherwise specified. A program must
not depend on the order of evaluation of expressions in clause, construct, or directive arguments,
or on any side effects of the evaluations. (See examples below.) Clauses may be repeated unless
otherwise specified.

Clause names beginning with two consecutive underscores (__) are reserved for the implementa-
tion; an implementation should ignore such a clause if the clause is not supported by the implemen-
tation. Such clauses must follow the grammar below:

__clause—name [(balanced-paren-token-sequence) |

Note: In Fortran fixed-form source files, clauses without parentheses may result in parsing ambigu-
ity. In such cases the optional comma separator should be used to disambiguate the clause.

Further details of OpenACC directive syntax are presented in

v v
Examples

* In the following example, the order and number of evaluations of ++3i and calls to foo ()
and bar () are unspecified.
#pragma acc parallel \
num_gangs (foo (++i)) \
num_workers (bar (++i)) \
async (foo (++1))
{ ...}

See Section 2.5.1] for the parallel construct.

* In the following example, if the implementation knows that array is not present in the
current device memory, it may omit calling size ().

#pragma acc update \
device (array[0:size()])
if present

See Section 2.14.4] for the update directive.

* In the following example, execution and order of the constructor and destructor of S and U is
not guaranteed.

#pragma acc wait (devnum:S{}.Value:queues:acc_async_sync) \
if (U{}.Condition)

See Section[2.16.3]for the wait directive.

30

1004

1005
1006
1007

1008

1009

1010
1011
1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023
1024
1025
1026
1027
1028

1029

1030

1031
1032

The OpanCC® API Version 3.4 2.2. Conditional Compilation

2.2 Conditional Compilation

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is
the month designation of the version of the OpenACC directives supported by the implementation.
This macro must be defined by a compiler only when OpenACC directives are enabled. The version
described here is 202506.

2.3 Internal Control Variables

An OpenACC implementation acts as if there are internal control variables (ICVs) that control the
behavior of the program. These ICVs are initialized by the implementation, and may be given
values through environment variables and through calls to OpenACC API routines. The program
can retrieve values through calls to OpenACC API routines.

The ICVs are:
* acc-current-device-type-var - controls which type of device is used.
* acc-current-device-num-var - controls which device of the selected type is used.

* acc-default-async-var - controls which asynchronous queue is used when none appears in an
async clause.

2.3.1 Modifying and Retrieving ICV Values

The following table shows environment variables or procedures to modify the values of the internal
control variables, and procedures to retrieve the values:

ICV Ways to modify values Way to retrieve value
acc-current-device-type-var acc_set_device_type acc_get_device_type
set device_type
init device_type
ACC_DEVICE_TYPE
acc-current-device-num-var acc_set_device_ num acc_get_device_num
set device_num
init device num
ACC_DEVICE_NUM
acc-default-async-var acc_set_default_async acc_get_default_async
set default_async

The initial values are implementation-defined. After initial values are assigned, but before any
OpenACC construct or API routine is executed, the values of any environment variables that were
set by the user are read and the associated ICVs are modified accordingly. There is one copy of
each ICV for each host thread that is not generated by a compute construct. For threads that are
generated by a compute construct the initial value for each ICV is inherited from the local thread.
The behavior for each ICV is as if there is a copy for each thread. If an ICV is modified, then a
unique copy of that ICV must be created for the modifying thread.

2.4 Device-Specific Clauses

OpenACC directives can specify different clauses or clause arguments for different devices using
the device_type clause. Clauses that precede any device_type clause are default clauses.

31

The OpenACC® API Version 3.4 2.4. Device-Specific Clauses

1033 Clauses that follow a device_type clause up to the end of the directive or up to the next
10« device_type clause are device-specific clauses for the device types specified in the device_type
1035 argument. For each directive, only certain clauses may be device-specific clauses. If a directive has
1036 at least one device-specific clause, it is device-dependent, and otherwise it is device-independent.

1037 The argument to the device_type clause is a comma-separated list of one or more device ar-
1038 chitecture name identifiers, or an asterisk. An asterisk indicates all device types that are not named
1039 in any other device_type clause on that directive. A single directive may have one or several
1040 device_type clauses. The device_type clauses may appear in any order.

1041 Except where otherwise noted, the rest of this document describes device-independent directives, on
1042 which all clauses apply when compiling for any device type. When compiling a device-dependent
1043 directive for a particular device type, the directive is treated as if the only clauses that appear are (a)
1044 the clauses specific to that device type and (b) all default clauses for which there are no like-named
1045 clauses specific to that device type. If, for any device type, the resulting directive is nonconforming,
1046 then the original directive is nonconforming.

1047 'The supported device types are implementation-defined. Depending on the implementation and the
1048 compiling environment, an implementation may support only a single device type, or may support
1049 multiple device types but only one at a time, or may support multiple device types in a single
100 compilation.

1051 A device architecture name may be generic, such as a vendor, or more specific, such as a partic-
102 ular generation of device; see Appendix [Al[Recommendations for Implementers| for recommended
1053 names. When compiling for a particular device, the implementation will use the clauses associated
104 with the device_type clause that specifies the most specific architecture name that applies for
1055 this device; clauses associated with any other device_type clause are ignored. In this context,
10s6 the asterisk is the least specific architecture name.

1057 Syntax

1058 The syntax of the device_type clause is

1059 device_type(*)
1060 device_type (device-type-list)
1061

162 The device_type clause may be abbreviated to dtype.

1063V v
106« Examples

1065

1066 * On the following directive, worker appears as a device-specific clause for devices of type
1067 foo, but gang appears as a default clause and so applies to all device types, including foo.
1068 #fpragma acc loop gang device_type (foo) worker

1069 * The first directive below is identical to the previous directive except that loop is replaced
1070 with routine. Unlike 1loop, routine does not permit gang to appear with worker,
1071 but both apply for device type f£oo, so the directive is nonconforming. The second directive
1072 below is conforming because gang there applies to all device types except £oo.

32

1073
1074
1075
1076
1077
1078

1079
1080

1081

1082
1083
1084

1085

1086

1087
1088
1089

1090

1091

1092

1093
1094

1095

1096
1097
1098

1099

1100
1101

1102

1103

1104

1105

1106

1107

1108

1109
1110

1111

The OpenACC® API Version 3.4 2.5. Compute Constructs

// nonconforming: gang and worker not permitted together
#fpragma acc routine gang device_type (foo) worker

// conforming: gang and worker for different device types
#pragma acc routine device_type (foo) worker \
device_type (*) gang

* On the directive below, the value of num_gangs is 4 for device type £oo, but it is 2 for all
other device types, including bar. That is, foo has a device-specific num_gangs clause,
so the default num_gangs clause does not apply to foo.

!$acc parallel num_gangs (2) &
'Sacc device_type (foo) num gangs(4) &
'Sacc device_type (bar) num workers (8)

* The directive below is the same as the previous directive except that num_gangs (2) has
moved after device_type (*) and so now does not apply to £oo or bar.

!Sacc parallel device_type (*) num_gangs (2) &
!$acc device_type (foo) num _gangs(4) &
'Sacc device_type (bar) num workers (8)

2.5 Compute Constructs

Compute constructs indicate code that is intended to be executed on the current device. It is imple-
mentation defined how users specify for which accelerators that code is compiled and whether it is
also compiled for the host.

For any point in the program, the parent procedure is the nearest lexically enclosing procedure such
that expressions at this point are not evaluated until the procedure is called. For example, the parent
procedure within the capture specification of a C++ lambda is the procedure in which the lambda is
defined, but the parent procedure within the lambda’s body is the lambda itself.

For any point in the program, the parent compute construct is the nearest lexically enclosing com-
pute construct that has the same parent procedure.

For any point in the program, the parent compute scope is the parent compute construct or, if none,

the parent procedure.

2.5.1 Parallel Construct
Summary
This fundamental construct starts parallel execution on the current device.

Syntax
In C and C++, the syntax of the OpenACC parallel construct is

#pragma acc parallel [clause-list] new-line
structured block

33

1112

1113
1114

1115

1116

1117
1118

1119

1120

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140

1141

1142
1143
1144
1145
1146

1147

1148
1149

1150

1151
1152

1153

1154

The OpenACC® API Version 3.4 2.5. Compute Constructs

and in Fortran, the syntax is

'$acc parallel [clause-list |
structured block
!$acc end parallel

or

'Sacc parallel [clause-list]
block construct
[t$acc end parallel]

where clause is one of the following:

async [(async-argument)]
wait [(wait-argument)]
num_gangs (int-expr-list)
num_workers (int-expr)
vector_length (int-expr)
device_type (device-type-list)
if (condition)

self [(condition)]
reduction (operator : var-list)
copy ([modifier-list : | var-list)
copyin ([modifier-list : | var-list)
copyout ([modifier-list : | var-list)
create ([modifier-list : | var-list)
no_create (var-list)

present (var-list)

deviceptr (var-list)

attach (var-list)

private (var-list)
firstprivate (var-list)
default (none | present)

Description

When the program encounters an accelerator parallel construct, one or more gangs of workers
are created to execute the accelerator parallel region. The number of gangs, and the number of
workers in each gang and the number of vector lanes per worker remain constant for the duration of
that parallel region. Each gang begins executing the code in the structured block in gang-redundant
mode even if there is only a single gang. This means that code within the parallel region, but outside
of a loop construct with gang-level worksharing, will be executed redundantly by all gangs.

One worker in each gang begins executing the code in the structured block of the construct. Note:
Unless there is a Loop construct within the parallel region, all gangs will execute all the code within
the region redundantly.

If the async clause does not appear, there is an implicit barrier at the end of the accelerator parallel
region, and the execution of the local thread will not proceed until all gangs have reached the end
of the parallel region.

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach

34

1155
1156
1157

1158

1159

1160

1161
1162
1163
1164

1165

1166

1167

1168
1169

1170

171

1172
1173

1174

1175

1176
177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191
1192

1193

The OpenACC® API Version 3.4 2.5. Compute Constructs

data clauses are described in Section The private and firstprivate
clauses are described in Sections 2.5.13] and Sections 2.5.14l The device_type clause is de-
scribed in Section 2.4][Device-Specific Clauses| Implicitly determined data attributes are described
in Section2.6.2 Restrictions are described in Section[2.5.4

2.5.2 Serial Construct

Summary

This construct defines a region of the program that is to be executed sequentially on the current
device. The behavior of the serial construct is the same as that of the construct
except that it always executes with a single gang of a single worker with a vector length of one.
Note: The serial construct may be used to execute sequential code on the current device,
which removes the need for data movement when the required data is already present on the device.

Syntax
In C and C++, the syntax of the OpenACC serial construct is

#fpragma acc serial [clause-list] new-line
structured block

and in Fortran, the syntax is

'$Sacc serial [clause-list |
structured block
!Sacc end serial

or

'Sacc serial [clause-list]
block construct
[!$acc end serial]

where clause is as for the construct except that the num_gangs, num_workers, and
vector_length clauses are not permitted.

2.5.3 Kernels Construct

Summary

This construct defines a region of the program that is to be compiled into a sequence of kernels for
execution on the current device.

Syntax
In C and C++, the syntax of the OpenACC kernels construct is

#pragma acc kernels [clause-list | new-line
structured block

and in Fortran, the syntax is

'Sacc kernels [clause-list |
structured block
!Sacc end kernels

35

1194

1195
1196

1197

1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215

1216

1217
1218
1219

1220

1221
1222

1223

1224
1225
1226

1227

1228

1229

1230

1231

1232

1233

The OpenACC® API Version 3.4 2.5. Compute Constructs

or

'Sacc kernels [clause-list]
block construct
['$acc end kernels]

where clause is one of the following:

async [(async-argument) |
wait [(wait-argument)]
num_gangs (int-expr)
num_workers (int-expr)
vector_length (int-expr)
device_type (device-type-list)
if (condition)

self [(condition)]

copy ([modifier-list : | var-list)
copyin ([modifier-list : | var-list)
copyout ([modifier-list : | var-list)
create ([modifier-list : | var-list)
no_create (var-list)

present (var-list)

deviceptr (var-list)

attach (var-list)

default (none | present)

Description

The compiler will split the code in the kernels region into a sequence of accelerator kernels. Typi-
cally, each loop nest will be a distinct kernel. When the program encounters a kernels construct,
it will launch the sequence of kernels in order on the device. The number and configuration of gangs
of workers and vector length may be different for each kernel.

If the async clause does not appear, there is an implicit barrier at the end of the kernels region,
and the local thread execution will not proceed until the entire sequence of kernels has completed
execution.

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach
data clauses are described in Section The device_type clause is described
in Section 2.4][Device-Specific Clauses} Implicitly determined data attributes are described in Sec-
tion 2.6.2] Restrictions are described in Section[2.5.4

2.5.4 Compute Construct Restrictions

The following restrictions apply to all compute constructs:
* A program may not branch into or out of a compute construct.

* Only the async, wait, num_gangs, num workers, and vector_length clauses
may follow a device_type clause.

* At most one if clause may appear.

36

1234

1235

1236

1237

1238

1239
1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255
1256

1257

1258

1259
1260

1261

1262

1263

1264

1265

1266

1267

The OpenACC® API Version 3.4 2.5. Compute Constructs

* At most one default clause may appear, and it must have a value of either none or
present.

* A reduction clause may not appear on a parallel construct with a num_gangs clause

that has more than one argument.

2.5.5 Compute Construct Errors

* An acc_error_wrong_device_type error is issued if the compute construct was not
compiled for the current device type. This includes the case when the current device is the
host multicore.

* An acc_error_device_type_unavailable error is issued if no device of the cur-
rent device type is available.

e Anacc_error_device unavailable error is issued if the current device is not avail-
able.

e Anacec_error _device_ init erroris issued if the current device cannot be initialized.

* An acc_error_execution error is issued if the execution of the compute construct on
the current device type fails and the failure can be detected.

» Explicit or implicitly determined data attributes can cause an error to be issued; see Sec-
tion2.7.31

e An async or wait clause can cause an error to be issued; see Sections 2.16.1land 2.16.21

See Section[5.2.2)

2.5.6 if clause

The if clause is optional.
When the condition in the i £ clause evaluates to true., the region will execute on the current device.

When the condition in the 1 £ clause evaluates to false, the local thread will execute the region.

2.5.7 self clause

The self clause is optional.

The self clause may have a single condition argument. If the condition argument is not present it
is assumed to evaluate to true. When both an i £ clause and a sel £ clause appear and the condition
in the i £ clause evaluates to false, the self clause has no effect.

When the condition evaluates to true, the region will execute on the local device. When the condition
in the self clause evaluates to false, the region will execute on the current device.

2.5.8 async clause

The asynec clause is optional; see Section [2.16][Asynchronous Behavior] for more information.

2.5.9 wait clause

The wait clause is optional; see Section [2.16|[Asynchronous Behavior| for more information.

37

The OpenACC® API Version 3.4 2.5. Compute Constructs

s 2.5.10 num_gangs clause

1260 The num_gangs clause is allowed on the parallel and kernels constructs. On aparallel
1270 construct, it may have one, two, or three arguments. The values of the integer expressions define
1271 the number of parallel gangs along dimensions one, two, and three that will execute the parallel
1272 region. If it has fewer than three arguments, the missing values are treated as having the value 1.
1273 The total number of gangs must be at least 1 and is the product of the values of the arguments. On a
1274 kernels construct, the num_gangs clause must have a single argument, the value of which will
1275 define the number of parallel gangs that will execute each kernel created for the kernels region.

1276 If the num_gangs clause does not appear, an implementation-defined default will be used which
1277 may depend on the code within the construct. The implementation may use a lower value than
1278 specified based on limitations imposed by the target architecture.

2o 2.5.11 num_workers clause

1280 The num_workers clause is allowed on the parallel and kernels constructs. The value
1281 of the integer expression defines the number of workers within each gang that will be active after
1282 a gang transitions from worker-single mode to worker-partitioned mode. If the clause does not
1283 appear, an implementation-defined default will be used; the default value may be 1, and may be
128+ different for each parallel construct or for each kernel created for a kernels construct. The
1285 implementation may use a different value than specified based on limitations imposed by the target
1286 architecture.

g7 2.5.12 vector_length clause

1288 The vector_length clause is allowed on the parallel and kernels constructs. The value
1289 of the integer expression defines the number of vector lanes that will be active after a worker transi-
1200 tions from vector-single mode to vector-partitioned mode. This clause determines the vector length
1291 to use for vector or SIMD operations. If the clause does not appear, an implementation-defined
1202 default will be used. This vector length will be used for loop constructs annotated with the vector
1203 clause, as well as loops automatically vectorized by the compiler. The implementation may use a
1204 different value than specified based on limitations imposed by the target architecture.

s 2.5.13 private clause

1266 The private clause is allowed on the parallel and serial constructs; it declares that a copy
1297 of each item on the list will be created for each gang in all dimensions.

1206 Restrictions

1299 * See Section2.17.1|Optional Arguments|for discussion of Fortran optional arguments in private
1300 clauses.

w1 2.5.14 firstprivate clause

1302 The £irstprivate clause is allowed on the parallel and serial constructs; it declares that
1303 a copy of each item on the list will be created for each gang, and that the copy will be initialized with
1304 the value of that item on the local thread when a parallel or serial construct is encountered.

38

1305

1306

1307

1308

1309
1310
1311
1312
1313
1314
1315
1316
1317

1318

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

1329

1330

1331

1332

1333

1334

The OpenACC® API Version 3.4 2.5. Compute Constructs

Restrictions

* See Section [Optional Arguments| for discussion of Fortran optional arguments in
firstprivate clauses.

2.5.15 reduction clause

The reduction clause is allowed on the parallel and serial constructs. It specifies a
reduction operator and one or more vars. It implies copy clauses as described in Section[2.6.2] For
each reduction var, a private copy is created for each parallel gang and initialized for that operator.
At the end of the region, the values for each gang are combined using the reduction operator, and
the result combined with the value of the original var and stored in the original var. If the reduction
var is an array or subarray, the array reduction operation is logically equivalent to applying that
reduction operation to each element of the array or subarray individually. If the reduction var
is a composite variable, the reduction operation is logically equivalent to applying that reduction
operation to each member of the composite variable individually. The reduction result is available
after the region.

The following table lists the operators that are valid and the initialization values; in each case, the
initialization value will be cast into the data type of the var. For max and min reductions, the
initialization values are the least representable value and the largest representable value for that data
type, respectively. At a minimum, the supported data types include Fortran logical as well as
the numerical data types in C (e.g., _Bool, char, int, float, double, float _Complex,
double _Complex), C++ (e.g., bool, char, wchar_t, int, float, double), and Fortran
(e.g., integer, real, double precision, complex). However, for each reduction operator,
the supported data types include only the types permitted as operands to the corresponding operator
in the base language where (1) for max and min, the corresponding operator is less-than and (2) for
other operators, the operands and the result are the same type.

C and C++ Fortran
operator initialization | operator initialization
value value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& "0 iand all bits on

| 0 ior 0

~ 0 ieor 0

&& 1 .and. .true.

I 0 .or. .false.
.eqv. .true.
.neqv. .false.

Restrictions

* A var in a reduction clause must be a scalar variable name, an aggregate variable name,
an array element, or a subarray (refer to Section 2.7.1)).

* If the reduction var is an array element or a subarray, accessing the elements of the array
outside the specified index range results in unspecified behavior.

39

1335

1336

1337

1338

1339

1340

1341
1342

1343

1344

1345
1346
1347
1348
1349
1350

1351

1352
1353
1354
1355
1356
1357
1358
1359
1360

1361
1362
1363
1364
1365
1366

1367

1368
1369
1370

1371

1372
1373

1374

The OpanCC® API Version 3.4 2.6. Data Environment

* The reduction var may not be a member of a composite variable.

* If the reduction var is a composite variable, each member of the composite variable must be
a supported datatype for the reduction operation.

» See Section [2.17.1] [Optional Arguments| for discussion of Fortran optional arguments in
reduction clauses.

2.5.16 default clause

The default clause is optional. At most one default clause may appear. It adjusts what
data attributes are implicitly determined for variables used in the compute construct as described in

Section[2.6.2

2.6 Data Environment

This section describes the data attributes for variables. The data attributes for a variable may be
predetermined, implicitly determined, or explicitly determined. Variables with predetermined data
attributes may not appear in a data clause that conflicts with that data attribute. Variables with
implicitly determined data attributes may appear in a data clause that overrides the implicit attribute.
Variables with explicitly determined data attributes are those which appear in a data clause on a
data construct, a compute construct, or a declare directive. See[Section A.3.3|for recommended
diagnostics related to data attributes.

OpenACC supports systems with accelerators that have discrete memory from the host, systems
with accelerators that share memory with the host, as well as systems where an accelerator shares
some memory with the host but also has some discrete memory that is not shared with the host.
In the first case, no data is in shared memory. In the second case, all data is in shared memory.
In the third case, some data may be in shared memory and some data may be in discrete memory,
although a single array or aggregate data structure must be allocated completely in shared or discrete
memory. When a nested OpenACC construct is executed on the device, the default target device for
that construct is the same device on which the encountering accelerator thread is executing. In that
case, the target device shares memory with the encountering thread.

Memory is considered shared memory if data residing in that memory is accessible from both the
host and the current device. Memory is considered device memory if it is physically connected to the
current device. Memory is considered device-accessible if it is accessible from the current device,
regardless of where the physical memory resides. A captured variable is a variable which the user
has specific must have a device-accessible copy that is discrete from the original, even if the original
is in shared memory.

2.6.1 Variables with Predetermined Data Attributes

The loop variable in a C for statement or Fortran do statement that is associated with a loop
directive is predetermined to be private to each thread that will execute each iteration of the loop.
Loop variables in Fortran do statements within a compute construct are predetermined to be private
to the thread that executes the loop.

Variables declared in a C block or Fortran block construct that is executed in vector-partitioned
mode are private to the thread associated with each vector lane. Variables declared in a C block
or Fortran block construct that is executed in worker-partitioned vector-single mode are private to

40

1375
1376

1377

1378
1379
1380
1381
1382

1383

1384

1385

1386

1387
1388

1389

1390

1391
1392

1393

1394
1395
1396

1397

1398
1399
1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

The OpanCC® API Version 3.4 2.6. Data Environment

the worker and shared across the threads associated with the vector lanes of that worker. Variables
declared in a C block or Fortran block construct that is executed in worker-single mode are private
to the gang and shared across the threads associated with the workers and vector lanes of that gang.

A procedure called from a compute construct will be annotated as seq, vector, worker, or
gang, as described Section [2.15][Procedure Calls in Compute Regions| Variables declared in seq
routine are private to the thread that made the call. Variables declared in vector routine are private
to the worker that made the call and shared across the threads associated with the vector lanes of
that worker. Variables declared in worker or gang routine are private to the gang that made the
call and shared across the threads associated with the workers and vector lanes of that gang.

2.6.2 Variables with Implicitly Determined Data Attributes

When implicitly determining data attributes on a compute construct, the following clauses are visi-
ble and variable accesses are exposed to the compute construct:

* Visible default clause: The nearest default clause appearing on the compute construct
or on a lexically enclosing data construct that has the same parent compute scope.

* Visible data clause: Any data clause on the compute construct, on a lexically enclosing data
construct that has the same parent compute scope, or on a visible declare directive.

* Exposed variable access: Any access to the data or address of a variable at a point within the
compute construct where the variable is not private to a scope lexically enclosed within the
compute construct.

Note: In the argument of C’s sizeof operator, the appearance of a variable is not an exposed
access because neither its data nor its address is accessed. In the argument of a reduction
clause on an enclosed loop construct, the appearance of a variable that is not otherwise
privatized is an exposed access to the original variable.

On a compute or combined construct, if a variable appears in a reduction clause but no other
data clause, it is treated as if it also appears in a copy clause. Otherwise, for any variable, the
compiler will implicitly determine its data attribute on a compute construct if all of the following
conditions are met:

* There is no default (none) clause visible at the compute construct.

* An access to the variable is exposed to the compute construct.

* The variable does not appear in a data clause visible at the compute construct.
An aggregate variable will be treated as if it appears either:

* In a present clause if there is a default (present) clause visible at the compute con-
struct.

* In a copy clause otherwise.
A scalar variable will be treated as if it appears either:
* In a copy clause if the compute construct is a kernels construct.

* Ina firstprivate clause otherwise.

41

1412
1413

1414

1415

1416
1417
1418

1419

1420
1421
1422
1423
1424
1425

1426

1427
1428
1429
1430
1431
1432

1433

1434

1435
1436
1437
1438
1439
1440
1441

1442

1443

1444

1445

1446

1447
1448
1449
1450

1451

1452
1453

The OpanCC® API Version 3.4 2.6. Data Environment

Note: Any default (none) clause visible at the compute construct applies to both aggregate
and scalar variables. However, any default (present) clause visible at the compute construct
applies only to aggregate variables.

Restrictions

* If there is a default (none) clause visible at a compute construct, for any variable access
exposed to the compute construct, the compiler requires the variable to appear either in an
explicit data clause visible at the compute construct or in a firstprivate, private, or
reduction clause on the compute construct.

* If a scalar variable appears in a reduction clause on a 1oop construct that has a parent
parallel or serial construct, and if the reduction’s access to the original variable is
exposed to the parent compute construct, the variable must appear either in an explicit data
clause visible at the compute construct orin a firstprivate, private, or reduction
clause on the compute construct. Note: Implementations are encouraged to issue a compile-
time diagnostic when this restriction is violated to assist users in writing portable OpenACC
applications.

If a C++ lambda is called in a compute region and does not appear in a data clause, then it is
treated as if it appears in a copyin clause on the current construct. A variable captured by a
lambda is processed according to its data types: a pointer type variable is treated as if it appears
in a no_create clause; a reference type variable is treated as if it appears in a present clause;
for a struct or a class type variable, any pointer member is treated as if it appears in a no_create
clause on the current construct. If the variable is defined as global or file or function static, it must
appear in a declare directive.

2.6.3 Data Regions and Data Lifetimes

Data in shared memory is accessible from the current device as well as to the local thread. Such
data is available to the accelerator for the lifetime of the variable. Data not in shared memory must
be copied to and from device memory using data constructs, clauses, and API routines. A data
lifetime is the duration from when the data is first made available to the accelerator until it becomes
unavailable. For data in shared memory, the data lifetime begins when the data is allocated and
ends when it is deallocated; for statically allocated data, the data lifetime begins when the program
begins and does not end. For data not in shared memory, the data lifetime begins when it is made
present and ends when it is no longer present.

There are four types of data regions. When the program encounters a data construct, it creates a
data region.

When the program encounters a compute construct with explicit data clauses or with implicit data
allocation added by the compiler, it creates a data region that has a duration of the compute construct.

When the program enters a procedure, it creates an implicit data region that has a duration of the
procedure. That is, the implicit data region is created when the procedure is called, and exited when
the program returns from that procedure invocation. There is also an implicit data region associated
with the execution of the program itself. The implicit program data region has a duration of the
execution of the program.

In addition to data regions, a program may create and delete data on the accelerator using enter
data and exit data directives or using runtime API routines. When the program executes

42

1454
1455

1456

1457

1458
1459

1460

1461
1462
1463
1464

1465

1466
1467
1468
1469
1470
1471
1472
1473
1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485
1486

1487

1488

1489
1490

1491

1492

The OpanCC® API Version 3.4 2.6. Data Environment

an enter data directive, or executes a call to a runtime APl acc_copyin or acc_create
routine, each var on the directive or the variable on the runtime API argument list will be made live
on accelerator.

2.6.4 Data Structures with Pointers

This section describes the behavior of data structures that contain pointers. A pointer may be a
C or C++ pointer (e.g., £loat*), a Fortran pointer or array pointer (e.g., real, pointer,
dimension (:)), or a Fortran allocatable (e.g., real, allocatable, dimension(:)).

When a data object is copied to device memory, the values are copied exactly. If the data is a data
structure that includes a pointer, or is just a pointer, the pointer value copied to device memory
will be the host pointer value. If the pointer target object is also allocated in or copied to device
memory, the pointer itself needs to be updated with the device address of the target object before
dereferencing the pointer in device memory.

An attach action updates the pointer in device memory to point to the device copy of the data that
the host pointer targets; see Section For Fortran array pointers and allocatable arrays, this
includes copying any associated descriptor (dope vector) to the device copy of the pointer. When
the device pointer target is deallocated, the pointer in device memory is restored to the host value, so
it can be safely copied back to host memory. A detach action updates the pointer in device memory
to have the same value as the corresponding pointer in local memory; see Section The attach
and detach actions are performed by the copy, copyin, copyout, create, attach, and
detach data clauses (Sections 2.7.53H2.7.14), and the acc_attach and acc_detach runtime
API routines (Section [3.2.29). The attach and detach actions use attachment counters to determine
when the pointer in device memory needs to be updated; see Section 2.6.8

2.6.5 Data Construct

Summary

The data construct defines vars are accessible to the current device for the duration of the region.
It also defines the data actions that occur upon entry to and exit from the region.

Syntax
In C and C++, the syntax of the OpenACC data construct is

#pragma acc data [clause-list] new-line
structured block

and in Fortran, the syntax is

'Sacc data [clause-list]
structured block
!Sacc end data

or

'$Sacc data [clause-list]
block construct
[!$acc end data]

where clause is one of the following:

43

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

1505

1506

1507
1508
1509
1510

1511

1512

1513

1514

1515

1516

1517

1518
1519
1520
1521
1522

1523

1524

1525

1526
1527
1528
1529

1530

1531

1532

The OpanCC® API Version 3.4 2.6. Data Environment

if (condition)

async [(async-argument)]
wait [(wait-argument) |
device_type (device-type-list)
copy ([modifier-list : | var-list)
copyin ([modifier-list :] var-list)
copyout ([modifier-list : | var-list)
create ([modifier-list : | var-list)
no_create (var-list)

present (var-list)
deviceptr (var-list)

attach (var-list)

default (none | present)

Description

Data will be allocated in the memory of the current device and copied from local memory to device
memory, or copied back, as required. The data clauses are described in Section
Structured reference counters are incremented for data when entering a data region, and decre-
mented when leaving the region, as described in Section[2.6.7[Reference Countersl The device_type
clause is described in Section [2.4]|Device-Specific Clauses|

Restrictions
* At least one copy, copyin, copyout, create, no_create, present, deviceptr,
attach, or default clause must appear on a data construct.

* Only the async and wait clauses may follow a device_type clause.

* At most one if clause may appear on a data directive.

if clause

The if clause is optional; when there is no i £ clause, the compiler will generate code to allocate
space in the current device memory and move data from and to the local memory as required. When
an if clause appears, the program will conditionally allocate memory in and move data to and/or
from device memory. When the condition in the if clause evaluates to false, no device memory
will be allocated, and no data will be moved. When the condition evaluates to true, the data will be
allocated and moved as specified.

async clause

The asynec clause is optional; see Section [2.16][Asynchronous Behavior] for more information.

Note: The async clause only affects operations directly associated with this particular data con-
struct, such as data transfers. Execution of the associated structured block or block construct remains
synchronous to the local thread. Nested OpenACC constructs, directives, and calls to runtime li-
brary routines do not inherit the async clause from this construct, and the programmer must take
care to not accidentally introduce race conditions related to asynchronous data transfers.

wait clause

The wait clause is optional; see Section 2.16][Asynchronous Behavior for more information.

44

1533

1534
1535

1536

1537

1538

1539

1540

1541

1542
1543
1544
1545

1546

1547

1548

1549

1550

1551

1552

1553
1554
1555
1556
1557

1558

1559

1560

1561

1562

1563

1564
1565
1566
1567
1568
1569

1570

The OpanCC® API Version 3.4 2.6. Data Environment

default clause

The default clause is optional. At most one default clause may appear. It adjusts what data
attributes are implicitly determined for variables used in lexically contained compute constructs as
described in Section[2.6.21

Errors

» See Section for errors due to data clauses.

e See Sections 2.16.1land 2.16.2] for errors due to async or wait clauses.

2.6.6 Enter Data and Exit Data Directives

Summary

An enter data directive defines vars are accessible to the current device for the remaining dura-
tion of the program, or until an exit data directive makes the data no longer accessible. These
directives also specify data actions which occur upon reaching the enter data or exit data di-
rective. The dynamic data lifetime for data referred to by an enter data or exit data directive
is defined by its dynamic reference counter, as defined in Section

Syntax

In C and C++, the syntax of the OpenACC enter data directive is
#pragma acc enter data clause-list new-line

and in Fortran, the syntax is
!$acc enter data clause-list

where clause is one of the following:

if (condition)

async [(async-argument) |

wait [(wait-argument) |
copyin ([modifier-list : | var-list)
create ([modifier-list : | var-list)
attach (var-list)

In C and C++, the syntax of the OpenACC exit data directive is
#pragma acc exit data clause-list new-line

and in Fortran, the syntax is
1Sacc exit data clause-list

where clause is one of the following:

if (condition)

async [(async-argument) |

wait [(wait-argument)]
copyout ([modifier-list : | var-list)
delete (var-list)

detach (var-list)

finalize

45

1571

1572
1573
1574
1575
1576

1577

1578
1579
1580
1581

1582

1583

1584

1585

1586
1587

1588

1589

1590

1591

1592
1593
1594
1595
1596
1597

1598

1599

1600

1601

1602

1603
1604
1605
1606
1607

1608

The OpanCC® API Version 3.4 2.6. Data Environment

Description

At an enter data directive, data may be allocated in the current device memory and copied from
local memory to device memory. This action enters a data lifetime for those vars, and will make
the data available for present clauses on constructs within the data lifetime. Dynamic reference
counters are incremented for this data, as described in Section Reference Countersl Pointers
in device memory may be attached to point to the corresponding device copy of the host pointer
target.

At an exit data directive, data may be copied from device memory to local memory and deal-
located from device memory. If no £inalize clause appears, dynamic reference counters are
decremented for this data. If a finalize clause appears, the dynamic reference counters are set
to zero for this data. Pointers in device memory may be detached so as to have the same value as
the original host pointer.

The data clauses are described in Section [Data Clausesl Reference counting behavior is de-
scribed in Section 2.6.7|Reference Counters|

Restrictions

* At least one copyin, create, or attach clause must appear on an enter data direc-
tive.

* At least one copyout, delete, or detach clause must appear on an exit data direc-
tive.

* At most one if clause may appear on an enter data or exit data directive.

if clause

The if clause is optional; when there is no i £ clause, the compiler will generate code to allocate or
deallocate space in the current device memory and move data from and to local memory. When an
if clause appears, the program will conditionally allocate or deallocate device memory and move
data to and/or from device memory. When the condition in the if clause evaluates to false, no
device memory will be allocated or deallocated, and no data will be moved. When the condition
evaluates to true, the data will be allocated or deallocated and moved as specified.

async clause

The asynec clause is optional; see Section [2.16][Asynchronous Behavior] for more information.

wait clause

The wait clause is optional; see Section [2.16|[Asynchronous Behavior| for more information.

finalize clause

The £inalize clauseis allowed on the exit data directive and is optional. Whenno £inalize
clause appears, the exit data directive will decrement the dynamic reference counters for vars
appearing in copyout and delete clauses, and will decrement the attachment counters for point-
ers appearing in detach clauses. If a finalize clause appears, the exit data directive will
set the dynamic reference counters to zero for vars appearing in copyout and delete clauses,
and will set the attachment counters to zero for pointers appearing in detach clauses.

46

1609

1610

1611

1612

1613
1614

1615

1616
1617
1618
1619
1620
1621
1622
1623
1624

1625

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

1637

1638

1639

1640

1641
1642
1643
1644
1645
1646

1647

1648
1649

The OpanCC® API Version 3.4 2.6. Data Environment

Errors
» See Section for errors due to data clauses.

* See Sections and [2.16.2] for errors due to async or wait clauses.

2.6.7 Reference Counters

When device memory is allocated for data not in shared memory due to data clauses or OpenACC
API routine calls, the OpenACC implementation keeps track of that section of device memory and
its relationship to the corresponding data in host memory.

Each section of device memory is associated with two reference counters per device, a structured
reference counter and a dynamic reference counter. The structured and dynamic reference counters
are used to determine when to allocate or deallocate data in device memory. The structured reference
counter for a section of memory keeps track of how many nested data regions have been entered for
that data. The initial value of the structured reference counter for static data in device memory (in a
global declare directive) is one; for all other data, the initial value is zero. The dynamic reference
counter for a section of memory keeps track of how many dynamic data lifetimes are currently active
in device memory for that section. The initial value of the dynamic reference counter is zero. Data
is considered present if the sum of the structured and dynamic reference counters is greater than
Zero.

A structured reference counter is incremented when entering each data or compute region that con-
tain an explicit data clause or implicitly-determined data attributes for that section of memory, and
is decremented when exiting that region. A dynamic reference counter is incremented for each
enter data copyin or create clause, or each acc_copyin or acc_create API routine
call for that section of memory. The dynamic reference counter is decremented for each exit
data copyout or delete clause when no f£inalize clause appears, or each acc_copyout
or acc_delete API routine call for that section of memory. The dynamic reference counter will
be set to zero with an exit data copyout or delete clause when a £inalize clause ap-
pears, or each acc_copyout_finalize or acc_delete_finalize API routine call for
the section of memory. The reference counters are modified synchronously with the local thread,
even if the data directives include an async clause. When both structured and dynamic reference
counters reach zero, the data lifetime in device memory for that data ends.

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-
mented to zero, except by a call to acc_unmap_data.

2.6.8 Attachment Counter

Since multiple pointers can target the same address, each pointer in device memory is associated
with an attachment counter per device. The attachment counter for a pointer is initialized to zero
when the pointer is allocated in device memory. The attachment counter for a pointer is set to one
whenever the pointer is attached to new target address, and incremented whenever an attach action
for that pointer is performed for the same target address. The attachment counter is decremented
whenever a detach action occurs for the pointer, and the pointer is detached when the attachment
counter reaches zero. This is described in more detail in Section [2.7.2]|Data Clause Actions|

A pointer in device memory can be assigned a device address in two ways. The pointer can be
attached to a device address due to data clauses or API routines, as described in Section

47

1650

1651

1652
1653
1654
1655

1656

1657

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669

1670

1671
1672
1673
1674
1675
1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686
1687

1688

1689

The OpenACC® API Version 3.4 2.7. Data Clauses

Data Clause Actionsl or the pointer can be assigned in a compute region executed on that device.
Unspecified behavior may result if both ways are used for the same pointer.

Pointer members of structs, classes, or derived types in device or host memory can be overwritten
due to update directives or API routines. It is the user’s responsibility to ensure that the pointers
have the appropriate values before or after the data movement in either direction. The behavior of
the program is undefined if any of the pointer members are attached when an update of a composite
variable is performed.

2.7 Data Clauses

Data clauses may appear on the parallel construct, serial construct, kernels construct,
data construct, the enter data and exit data directives, and declare directives. In the
descriptions, the region is a compute region with a clause appearing on a parallel, serial, or
kernels construct, a data region with a clause on a data construct, or an implicit data region
with a clause on a declare directive. If the declare directive appears in a global context,
the corresponding implicit data region has a duration of the program. The list argument to each
data clause is a comma-separated collection of vars. On a declare directive, the list argument
of a copyin, create, device_resident, or 1ink clause may include a Fortran common
block name enclosed within slashes. On any directive, for any clause except deviceptr and
present, the list argument may include a Fortran common block name enclosed within slashes
if that common block name also appears in a declare directive 1ink clause. In all cases, the
compiler will allocate and manage a copy of the var in the memory of the current device, creating a
visible device copy of that var, for data not in shared memory.

OpenACC supports accelerators with discrete memories from the local thread. However, if the
accelerator can access the local memory directly, the implementation may avoid the memory allo-
cation and data movement and simply share the data in local memory unless an explicit copy in
device-accessible memory is specified. Therefore, a program that uses and assigns data on the host
and uses and assigns the same data on the accelerator within a data region without update directives
to manage the coherence of the two copies may get different answers on different accelerators or
implementations.

Restrictions

* Data clauses may not follow a device_type clause.

* See Section [2.17.1||Optional Arguments|for discussion of Fortran optional arguments in data
clauses.

2.7.1 Data Specification in Data Clauses

In C and C++, a subarray is an array name followed by an extended array range specification in
brackets, with start and length, such as

AA[2:n]

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the
size of the array is used; otherwise the length is required. The subarray AA[2:n] means elements
AA[2],AA[3],...,AA[2+n-1].

In C and C++, a two dimensional array may be declared in at least four ways:

48

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700
1701
1702
1703
1704

1705

1706

1707

1708

1709
1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725
1726

1727

The OpenACC® API Version 3.4 2.7. Data Clauses

* Statically-sized array: float AA[100] [200];

* Pointer to statically sized rows: typedef float row[200]; rowx BB;
* Statically-sized array of pointers: £loat* CC[200];

* Pointer to pointers: £loat** DD;

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of
these may be included in a data clause using subarray notation to specify a rectangular array:

« AA[2:n][0:200]
« BB[2:n] [0:m]
« CC[2:n] [0:m]
« DD[2:n] [0:m]

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any com-
bination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions, all
dimensions except the first must specify the whole extent to preserve the contiguous data restriction,
discussed below. For dynamically allocated dimensions, the implementation will allocate pointers
in device memory corresponding to the pointers in local memory and will fill in those pointers as
appropriate.

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications
in parentheses, with lower and upper bound subscripts, such as

arr(l:high,low:100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if
known, are used. All dimensions except the last must specify the whole extent, to preserve the
contiguous data restriction, discussed below.
Restrictions
* In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be
specified.

* In C and C++, the length for dynamically allocated dimensions of an array must be explicitly
specified.

* In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host
or on the device, may result in undefined behavior.

* If a subarray appears in a data clause, the implementation may choose to allocate memory for
only that subarray on the accelerator.

* In Fortran, array pointers may appear, but pointer association is not preserved in device mem-
ory.
* Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous

section of memory, except for dynamic multidimensional C arrays.

* In C and C++, if a variable or array of composite type appears, all the data members of the
struct or class are allocated and copied, as appropriate. If a composite member is a pointer
type, the data addressed by that pointer are not implicitly copied.

49

1728
1729

1730

1731
1732

1733

1734

1735

1736

1737
1738
1739
1740
1741

1742

1743

1744

1745
1746
1747
1748
1749

1750
1751

1752

1753

1754

1755

1756
1757
1758

1759

1760

1761

1762

1763
1764

The OpenACC® API Version 3.4 2.7. Data Clauses

* In Fortran, if a variable or array of composite type appears, all the members of that derived
type are allocated and copied, as appropriate. If any member has the allocatable or
pointer attribute, the data accessed through that member are not copied.

 If an expression is used in a subscript or subarray expression in a clause on a data construct,
the same value is used when copying data at the end of the data region, even if the values of
variables in the expression change during the data region.

2.7.2 Data Clause Actions

Data clauses perform one or more the following actions.

Increment Counter Action

An increment counter action is one of the actions that may be performed for a present (Section

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-
tion 2.7.10), no_create (Section 2.7.11)), or attach (Section 2.7.13) clause, or for a call to an

acc_copyin, acc_create, or acc_attach API routine (Sections 3.2.18 and 3.2.29). See
those sections for details.

An increment counter action for a var increments the structured or dynamic reference counter or
the attachment counter for var by one.

Decrement Counter Action

A decrement counter action is one of the actions that may be performed for a present (Section

R2.7.6), copy (Section 27.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-
tion2.7.10), no_create (Section2.7.11), delete (Section2.7.12), at tach (Section2.7.13)), or
detach clause, or for a call to an ace_copyout, acc_delete, or acc_detach API routine
(Sections and[3.2.29). See those sections for details.

A decrement counter action for a var decrements the structured or dynamic reference counter or
the attachment counter for var by one. If the reference counter is already zero, its value is left
unchanged.

If the device memory associated with var was mapped to the device using acc_map_data, the
dynamic reference count may not be decremented to zero, except by a call to acec_unmap_data.

Reset Counter Action

A reset counter action is one of the actions that may be performed for a copyout (Section[2.7.9),
delete (Section[2.7.12)), or detach (Section[2.7.14) clause, or for a call to an acc_copyout,
acc_delete, or acc_detach API routine (Sections and [3.2.29). See those sections for
details.

A reset counter action for a var sets the structured or dynamic reference counter or attachment
counter for var to zero.

Allocate Memory Action

An allocate memory action is one of the actions that may be performed for a copy (Section 2.7.7),
copyin (Section2.7.8), copyout (Section[2.7.9) or create (Section[2.7.10) clause, or for a call

50

The OpenACC® API Version 3.4 2.7. Data Clauses

1765 to an acc_copyin or acc_create API routine (Section[3.2.18)). See those sections for details.

1766 An allocate memory action for a var allocates device-accessible memory for var. If device memory
1767 i unavailable, shared memory is allocated. If shared memory is unavailable, device memory is
1768 allocated. When both shared and device memory are available, the choice of memory allocated is
1769 implementation-defined.

770 Deallocate Memory Action

1771 A deallocate memory action is one of the actions that may be performed for a copy (Section2.7.8),
1772 copyin (Section2.7.8)), copyout (Section2.7.8), create (Section2.7.10), no_create (Sec-
1773 tion[2.7.11)), or delete (Section[2.7.12)) clause, or for a call to an acc_copyout or acc_delete
1774 API routine (Section[3.2.19)). See those sections for details.

1775 A deallocate memory action for var deallocates device-accessible memory for var.

1776 Transfer In Action

1777 A transfer in action is one of the actions that may be performed for a copy (Section 2.7.7) or
1778 copyin (Section2.7.8)) clause, update (Section[2.14.4) directive, or for a call to an acc_copyin
1779 or acc_update_device APIroutine (Sections[3.2.18]and[3.2.20). See those sections for details.

1780 A transfer in action for a var initiates a transfer of the data for var from the local thread memory to
1781 the corresponding device-accessible memory.

1782 The data copy may occur asynchronously, depending on other clauses on the directive.

1753 Transfer Out Action

1784 A transfer out action is one of the actions that may be performed for a copy (Section 2.7.7)) or
1785 copyout (Section2.7.9) clause, update (Section[2.14.4) directive, or for a call to an acc_copyout
1786 or acc_update_self API routine (Sections[3.2.19and [3.2.20). See those sections for details.

1787 A transfer out action for a var initiates a transfer of the data for var from device-accesible memory
1788 to the corresponding local thread memory.

1789 The data copy may occur asynchronously, depending on other clauses on the directive, in which
1790 case the memory is deallocated when the data copy is complete.

1791 Attach Pointer Action

1792 An attach pointer action is one of the actions that may be performed for a present (Section
1703 [2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8)), copyout (Section 2.7.9), create (Sec-
1794 tion[2.7.10), no_create (Section[2.7.11)), or attach (Section [2.7.12)) clause, or for a call to an
1795 acc_attach API routine (Section[3.2.29). See those sections for details.

176 An attach pointer action for a var occurs only when var is a pointer reference.

1797 If the pointer var is in shared memory and it is not a captured variable or is not present in the current
1798 device-accessible memory, or if the address to which var points is not present in the current device-
1799 accessible memory, no action is taken. If the pointer is a null pointer, the pointer in device-accessible
1800 memory is updated to have the same value. Otherwise, the pointer in device-accessible memory is
1801 updated to point to the corresponding copy of the data. The update may occur asynchronously,

51

1802

1803

1804

1805
1806
1807
1808

1809

1810

1811
1812
1813
1814
1815
1816

1817

1818
1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

The OpenACC® API Version 3.4 2.7. Data Clauses

depending on other clauses on the directive. The implementation schedules pointer updates after
any data transfers due to transfer in actions that are performed for the same directive.

Detach Pointer Action

A detach pointer action is one of the actions that may be performed for a present (Section
2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-
tion2.7.10), no_create (Section2.7.11), delete (Section2.7.12)), or attach (Section2.7.13)),
or detach (Section clause, or for a call to an ace_detach API routine (Section [3.2.29).
See those sections for details.

A detach pointer action for a var occurs only when var is a pointer reference.

If the pointer var is in shared memory and is not a captured variable or is not present in the current
device-accessible memory, or if the attachment counter for var for the pointer is not zero, no action
is taken. The var in device-accessible memory is updated to have the same value as the correspond-
ing pointer in local memory. The update may occur asynchronously, depending on other clauses
on the directive. The implementation schedules pointer updates before any data transfers due to
transfer out actions that are performed for the same directive.

2.7.3 Data Clause Errors

An error is issued for a var that appears in a copy, copyin, copyout, create, and delete
clause as follows:

* An acc_error_partly_present error is issued if part of var is present in device-
accessible memory of the current device but all of var is not.

* An acc_error_invalid data_section error is issued if var is a Fortran subarray
with a stride that is not one.

* An acc_error_out_of_memory error is issued if the accelerator device does not have
enough memory for var.

An error is issued for a var that appears in a present clause as follows:

* An acc_error_not_present error is issued if var is not present in the current device
memory at entry to a data or compute construct.

* An acc_error_partly present error is issued if part of var is present in device-
accessible memory of the current device but all of var is not.

See Section

2.7.4 Data Clause Modifiers

Some clauses allow an optional modifier list, with the following supported modifiers:

* always indicating that the data transfer in and transfer out actions must always occur even
if the data is present in the device.

* alwaysin indicating that the data transfer in action must always occur even if the data is
present in the device.

52

1838

1839

1840
1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856
1857
1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

The OpenACC® API Version 3.4 2.7. Data Clauses

* alwaysout indicating that the data transfer out action must always occur even if the data is
present in the device.

* capture indicating that the implementation must capture the variables in the clause with a
discrete copy of such variables created in the device-accessible memory even if the original
variable is already in accessible shared memory.

* readonly indicating that the data in the data region are only read and not written.

* zero indicating that the implementation must zero-initialise the variables in the clause.

2.7.5 deviceptr clause

The deviceptr clause may appear on structured data and compute constructs and declare
directives.

The deviceptr clause is used to declare that the pointers in var-list are device-accessible pointers,
so the data need not be allocated or moved between the host and device for this pointer.

In C and C++, the vars in var-list must be pointer variables.

In Fortran, the vars in var-list must be dummy arguments (arrays or scalars), and may not have the
Fortran pointer, allocatable, or value attributes.

For data in shared memory, host pointers are the same as device pointers, so this clause has no

effect.

2.7.6 present clause

The present clause may appear on structured data and compute constructs and declare di-
rectives. The present clause specifies that vars in var-list are in shared memory or are already
present in the current device memory due to data regions or data lifetimes that contain the construct
on which the present clause appears.

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is
taken; otherwise, the present clause behaves as follows:

* At entry to the region:
1. If var is a pointer reference,
a) If the attachment counter for var is zero, an action is performed.

b) Anlincrement counterlaction is performed with the associated attachment counter.

2. Anlincrement counteraction is performed with the associated structured reference counter.
* At exit from the region:

1. If the structured reference counter for var is zero, no action is taken.

2. Otherwise,

a) If var is a pointer reference,

i. Aldecrement counteriaction is performed with the associated attachment counter.

53

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

The OpenACC® API Version 3.4 2.7. Data Clauses

ii. If the attachment counter for var is now zero, a action is per-

formed.

b) A ldecrement counten action is performed with the associate structured reference
counter.

The errors in Section 2.7.3|[Data Clause Errorsimay be issued for this clause.

2.7.7 copy clause

The copy clause may appear on structured data and compute constructs and on declare direc-
tives.

Only the following modifiers may appear in the optional modifier-list: always, alwaysin, alwaysout
or capture.

For each var in var-list, if var is in shared memory and it is not a captured variable and has no
capture modifier, no action is taken; otherwise, the copy clause behaves as follows:

* Atentry to the region:

1. If var is not present and is not a null pointer, an|allocate memory|action is performed.

2. If var is not present or if an always or alwaysin modifier appears, a
action is performed.

3. Anlincrement counterlaction is performed with the associated structured reference counter.

4. If var is a pointer reference, an action is performed, followed by an
[[ncrement counterl action on the associated attachment counter.

* At exit from the region:
— If the structured reference counter for var is zero, no action is taken.

— Otherwise,

1. If var is a pointer reference, aldecrement counter] action is performed with the as-
sociated attachment counter

2. If the associated attachment counter is now zero, a action is per-
formed.

3. Aldecrement counter] action is performed with the structured associated reference
counter.

4. If both structured and dynamic reference counters are now zero or if an always
or alwaysout modifier appears, a[fransfer out|action is performed.

5. If both structured and dynamic reference counters are now zero, a|deallocate memory)
action is performed.

The errors in Section 2.7 3lData Clause Errorsl may be issued for this clause.

For compatibility with OpenACC 2.0, present_or_copy and pcopy are alternate names for
copy.

54

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926
1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.8 copyin clause

The copyin clause may appear on structured data and compute constructs, on declare direc-
tives, and on enter data directives.

Only the following modifiers may appear in the optional modifier-list: always, alwaysin or readonly.
Additionally, on structured data and compute constructs capture modifier may appear.

For each var in var-list, if var is in shared memory and it is not a captured variable and has no
capture modifier, no action is taken; otherwise, the copyin clause behaves as follows:

* At entry to a region, the structured reference counter is used. On an enter data directive,
the dynamic reference counter is used.

1.
2.

If var is not present and is not a null pointer, an|allocate memory|action is performed.

If var is not present or if an always or alwaysin modifier appears, a
action is performed.

. If var is a pointer reference, an action is performed followed by an

[[ncrement counterl action with the associated attachment counter.

. An [increment counter] action is performed with the appropriate associated reference

counter.

* At exit from the region:

— If the structured reference counter for var is zero, no action is taken.

— Otherwise,

1. If var is a pointer reference, aldecrement counter action is performed on the asso-
ciated attachment counter.

2. If var is a pointer reference and the associated attachment counter is now zero, a

action is performed.

3. Aldecrement counter] action is performed with the associated structured reference
counter.

4. If both structured and dynamic reference counters are now zero, aldeallocate memory)
action is performed.

If the optional readonly modifier appears, then the implementation may assume that the data
referenced by var-list is never written to within the applicable region.

The errors in Section[2.7.3]Data Clause Errors|may be issued for this clause.

For compatibility with OpenACC 2.0, present_or_copyin and pcopyin are alternate names
for copyin.

An enter data directive with a copyin clause is functionally equivalent to a call to the ace_copyin

API routine, as described in Section[3.2.18]

55

1941

1942
1943

1944

1945

1946

1947
1948

1949

1950

1951

1952
1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975
1976

1977

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.9 copyout clause

The copyout clause may appear on structured data and compute constructs, on declare di-
rectives, and on exit data directives. The clause may optionally have a zero modifier if the
copyout clause appears on a structured data or compute construct.

Only the following modifiers may appear in the optional modifier-list: always, alwaysout or zero.
Additionally, on structured data and compute constructs capture modifier may appear.

For each var in var-list, if var is in shared memory and it is not a captured variable and has no
capture modifier, no action is taken; otherwise, the copyout clause behaves as follows:

* Atentry to a region:

1. If var is not present and is not a null pointer, an|allocate memory|action is performed. If
a zero modifier appears, the memory is initialized to zero.

2. If var is a pointer reference, an lattach pointer| action is performed, followed by an
increment counterlaction on the associated attachment counter.

3. Anlincrement counteraction is performed with the associated structured reference counter.

* At exit from a region, the structured reference counter is used. On an exit data directive,
the dynamic reference counter is used.

— If the appropriate reference counter for var is zero, no action is taken.

— Otherwise,

1. If var is a pointer reference, aldecrement counter action is performed on the asso-
ciated attachment counter.

2. If var is a pointer reference and the associated attachment counter is now zero, a

detach pointer|action is performed.

3. The reference count is updated as follows:

% On an exit data directive with a £inalize clause, alresef counter action
is performed to the dynamic reference.

* Otherwise, aldecrement counter] action is performed with the appropriate asso-
ciated reference counter.

4. If both structured and dynamic reference counters are now zero or an always or
alwaysout modifier appears, atransfer out|action is performed.

5. If both structured and dynamic reference counters are now zero, aldeallocate memory)
action is performed.

The errors in Section[2.7.3|Data Clause Errors|may be issued for this clause.

For compatibility with OpenACC 2.0, present_or_copyout and pcopyout are alternate
names for copyout.

An exit data directive with a copyout clause and with or without a £inalize clause is func-
tionally equivalent to a call to the ace_copyout_finalize or acc_copyout API routine,
respectively, as described in Section[3.2.19

56

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989
1990

1991

1992

1993

1994

1995

1996

1997
1998

1999

2000

2001

2002

2003

2004

2005

2006
2007

2008

2009

2010

2011

2012

2013

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.10 create clause

The create clause may appear on structured data and compute constructs, on declare direc-
tives, and on enter data directives.

Only the following modifiers may appear in the optional modifier-list: zero. Additionally, on struc-
tured data and compute constructs capture modifier may appear.

For each var in var-list, if var is in shared memory and it is not a captured variable and has no
capture modifier, no action is taken; otherwise, the create clause behaves as follows:

* At entry to a region, the structured reference counter is used. On an enter data directive,
the dynamic reference counter is used.

1. If var is not present and is not a null pointer, an|allocate memory|action is performed. If
a zero modifier appears, the memory is initialized to zero.

2. If var is a pointer reference, an lattach pointer| action is performed, followed by an
increment counterlaction on the associated attachment counter.

3. Anlincrement counterlaction is performed on the appropriate associated reference counter.
* At exit from the region:
— If the structured reference counter for var is zero, no action is taken.

— Otherwise,

1. If var is a pointer reference, aldecrement counter] action is performed on the asso-
ciated attachment counter.

2. If var is a pointer reference and the associated attachment counter is now zero, a

action is performed.

3. Aldecrement counter] action is performed with the associated structured reference
counter.

4. If both structured and dynamic reference counters are zero, a|deallocate memory)
action is performed.

The errors in Section 2.7.3|[Data Clause Errorslmay be issued for this clause.

For compatibility with OpenACC 2.0, present_or_create and pcreate are alternate names
for create.

An enter data directive with a create clause is functionally equivalent to a call to the acc_create

API routine, as described in Section except the directive may perform an attach action for a
pointer reference.

2.7.11 no_create clause

The no_create clause may appear on structured data and compute constructs.

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is
taken; otherwise, the no_create clause behaves as follows:

* Atentry to the region:

57

The OpenACC® API Version 3.4 2.7. Data Clauses

2014 — If var is present and is not a null pointer, an [increment counter action is performed with
2015 the structured reference counter.

2016 — If var is present and is a pointer reference,

2017 1. anlincrement counteraction is performed on the associated attachment counter,
2018 2. and if the associated attachment counter is now one, an |attach pointer| action is
2019 performed.

2020 — If var is not present, no action is performed, and any device code in this construct will
2021 use the local memory address for var.

2022 * At exit from the region:

2023 — If the structured reference counter for var is zero or var is a null pointer, no action is
2024 taken.

2025 — Otherwise,

2026 1. If var is a pointer reference,

2027 a) aldecrement counterlaction is performed on the associated attachment counter,
2028 b) and if the associated attachment counter is now zero, aldetach pointer|action is
2029 performed.

2030 2. Aldecrement counterlaction is performed with the structured reference counter.

2031 3. If both structured and dynamic reference counters are zero, a|deallocate memory|
2032 action is performed.

2 2.7.12 delete clause

2034 The delete clause may appear on exit data directives.

2035 For each var in var-list, if var is in shared memory and it is not a captured variable, no action is
2036 taken; otherwise, the delete clause behaves as follows:

2037 * If the dynamic reference counter for var is zero, no action is taken.

2038 e Otherwise,

2039 1. If var is a pointer reference,

2040 a) aldecrement counter|action is performed on the associated attachment counter,

2041 b) and if the associated attachment counter is now zero, a |detach pointer| action is
2042 performed.

2043 2. If var is not a null pointer, the dynamic reference counter is updated, as follows:

2044 — On an exit data directive with a £inalize clause, a [fesef counter action is
2045 performed on the associated dynamic reference counter.

2046 — Otherwise, a|decrement counter] action is performed with the associated dynamic
2047 reference counter.

58

2048

2049

2050
2051

2052

2053

2054

2055
2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067
2068

2069

2070

2071

2072
2073

2074

2075

2076
2077

2078

2079
2080
2081
2082
2083

The OpenACC® API Version 3.4 2.7. Data Clauses

3. If both structured and dynamic reference counters are now zero, a|deallocate memory|
action is performed.

An exit data directive with a delete clause and with or without a £inalize clause is func-
tionally equivalent to a call to the acc_delete_finalize or acc_delete API routine, re-
spectively, as described in Section[3.2.19

The errors in Section 2.7.3|[Data Clause Errorslmay be issued for this clause.

2.7.13 attach clause

The attach clause may appear on structured data and compute constructs and on enter data
directives. Each var argument to an attach clause must be a C or C++ pointer or a Fortran variable
or array with the pointer or allocatable attribute.

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is
taken; otherwise, the attach clause behaves as follows:

* At entry to a region or at an enter data directive, an |attach pointer| action is performed
followed by an[increment counter action with the associated attachment counter.

* At exit from the region,

1. aldecrement counter|action is performed with the associated attachment counter,

2. and if the associated attachment counter is now zero, a |detach pointer| action is per-
formed.

2.7.14 detach clause

The detach clause may appear on exit data directives. Each var argument to a detach clause
must be a C or C++ pointer or a Fortran variable or array with the pointer or allocatable
attribute.

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is
taken; otherwise, the detach clause behaves as follows:

e If there is a finalize clause on the exit data directive, a[resef counten action with the
attachment counter is performed. Otherwise, aldecrement counter] action is performed with
the associated attachment counter.

* If the attachment counter is now zero, a|detach pointer|action is performed.

Vv v
Examples

* The code below contains two copy clauses for variables x and y respectively. As the
capture modifier is used on the copy clause for y, the parallel loop always updates a
discrete copy of y from the original, regardless of whether the original variable y is allocated
in shared memory or not. The parallel loop may update the original or device copy of x
depending on the original allocation.

59

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

2103
2104
2105
2106

2107

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129

2130
2131
2132

2133

The OpenACC® API Version 3.4 2.7. Data Clauses

integer :: x(N), y(N)

! If x is in shared memory, no actions are performed,

! otherwise an allocate device memory and transfer in/out
! actions are performed.

!$acc data copy (x)

! Since the capture modifier is used in the copy clause,
! an allocate device-accessible memory and transfer in/out
! actions always occur and the discrete copy of y 1is
! accessed in the parallel loop.
!Sacc parallel loop copy (capture:y)
do i= 1, N
! Updates original x or a device copy depending on the
! memory x is allocated 1in.
x(i) = x(1) + 1
! Always updates a discrete copy of y.
y(i) = y(i) +1
end do
!Sacc end data

* In the following code, a variable x within a nested data region becomes captured in the en-
closed compute region. Depending on where x was originally allocated, creating its discrete
copy may occur at different points in the program, resulting in different values of x being
used within the parallel loop. Writing code in this manner can lead to reduced portability
across targets with differing memory architectures.

integer :: x(N)

x =0

! If x is in shared memory, no action is performed,

! otherwise allocate in device memory, transfer in/out and

! present increment actions are performed.

!$Sacc data copy (x)

x =1

!' If x is in shared memory, allocate 1in device-accessible

! memory, and transfer in/out actions are performed for

! the copy clause below due to the capture modifier.

! Otherwise, only the present increment counter action will

! be performed as the device copy of x has already been

! created previously.

!$Sacc parallel loop copy (capture:x)

do i=1,N
! If the copy of x was created for the first data clause
! this loop updates its values from 0 to 1 but if it was
! created for the second data clause the updated values
' will be from 1 to 2.
x(i) = x(1) + 1
end do
!Sacc end data

* In the following code, a variable x within a nested data region is captured at the beginning of
the outer region. Regardless of how x is allocated, the descrete copy will always be created at
the start of the nested data region, ensuring that the updated value used in the parallel region
remains consistent across platforms with different memory architectures.

60

2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

2152
2153
2154
2155
2156
2157

2158

2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

The OpenACC® API Version 3.4 2.7. Data Clauses

integer :: x(N)
x =0
! Regardless of the memory type for the original x allocation,
! allocate and transfer in/out actions will be performed for
! the clause below due to the capture modifier. Its discrete copy
! l1ifetime is bound to the structured data region.
!$Sacc data copy (capture:x)
x =1
! Even if x was allocated in the shared memory originally
! it became captured with a discrete copy 1in the data construct
! above, this means that for the following copy clause only
! the present counter actions will be performed.
!$Sacc parallel loop copy (x)
do i=1,N
! The update of x here will always result in values 1.
x(i) = x(1) + 1
end do
!'Sacc end data

* In the code below, the use of the capture modifier on the subroutine’s local allocation B
ensures that no data race occurs when accessing B within asynchronous compute regions,
even if B is allocated in shared memory. The original shared memory allocation of B may be
reused for subsequent local allocations after the subroutine exits, even while the asynchronous
compute regions on the device may not yet have completed. However, with the capture
modifier a copy of B is created for the duration of the capturing asynchronous data region,
which outlives the enclosed asynchronous compute regions.

subroutine work (A, N)

integer :: i, N
real, dimension(N), intent (inout) :: A
real, dimension(N) :: B

! A discrete copy of B is created here.
!$acc data create(capture:B(:)) async(l)

! The captured copy of B is used in the enclosed
! compute regions.

!$acc kernels async (1)
B(:) =1.0
!Sacc end kernels

!$Sacc parallel loop present (A(1:N),B(l:N)) async(l)
do i=1,N

A(i) = A(i) + B(i)
end do

! When this asynchronous data region completes, B’s
! captured copy ends its lifetime, which may be after
! the subroutine exits, and therefore the original
! allocation of B ends its lifetime.
!$Sacc end data
end

61

The OpenACC® API Version 3.4 2.8. Host_Data Construct

2185 * Despite the use of the capture modifier on the subroutine’s local allocation B, the following
2186 example still contains a data race and therefore demonstrates an illegal code pattern. Although
2187 the asynchronous compute regions access a discrete copy of B in a race-free manner, a data
2188 race is possible at the end of the data construct — specifically during the transfer out
2189 action, when the discrete copy of B is written back to the original. This race condition may
2190 arise because the original shared memory allocation of B might be reused for subsequent local
2191 allocations before the completion of the asynchronous data region and the compute regions it
2192 encloses.

2193 subroutine work (A, N)

2194 integer :: i, N

2195 real, dimension(N), intent (inout) :: A

2196 real, dimension(N) :: B

2197

2198 ! A discrete copy of B 1is created here.

2199 !$Sacc data copyout (capture:B(:)) async(1l)

2200

2201 ! The captured copy of B is used in the enclosed

2202 ! compute regions.

2203

2204 !$Sacc kernels async(1l)

2205 B(:) =1.0

2206 !$acc end kernels

2207

2208 !Sacc parallel loop present (A(1:N),B(1l:N)) async(l)

2209 do i=1,N

2210 A(i) = A(i) + B(1i)

2211 end do

2212

2213 ! When this asynchronous data region completes, B’s

2214 ! captured copy ends its lifetime, and the transfer

2215 ! out actions is performed. This action may occur

2216 ! after the subroutine exits and the original allocation

2217 ! of B ends its lifetime. This results in a data race

2218 ! updating the original location of B which 1is no longer

2219 ! in scope.

2220 !Sacc end data

2221 end

2222 A A

=3 2.8 Host Data Construct

2224 Summary

2225 The host_data construct makes the address of data in device-accessible memory available on the
2226 host.

2227 Syntax
2228 In C and C++, the syntax of the OpenACC host_data construct is

2229 #pragma acc host_data clause-list new-line
2230 structured block

2231 and in Fortran, the syntax is

62

2232
2233

2234

2235

2236
2237

2238

2239

2240
2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253
2254
2255
2256
2257
2258
2259

2260

2261

2262
2263
2264

2265

2266

2267
2268

2269

The OpenACC® API Version 3.4 2.8. Host_Data Construct

'Sacc host_data clause-list
structured block
'$Sacc end host_data

or

!Sacc host_data clause-list
block construct
[!$acc end host_data]

where clause is one of the following:

use_device (var-list)
if (condition)
if present

Description

This construct is used to make the address of data in device-accessible memory available in host
code.

Restrictions

* Avarin ause_device clause must be the name of a variable or array.
* At least one use_device clause must appear.

* At most one if clause may appear.

» See Section 2.I7.1] [Optional Arguments| for discussion of Fortran optional arguments in
use_device clauses.

2.8.1 use_device clause

The use_device clause tells the compiler to use device-accessible memory address of any var in
var-list in code within the construct. In particular, this may be used to pass the device address of
var to optimized procedures written in a lower-level AP If var is a null pointer, the same value is
used for the device address. Otherwise, when there is no 1£_present clause, and either there is
no if clause or the condition in the i £ clause evaluates to true, the var in var-list must be present
in device-accessible memory due to data regions or data lifetimes that contain this construct. For
data in shared memory which is not a captured variable, the device address is the same as the host
address.

2.8.2 if clause

The if clause is optional. When an if clause appears and the condition evaluates to false, the
compiler will not replace the addresses of any var in code within the construct. When there is no 1 £
clause, or when an i £ clause appears and the condition evaluates to true, the compiler will replace
the addresses as described in the previous subsection.

2.8.3 if_present clause

When an i £_present clause appears on the directive, the compiler will only replace the address
of any var which appears in var-list that is present in device-accessible memory for the current
device.

63

2270

2271

2272
2273
2274

2275

2276

2277

2278

2279

2280

2281

2282

2283
2284
2285
2286
2287
2288
2289
2290
2291
2292

2293

2294

2295
2296

2297

2298

2299

2300
2301

2302

2303

2304

2305
2306

2307

2308

2309

The OpenACC® API Version 3.4 2.9. Loop Construct

2.9 Loop Construct
Summary

The OpenACC loop construct applies to a loop which must immediately follow this directive. The
loop construct can describe what type of parallelism to use to execute the loop and declare private
vars and reduction operations.

Syntax

In C and C++, the syntax of the Loop construct is

#pragma acc loop [clause-list] new-line
for loop

In Fortran, the syntax of the 1oop construct is

!'$Sacc loop [clause-list]
do loop

where clause is one of the following:

collapse([force:]n)

gang [(gang-arg-list) |

worker [([num: Jint-expr)]
vector [([length: |int-expr)]
seq

independent

auto

tile (size-expr-list)
device_type (device-type-list)
private (var-list)
reduction (operator :var-list)

where gang-arg is one of:

[num: Jint-expr
dim:int-expr
static:size-expr

and gang-arg-list may have at most one num, one dim, and one static argument, and where
size-expr is one of:

*
int-expr

Some clauses are only valid in the context of a kernels construct; see the descriptions below.
An orphaned 1oop construct is a Loop construct that has no parent compute construct.

A loop construct is data-independent if it has an independent clause that is determined explic-
itly, implicitly, or from an auto clause. A 1oop construct is sequential if it has a seq clause that
is determined explicitly or from an auto clause.

When do-loop is a do concurrent, the OpenACC loop construct applies to the loop for each
index in the concurrent-header. The loop construct can describe what type of parallelism to use

64

2310
2311
2312
2313
2314
2315
2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331
2332

2333

2334

2335

2336
2337
2338
2339
2340

2341

2342

2343

2344

2345
2346
2347

2348

The OpenACC® API Version 3.4 2.9. Loop Construct

to execute all the loops, and declares all indices appearing in the concurrent-header to be implicitly
private. If the 1oop construct that is associated with do concurrent is combined with a compute
construct then concurrent-locality is processed as follows: variables appearing in a local are treated
as appearing in a private clause; variables appearing in a local_init are treated as appearing in a
firstprivate clause; variables appearing in a shared are treated as appearing in a copy clause;
and a default(none) locality spec implies a default (none) clause on the compute construct. If
the 1loop construct is not combined with a compute construct, the behavior is implementation-
defined.

Restrictions
* Only the collapse, gang, worker, vector, seq, independent, auto, and tile

clauses may follow a device_type clause.

* The int-expr argument to the worker and vector clauses must be invariant in the kernels
region.

* A loop associated with a 1oop construct that does not have a seq clause must be written to
meet all of the following conditions:

— The loop variable must be of integer, C/C++ pointer, or C++ random-access iterator
type.

— The loop variable must monotonically increase or decrease in the direction of its termi-
nation condition.

— The loop trip count must be computable in constant time when entering the 1oop con-
struct.

For a C++ range-based £or loop, the loop variable identified by the above conditions is the
internal iterator, such as a pointer, that the compiler generates to iterate the range. It is not the
variable declared by the £or loop.

* Only one of the seq, independent, and auto clauses may appear.
* A gang, worker, or vector clause may not appear if a seq clause appears.

* A loop construct with a gang, worker, or vector clause must not lexically enclose
another loop construct with a gang, worker, or vector clause specifying an equal or
higher level of parallelism unless the 1oop constructs have different parent compute scopes.
For example, in a loop nest that contains no interleaved compute constructs or procedures, a
gang (dim:1) loop must not enclose a gang (dim: 3) loop or be enclosed by a worker
loop, but a seq loop is permitted at any nesting level.

* At most one gang clause may appear on a 1oop construct.

* Atileand collapse clause may not appear on loop thatis associated with do concurrent.

2.9.1 collapse clause

The collapse clause is used to specify how many nested loops are associated with the 1loop
construct. The argument to the collapse clause must be a positive, non-zero integral-constant-
expression. If no collapse clause appears, only the immediately following loop is associated
with the 1oop construct.

65

2349
2350
2351
2352
2353

2354

2355

2356

2357
2358
2359

2360

2361

2362

2363

2364

2365
2366

2367

2368

2369

2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382

2383

2384

2385
2386
2387
2388

2389

The OpenACC® API Version 3.4 2.9. Loop Construct

If more than one loop is associated with the 1oop construct, the iterations of all the associated loops
are all scheduled according to the rest of the clauses. The trip count for all loops associated with
the collapse clause must be computable and invariant in all the loops. The particular integer
type used to compute the trip count for the collapsed loops is implementation defined. However, the
integer type used for the trip count has at least the precision of each loop variable of the associated
loops.

It is implementation-defined whether a gang, worker or vector clause on the construct is ap-
plied to each loop, or to the linearized iteration space.

The associated loops are the n nested loops that immediately follow the loop construct. If the
force modifier does not appear, then the associated loops must be tightly nested. If the force
modifier appears, then any intervening code may be executed multiple times as needed to perform
the collapse.

Restrictions
» Each associated loop, except the innermost, must contain exactly one loop or loop nest.

* Intervening code must not contain other OpenACC directives, loops, or calls to API routines,
even when the force modifier appears.

vV v
Examples

* In the code below, a compiler may choose to move the call to tan inside the inner loop in
order to collapse the two loops, resulting in redundant execution of the intervening code.

#fpragma acc parallel loop collapse (force:2)

{
for (int i = 0; i < 360; i++)
{
// This operation may be executed additional times in order
// to perform the forced collapse.
tanI = tan(a[i]);
for (int j = 0; j < N; j++)
{
// Do Something.
}
}
}
A A

2.9.2 gang clause

When the parent compute construct is a parallel construct, or on an orphaned loop construct,
the gang clause behaves as follows. It specifies that the iterations of the associated loop or loops are
to be executed in parallel by distributing the iterations among the gangs along the associated dimen-
sion created by the compute construct. The associated dimension is the value of the dim argument,
if it appears, or is dimension one. The dim argument must be an integral-constant-expression that

66

2390
2391
2392
2393

2394

2395
2396
2397
2398
2399
2400

2401
2402
2403
2404
2405
2406
2407
2408

2409

2410
2411
2412

2413

2414

2415
2416

2417

2418
2419

2420

2421
2422
2423
2424

2425
2426
2427
2428
2429

2430

2431

2432

The OpenACC® API Version 3.4 2.9. Loop Construct

evaluates to the value 1, 2, or 3. If the associated dimension is d, a 1oop construct with the gang
clause transitions a compute region from gang-redundant mode to gang-partitioned mode on di-
mension d (GRd to GPd). The number of gangs in dimension d is controlled by the parallel
construct; the num argument is not allowed. The loop iterations must be data independent, except
for vars which appear in a[reductionlclause or which are modified in an latomid region.

When the parent compute construct is a kernels construct, the gang clause behaves as follows.
It specifies that the iterations of the associated loop or loops are to be executed in parallel across the
gangs. The dim argument is not allowed. An argument with no keyword or with the num keyword
is allowed only when the num_gangs does not appear on the kernels construct. If an argument
with no keyword or an argument after the num keyword appears, it specifies how many gangs to use
to execute the iterations of this loop.

The scheduling of loop iterations to gangs is not specified unless the static modifier appears as
an argument. If the static modifier appears with an integer expression, that expression is used
as a chunk size. If the static modifier appears with an asterisk, the implementation will select a
chunk size. The iterations are divided into chunks of the selected chunk size, and the chunks are
assigned to gangs starting with gang zero and continuing in round-robin fashion. Two gang loops
in the same parallel region with the same number of iterations, and with static clauses with the
same argument, will assign the iterations to gangs in the same manner. Two gang loops in the
same kernels region with the same number of iterations, the same number of gangs to use, and with
static clauses with the same argument, will assign the iterations to gangs in the same manner.

A gang(dim:1) clause is implied on a data-independent loop construct without an explicit
gang clause if the following conditions hold while ignoring gang, worker, and vector clauses
on any sequential loop constructs and while treating implicit routine directives as if they are
explicit:

* This 1oop construct’s parent compute construct, if any, is not a kernels construct.

* Anexplicit gang (dim: 1) clause would be permitted on this 1oop construct. For example,
it must not conflict with a nested loop construct or an enclosing procedure’s routine
directive, as specified in Sections [2.91and 2. 15.11

* For every lexically enclosing data-independent 1oop construct, either an explicit gang (dim:

clause would not be permitted on the enclosing Loop construct, or the Loop constructs have
different parent compute scopes.

Note: An important consequence of the above specification is that, before implicitly determining
gang clauses on 1oop constructs, the implementation must analyze any auto clauses to determine
if loop constructs are sequential, and it must determine relevant implicit rout ine directives (see

the fimplicit gang clause example|in [Section 2.15.1)).

Note: As a performance optimization, the implementation might select different levels of paral-
lelism for a loop construct than specified by explicitly or implicitly determined clauses as long
as it can prove program semantics are preserved. In particular, the implementation must consider
semantic differences between gang-redundant and gang-partitioned mode. For example, in a series
of tightly nested, data-independent 1oop constructs, implementations often move gang-partitioning
from one loop construct to another without affecting semantics.

Note: If the auto or device_type clause appears on a 1oop construct, it is the programmer’s
responsibility to ensure that program semantics are the same regardless of whether the auto clause

67

1)

2433
2434
2435
2436

2437

2438

2439
2440
2441
2442
2443
2444
2445

2446

2447
2448
2449
2450
2451

2452

2453

2454

2455
2456
2457
2458
2459
2460
2461

2462

2463
2464
2465
2466

2467

2468

2469

2470

2471

2472

The OpenACC® API Version 3.4 2.9. Loop Construct

is treated as independent or seq and regardless of the device type for which the program is
compiled. In particular, the programmer must consider the effect on both explicitly and implicitly
determined gang clauses and thus on gang-redundant and gang-partitioned mode. Examples in
Sections 2.9.11] and 2.15.1] demonstrate how this issue for the auto clause might affect portability
across OpenACC implementations.

2.9.3 worker clause

When the parent compute construct is a parallel construct, or on an orphaned loop construct,
the worker clause specifies that the iterations of the associated loop or loops are to be executed
in parallel by distributing the iterations among the multiple workers within a single gang. A loop
construct with a worker clause causes a gang to transition from worker-single mode to worker-
partitioned mode. In contrast to the gang clause, the worker clause first activates additional
worker-level parallelism and then distributes the loop iterations across those workers. No argu-
ment is allowed. The loop iterations must be data independent, except for vars which appear in a
[reduction]clause or which are modified in an fatomidregion.

When the parent compute construct is a kernels construct, the worker clause specifies that the
iterations of the associated loop or loops are to be executed in parallel across the workers within
a single gang. An argument is allowed only when the num_workers does not appear on the
kernels construct. The optional argument specifies how many workers per gang to use to execute
the iterations of this loop.

All workers will complete execution of their assigned iterations before any worker proceeds beyond
the end of the loop.

2.9.4 vector clause

When the parent compute construct is a parallel construct, or on an orphaned loop construct,
the vector clause specifies that the iterations of the associated loop or loops are to be executed in
vector or SIMD mode. A loop construct with a vector clause causes a worker to transition from
vector-single mode to vector-partitioned mode. Similar to the worker clause, the vector clause
first activates additional vector-level parallelism and then distributes the loop iterations across those
vector lanes. The operations will execute using vectors of the length specified or chosen for the
parallel region. The loop iterations must be data independent, except for vars which appear in a
[reduction]clause or which are modified in anfatomidregion.

When the parent compute construct is a kernels construct, the vector clause specifies that the
iterations of the associated loop or loops are to be executed with vector or SIMD processing. An
argument is allowed only when the vector_length does not appear on the kernels construct.
If an argument appears, the iterations will be processed in vector strips of that length; if no argument
appears, the implementation will choose an appropriate vector length.

All vector lanes will complete execution of their assigned iterations before any vector lane proceeds
beyond the end of the loop.

2.9.5 seqclause

The seq clause specifies that the associated loop or loops are to be executed sequentially by the
accelerator. This clause will override any automatic parallelization or vectorization.

68

The OpenACC® API Version 3.4 2.9. Loop Construct

23 2.9.6 independent clause

2474 The independent clause tells the implementation that the loop iterations must be data indepen-
2475 dent, except for vars which appear in a clause or which are modified in an
2476 region. This allows the implementation to generate code to execute the iterations in parallel with no
2477 synchronization.

2478 A loop construct with no auto or seq clause is treated as if it has the independent clause
2479 when it is an orphaned 1oop construct or its parent compute construct is a parallel construct.

2450 Note

2481 * It is likely a programming error to use the independent clause on a loop if any iteration
2482 writes to a variable or array element that any other iteration also writes or reads, except for
2483 vars which appear in a[reduction]clause or which are modified in an fatomic| region.

2484 * The implementation may be restricted in the levels of parallelism it can apply by the presence
2485 of loop constructs with gang, worker, or vector clauses for outer or inner loops.

x 2.9.7 auto clause

2487 The auto clause specifies that the implementation must analyze the loop and determine whether the
248 loop iterations are data-independent. If it determines that the loop iterations are data-independent,
2489 the implementation must treat the auto clause as if it is an independent clause. If not, or if it
2490 1s unable to make a determination, it must treat the auto clause as if it is a seq clause, and it must
2491 ignore any gang, worker, or vector clauses on the loop construct.

2422 When the parent compute construct is a kernels construct, a 1loop construct with no independent
2493 Or seq clause is treated as if it has the auto clause.

2494 Note: Combining the auto and gang clauses might impact a program’s portability across Open-
2495 ACC implementations. See for details.

20 2.9.8 tile clause

2497 The tile clause specifies that the implementation will split each loop in the loop nest into two
2498 loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile
2499 clause is a list of one or more tile sizes, where each tile size is a positive, non-zero integral-constant-
2500 expression or an asterisk. If there are n tile sizes in the list, the 1oop construct must be immediately
2501 followed by n tightly nested loops. The first argument in the size-expr-list corresponds to the inner-
2502 most loop of the n associated loops, and the last element corresponds to the outermost associated
2503 loop. If the tile size is an asterisk, the implementation will choose an appropriate value. Each loop
2504 in the nest will be split, or strip-mined, into two loops, an outer tile loop and an inner element loop.
2505 The trip count of the element loop will be limited to the corresponding tile size from the size-expr-
2506 list. The tile loops will be reordered to be outside all the element loops, and the element loops will
2507 all be inside the tile loops.

2508 If the vector clause appears on the loop construct, the vector clause is applied to the element
2509 loops. If the gang clause appears on the loop construct, the gang clause is applied to the tile
2510 loops. If the worker clause appears on the 1oop construct, the worker clause is applied to the
2511 element loops if no vector clause appears, and to the tile loops otherwise.

69

2512

2513

2514

2515

2516

2517

2518
2519
2520
2521
2522
2523

2524

2525

2526

2527

2528
2529

2530

2531

2532

2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547

2548

2549
2550
2551
2552

The OpenACC® API Version 3.4 2.9. Loop Construct

Restrictions

* Because the associated loops are tightly nested, each associated loop, except the innermost,
must contain exactly one loop or loop nest.

2.9.9 device_ type clause

The device_type clause is described in Section [2.4[Device-Specific Clauses}

2.9.10 private clause

The private clause on a loop construct specifies that a copy of each item in var-list will be
created. If the body of the loop is executed in vector-partitioned mode, a copy of the item is created
for each thread associated with each vector lane. If the body of the loop is executed in worker-
partitioned vector-single mode, a copy of the item is created for each worker and shared across the
set of threads associated with all the vector lanes of that worker. Otherwise, a copy of the item is
created for each gang in all dimensions and shared across the set of threads associated with all the
vector lanes of all the workers of that gang.

Restrictions

* See Section[2.17.1[Optional Arguments|for discussion of Fortran optional arguments in private
clauses.

v v
Examples

* In the example below, tmp is private to each worker of every gang but shared across all the
vector lanes of a worker.

!$acc parallel
!$acc loop gang
do k=1, n
!Sacc loop worker private (tmp)
do j =1, n
'a single vector lane in each gang and worker assigns to tmp
tmp = b(j,k) + c(j, k)
!$acc loop vector
doi=1, n
'all vector lanes use the result of the above update to tmp
a(i,j, k) = a(i,j, k) + tmp/div
enddo
enddo
enddo
!$Sacc end parallel

* In the example below, tmp is private to each gang in every dimension.

!$acc parallel num_gangs(3,50,150)
!$acc loop gang(dim:3)
do k=1, n
!Sacc loop gang(dim:2) private (tmp)

70

The OpenACC® API Version 3.4 2.9. Loop Construct

2553 do j =1, n

2554 'all gangs along dimension 1 execute in gang redundant mode and
2555 lassign to tmp which is private to each gang in all dimensions
2556 tmp = b(j, k) + c(j, k)

2557 !$acc loop gang(dim:1)

2558 doi=1, n

2559 a(i,j, k) = a(i,j, k) + tmp/div

2560 enddo

2561 enddo

2562 enddo

2563 !$acc end parallel

2564 A A

=5 2.9.11 reduction clause

266 The reduction clause specifies a reduction operator and one or more vars. For each reduction
2567 var, a private copy is created in the same manner as for a private clause on the 1oop construct,
2568 and initialized for that operator; see the table in Section [2.5.15]ireduction clausel After the loop, the
2569 values for each thread are combined using the specified reduction operator, and the result combined
2570 with the value of the original var and stored in the original var. If the original var is not private,
2571 this update occurs by the end of the compute region, and any access to the original var is undefined
2572 within the compute region. Otherwise, the update occurs at the end of the loop. If the reduction
2573 var is an array or subarray, the reduction operation is logically equivalent to applying that reduction
2574 operation to each array element of the array or subarray individually. If the reduction var is a com-
2575 posite variable, the reduction operation is logically equivalent to applying that reduction operation
2576 to each member of the composite variable individually.

2577 If a variable is involved in a reduction that spans multiple nested loops where two or more of those
2578 loops have associated 1oop directives, a reduction clause containing that variable must appear
2579 on each of those loop directives.

2580 Restrictions

2581 * A var in a reduction clause must be a scalar variable name, an aggregate variable name,
2582 an array element, or a subarray (refer to Section 2.7.1).

2583 * Reduction clauses on nested constructs for the same reduction var must have the same reduc-
2584 tion operator.

2585 » Every var in a reduction clause appearing on an orphaned 1oop construct must be private.
2586 * The restrictions for a reduction clause on a compute construct listed in in Section
2587 [reduction clauselalso apply to a reduction clause on a Lloop construct.

2588 * See Section [Optional Arguments| for discussion of Fortran optional arguments in
2589 reduction clauses.

2590 * See Section [Variables with Implicitly Determined Data Attributes| for a restriction re-
2591 quiring certain loop reduction variables to have explicit data clauses on their parent compute
2592 constructs.

2593 * A reduction clause may not appear on a loop directive that has a gang clause with a
2504 dim: argument whose value is greater than 1.

71

2595
2596

2597

2598
2599

2600

2601
2602
2603
2604

2605

2606
2607
2608
2609
2610
2611
2612
2613
2614
2615

2616
2617

2618

2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635

2636
2637

2638

2639

The OpenACC® API Version 3.4 2.9. Loop Construct

* A reduction clause may not appear on a loop directive that has a gang clause and
is within a compute construct that has a num_gangs clause with more than one explicit
argument.

vV v
Examples

* x is not private at the loop directive below, so its reduction normally updates x at the end
of the parallel region, where gangs synchronize. When possible, the implementation might
choose to partially update x at the loop exit instead, or fully if num_gangs (1) were added
to the parallel directive. However, portable applications cannot rely on such early up-
dates, so accesses to x are undefined within the parallel region outside the loop.

int x = 0;
#fpragma acc parallel copy (x)
{
// gang-shared x undefined
#fpragma acc loop gang worker vector reduction (+:x)
for (int i = 0; i1 < I; ++i)
x += 1; // vector-private x modified
// gang-shared x undefined
} // gang-shared x updated for gang/worker/vector reduction
// x =1
* x is private at each of the innermost two loop directives below, so each of their reductions
updates x at the loop’s exit. However, x is not private at the outer loop directive, so its
reduction updates x by the end of the parallel region instead.

int x = 0;
#fpragma acc parallel copy (x)
{
// gang-shared x undefined
#pragma acc loop gang reduction (+:x)
for (int i = 0; i < I; ++i) {
#fpragma acc loop worker reduction (+:x)
for (int j = 0; j < J; ++3j) {
#pragma acc loop vector reduction (+:x)
for (int k = 0; k < K; ++k) {
X += 1; // vector-private x modified
} // worker-private x updated for vector reduction
} // gang-private x updated for worker reduction
}
// gang-shared x undefined
} // gang-shared x updated for gang reduction
// x = I » J » K

* At each loop directive below, x is private and y is not private due to the data clauses on
the parallel directive. Thus, each reduction updates x at the loop exit, but each reduction
updates y by the end of the parallel region instead.

int x = 0, y = 0;

72

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659

2660
2661
2662

2663

2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681

2682
2683
2684
2685

2686

2687
2688
2689

The OpenACC® API Version 3.4 2.9. Loop Construct

#pragma acc parallel firstprivate(x) copy(y)
{
// gang-private x = 0; gang-shared y undefined
#pragma acc loop seq reduction(+:x,y)
for (int i = 0; i1 < I; ++i) {
x +=1; y += 2; // loop-private x and y modified
} // gang-private x updated for trivial seq reduction
// gang-private x = I; gang-shared y undefined
#fpragma acc loop worker reduction(+:x,y)
for (int i = 0; i1 < I; ++i) {
x +=1; y += 2; // worker-private x and y modified
} // gang-private x updated for worker reduction
// gang-private x = 2 # I; gang-shared y undefined
#fpragma acc loop vector reduction(+:x,y)
for (int i = 0; i1 < I; ++i) {
x +=1; y += 2; // vector-private x and y modified
} // gang-private x updated for vector reduction
// gang-private x = 3 # I; gang-shared y undefined
} // gang-shared y updated for gang/seq/worker/vector reductions
// x = 0;, y =3 I = 2

* The examples below are equivalent. That is, the reduction clause on the combined con-
struct applies to the 1oop construct but implies a copy clause on the parallel construct. Thus,
x is not private at the loop directive, so the reduction updates x by the end of the parallel
region.

int x = 0;
#fpragma acc parallel loop worker reduction (+:x)
for (int i = 0; i1 < I; ++i) {
x += 1; // worker-private x modified
} // gang-shared x updated for gang/worker reduction
// x =1

int x = 0;
#pragma acc parallel copy (x)
{
// gang-shared x undefined
#pragma acc loop worker reduction (+:x)
for (int i = 0; i < I; ++i) {
X += 1; // worker-private x modified
}
// gang-shared x undefined
} // gang-shared x updated for gang/worker reduction
// o x =1

* If the implementation treats the auto clause below as independent, the loop executes in
gang-partitioned mode and thus examines every element of arr once to compute arr’s max-
imum. However, if the implementation treats auto as seq, the gangs redundantly compute
arr’s maximum, but the combined result is still arr’s maximum. Either way, because x is
not private at the Loop directive, the reduction updates x by the end of the parallel region.

int x = 0;
const int xarr = /xarray of I valuesx/;
#pragma acc parallel copy (x)

73

2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700

2701
2702
2703
2704

2705

2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718

2719
2720
2721
2722

2723

2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734

2735

2736

The OpenACC® API Version 3.4 2.9. Loop Construct

// gang-shared x undefined
#fpragma acc loop auto gang reduction (max:x)
for (int i = 0; i1 < I; ++i) {
// complex loop body
X = x < arr[i] ? arr[i] : x; // gang- or loop-private
// x modified

}
// gang-shared x undefined

} // gang-shared x updated for gang or gang/seq reduction
// x = arr maximum

* The following example is the same as the previous one except that the reduction operator is
now +. While gang-partitioned mode sums the elements of arr once, gang-redundant mode
sums them once per gang, producing a result many times arr’s sum. This example shows
that, for some reduction operators, combining auto, gang, and reduction is typically
non-portable.

int x = 0;

const int xarr = /xarray of I values=*/;
#fpragma acc parallel copy (x)
{

// gang-shared x undefined
#pragma acc loop auto gang reduction (+:x)
for (int i = 0; i1 < I; ++i) {
// complex loop body
x += arr[i]; // gang or loop-private x modified
}
// gang-shared x undefined
} // gang-shared x updated for gang or gang/seq reduction
// x = arr sum possibly times number of gangs

* At the following loop directive, x and z are private, so the loop reductions are not across
gangs even though the loop is gang-partitioned. Nevertheless, the reduction clause on the
loop directive is important as the loop is also vector-partitioned. These reductions are only
partial reductions relative to the full set of values computed by the loop, so the reduction
clause is needed on the parallel directive to reduce across gangs.

int x =0, y = 0;
#fpragma acc parallel copy(x) reduction(+:x,y)
{
int z = 0;
#fpragma acc loop gang vector reduction (+:x, z)
for (int 1 = 0; i1 < I; ++i) {
X += 1; z += 2; // vector—-private x and z modified
} // gang-private x and z updated for vector reduction
y += z; // gang-private y modified
} // gang-shared x and y updated for gang reduction
// x = I; yv =1 » 2

74

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746
2747

2748

2749

2750
2751

2752

2753

2754

2755

2756

2757
2758
2759
2760

2761

2762
2763

2764

2765
2766

2767

2768

2769

2770

2771

2772
2773

2774

The OpanCC® API Version 3.4 2.10. Cache Directive

2.10 Cache Directive
Summary

When the cache directive appears at the top of (inside of) a loop, it suggests array elements or
subarrays would benefit by being fetched into the highest level of the cache for the body of the loop.

Syntax

In C and C++, the syntax of the cache directive is

#fpragma acc cache ([readonly:|var-list) new-line
In Fortran, the syntax of the cache directive is

!Sacc cache ([readonly: |var-list)

A var in a cache directive must be a single array element or a contiguous subarray. In C and C++,
the subarray is an array name followed by an element index or an extended array range specification
with start and length in brackets, such as

arr[elem] or arr [lower : length]

where the element index or lower bound is an integral-constant-expression, loop invariant, or the
for loop variable plus or minus an integral-constant-expression or loop invariant, and the length is
an integral-constant-expression.

In Fortran, the subarray is an array name followed by a comma-separated list of range specifications
in parentheses, with an element index and/or optional lower and upper bound subscripts, such as

arr (elem) or arr (lower : upper) or arr (lower:) or arr (:upper) or
arr (lower :upper, elem) or arr (lower :upper, lower2 : upper2)

The element index or lower bounds must be an integral-constant-expression, loop invariant, or the
do loop variable plus or minus an integral-constant-expression or loop invariant; moreover the
difference between the corresponding upper and lower bounds must be a constant. If either the
lower or upper bounds are missing, the declared or allocated bounds of the array, if known, are
used. Range specifications may be mixed.

If the optional readonly modifier appears, then the implementation may assume that the data
referenced by any var in that directive is never written to within the applicable region.

Restrictions

 If an array element or a subarray is listed in a cache directive, all references to that array
during execution of that loop iteration must not refer to elements of the array outside the index
range specified in the cache directive.

» See Section[2.17.1|[Optional Arguments|for discussion of Fortran optional arguments in cache
directives.

2.11 Combined Constructs
Summary

The combined OpenACC parallel loop, serial loop, and kernels loop constructs are
shortcuts for specifying a 1oop construct nested immediately inside a parallel, serial, or
kernels construct. The meaning is identical to explicitly specifying a parallel, serial, or

75

2775
2776
2777

2778

2779

2780

2781

2782

2783

2784
2785

2786

2787

2788

2789

2790

2791

2792

2793
2794

2795

2796

2797

2798

2799

2800

2801

2802
2803

2804

2805

2806

2807
2808

2809

2810

2811

The OpenACC® API Version 3.4 2.11. Combined Constructs

kernels construct containing a 1oop construct. Any clause that is allowed on a parallel or
loop construct is allowed on the parallel loop construct; any clause allowed on a serial or
loop construct is allowed on a serial loop construct; and any clause allowed on a kernels
or loop construct is allowed on a kernels loop construct.

Syntax

In C and C++, the syntax of the parallel loop construct is

#pragma acc parallel loop [clause-list] new-line
for loop

In Fortran, the syntax of the parallel loop construct is

!$acc parallel loop [clause-list]
do loop
[t$acc end parallel loop]

The associated structured block is the loop which must immediately follow the directive. Any of
the parallel or loop clauses valid in a parallel region may appear.

In C and C++, the syntax of the serial loop construct is

#pragma acc serial loop [clause-list] new-line
for loop

In Fortran, the syntax of the serial loop construct is

!$Sacc serial loop [clause-list]
do loop
[!$acc end serial loop]

The associated structured block is the loop which must immediately follow the directive. Any of
the serial or loop clauses valid in a serial region may appear.

In C and C++, the syntax of the kernels loop construct is

#fpragma acc kernels loop [clause-list] new-line
for loop

In Fortran, the syntax of the kernels loop construct is

!$acc kernels loop [clause-list]
do loop
[!$acc end kernels loop]

The associated structured block is the loop which must immediately follow the directive. Any of
the kernels or loop clauses valid in a kernels region may appear.

A private or reduction clause on a combined construct is treated as if it appeared on the
loop construct. In addition, a reduction clause on a combined construct implies a copy clause
as described in Section [2.6.2]

Restrictions

* The restrictions for the parallel, serial, kernels, and loop constructs apply.

76

2812

2813

2814
2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831
2832
2833
2834
2835
2836

2837

2838

2839
2840
2841
2842
2843
2844

2845

2846

2847
2848
2849

2850

The OpanCC® API Version 3.4 2.12. Atomic Construct

2.12 Atomic Construct
Summary

An atomic construct ensures that a specific storage location is accessed and/or updated atomically,
preventing simultaneous reading and writing by gangs, workers, and vector threads that could result
in indeterminate values.

Syntax

In C and C++, the syntax of the atomic constructs is:

#fpragma acc atomic [atomic-clause | [1 £ (condition) | new-line
expression-stmt

or:

#fpragma acc atomic capture [i1f (condition) | new-line
structured block

Where atomic-clause is one of read, write, update, or capture. The expression-stmt is an
expression statement with one of the following forms:

If the atomic-clause is read.:
v = x;

If the atomic-clause is write:
X = expr;

If the atomic-clause is update or no clause appears:

++x;
——x;

x binop= expr;

X = X binop expr;
x = expr binop x;

If the atomic-clause is capture:

= x++;

]
b
|
|

++x;

——x;

x binop= expr;

x x binop expr;
expr binop x;

< d 444 4< ¢4
I

= x
The structured-block is a structured block with one of the following forms:

{v = x; x binop= expr;}
{x binop= expr; v = x;}
{v = %x; x = x binop expr;}
{v = x; x = expr binop x;}

77

2851
2852
2853
2854
2855
2856
2857
2858
2859
2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871
2872

2873

2874
2875

2876

2877

2878

2879

2880
2881

2882

2883

2884
2885

2886

2887

2888

2889

The OpanCC® API Version 3.4 2.12. Atomic Construct

{x = x binop expr; v =
{x = expr binop x%; v
{v = x; x = expr; }
{v = x; x++;}
{v = x; ++x;}
{++x; v = x;}

1]

[}

L
—

{x++; v = x;
{v = x; x—;}
{v = %x; --x;
{--x%; v = x;
{x——; v = x;

In the preceding expressions:

x and v (as applicable) are both 1-value expressions with scalar type.

During the execution of an atomic region, multiple syntactic occurrences of x must designate
the same storage location.

Neither of v and expr (as applicable) may access the storage location designated by x.
Neither of x and expr (as applicable) may access the storage location designated by v.
expr is an expression with scalar type.

binopisoneof +, x,—, /, &, ", |, <<, 0r >>.

binop, binop=, ++, and —— are not overloaded operators.

The expression x binop expr must be mathematically equivalent to x binop (expr). This
requirement is satisfied if the operators in expr have precedence greater than binop, or by
using parentheses around expr or subexpressions of expr.

The expression expr binop x must be mathematically equivalent to (expr) binop x. This
requirement is satisfied if the operators in expr have precedence equal to or greater than binop,
or by using parentheses around expr or subexpressions of expr.

For forms that allow multiple occurrences of x, the number of times that x is evaluated is
unspecified.

In Fortran the syntax of the atomic constructs is:

or

or

'Sacc atomic read|[if (condition)]
capture-statement
[!$acc end atomic]

'Sacc atomic write [if (condition) |
write-statement
[!$acc end atomic]

!Sacc atomic [update] [1f (condition) |
update-statement

78

2890

2891

2892
2893
2894

2895

2896

2897
2898
2899

2900

2901

2902
2903
2904

2905

2906

2907

2908

2909

2910

2911

2912
2913
2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

The OpanCC® API Version 3.4 2.12. Atomic Construct

[!$acc end atomic]
or

!$acc atomic capture [if (condition)]
update-statement
capture-statement

!Sacc end atomic

or

!$acc atomic capture [if (condition) |
capture-statement
update-statement

!Sacc end atomic

or

!Sacc atomic capture [if (condition)]
capture-statement
write-statement

!Sacc end atomic

where write-statement has the following form (if atomic-clause is write or capture):
X = expr

where capture-statement has the following form (if atomic-clause is capture or read):
v = x

and where update-statement has one of the following forms (if atomic-clause is update, capture,
or no clause appears):

X operator expr
expr operator x
intrinsic_procedure_name (x, expr-list)
= intrinsic_procedure_name (expr-list, x)

X X X X

In the preceding statements:
* x and v (as applicable) are both scalar variables of intrinsic type.
* x must not be an allocatable variable.

* During the execution of an atomic region, multiple syntactic occurrences of x must designate
the same storage location.

* None of v, expr, and expr-list (as applicable) may access the same storage location as x.
* None of x, expr, and expr-list (as applicable) may access the same storage location as v.
* expr is a scalar expression.

* expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic_procedure_name
refers to iand, ior, or ieor, exactly one expression must appear in expr-list.

79

2926

2927

2928
2929

2930

2931
2932

2933

2934
2935

2936

2937

2938

2939

2940
2941

2942

2943
2944
2945
2946

2947

2948
2949
2950
2951
2952
2953
2954

2955

2956
2957
2958

2959

2960
2961

2962

2963
2964

2965

2966

The OpanCC® API Version 3.4 2.12. Atomic Construct

* intrinsic_procedure_name is one of max, min, iand, ior, or ieor. operator is one of +,
*,—, /,.and., .or., .eqv.,0r .neqv..

* The expression x operator expr must be mathematically equivalent to x operator (expr).
This requirement is satisfied if the operators in expr have precedence greater than operator,
or by using parentheses around expr or subexpressions of expr.

» The expression expr operator x must be mathematically equivalent to (expr) operator x.
This requirement is satisfied if the operators in expr have precedence equal to or greater than
operator, or by using parentheses around expr or subexpressions of expr.

* intrinsic_procedure_name must refer to the intrinsic procedure name and not to other program
entities.

* operator must refer to the intrinsic operator and not to a user-defined operator. All assign-
ments must be intrinsic assignments.

* For forms that allow multiple occurrences of x, the number of times that x is evaluated is
unspecified.

An atomic construct with the read clause forces an atomic read of the location designated by x.
An atomic construct with the write clause forces an atomic write of the location designated by
X.

An atomic construct with the update clause forces an atomic update of the location designated
by x using the designated operator or intrinsic. Note that when no clause appears, the semantics
are equivalent to atomic update. Only the read and write of the location designated by x are
performed mutually atomically. The evaluation of expr or expr-list need not be atomic with respect
to the read or write of the location designated by x.

An atomic construct with the capture clause forces an atomic update of the location designated
by x using the designated operator or intrinsic while also capturing the original or final value of
the location designated by x with respect to the atomic update. The original or final value of the
location designated by x is written into the location designated by v depending on the form of the
atomic construct structured block or statements following the usual language semantics. Only
the read and write of the location designated by x are performed mutually atomically. Neither the
evaluation of expr or expr-list, nor the write to the location designated by v, need to be atomic with
respect to the read or write of the location designated by x.

For all forms of the atomic construct, any combination of two or more of these atomic constructs
enforces mutually exclusive access to the locations designated by x. To avoid race conditions, all
accesses of the locations designated by x that could potentially occur in parallel must be protected
with an atomie construct.

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic re-
gions to the same storage location x even if those accesses occur during the execution of a reduction
clause.

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a
multiple of the size of x), then the behavior of the atomic region is implementation-defined.

The if clause specifies a condition where an atomic operation is required for correct parallel exe-
cution. If condition evaluates to true or no if clause appears, the atomic operation is required. If

80

2967
2968
2969
2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980
2981
2982
2983
2984
2985

2986

2987

2988

2989

2990

2991

2992
2993
2994
2995
2996
2997
2998

2999

3000
3001
3002
3003

3004

The OpanCC® API Version 3.4 2.13. Declare Directive

condition evaluates to false, the atomic directive can be safely ignored. Note: Conditional atom-
ics are useful when different parallelism strategies are employed for different architectures; it is the
programmer’s responsibility to ensure that the atomic operation is safe to ignore if condition is false.
Although not required, conditional atomics are recommended to be used with conditions that can
be evaluated at compile-time, including the acc_on_device routine.

Restrictions

* All atomic accesses to the storage locations designated by x throughout the program are
required to have the same type and type parameters.

 Storage locations designated by x must be less than or equal in size to the largest available
native atomic operator width.

* At most one if clause may appear.

2.13 Declare Directive
Summary

A declare directive is used in the declaration section of a Fortran subroutine, function, block
construct, or module, or following a variable declaration in C or C++. It can specify that a var is to
be allocated in device memory for the duration of the implicit data region of a function, subroutine
or program, and specify whether the data values are to be transferred from local memory to device
memory upon entry to the implicit data region, and from device memory to local memory upon exit
from the implicit data region. These directives create a visible device copy of the var.

Syntax

In C and C++, the syntax of the declare directive is:
#pragma acc declare clause-list new-line

In Fortran the syntax of the declare directive is:
!Sacc declare clause-list

where clause is one of the following:

copy ([modifier-list : | var-list)
copyin ([modifier-list : | var-list)
copyout ([modifier-list : | var-list)
create ([modifier-list : | var-list)
present (var-list)

deviceptr (var-list)

device_ resident (var-list)
link (var-list)

The associated region is the implicit region associated with the function, subroutine, or program in
which the directive appears. If the directive appears in the declaration section of a Fortran module
subprogram, for a Fortran common block, or in a C or C++ global or namespace scope, the associated
region is the implicit region for the whole program. The copy, copyin, copyout, present,
and deviceptr data clauses are described in Section 2. 7][Data Clausesl

81

3005

3006
3007
3008

3009

3010

3011

3012
3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025
3026

3027

3028

3029

3030

3031

3032

3033

3034
3035
3036

3037

3038
3039
3040

3041

The OpanCC® API Version 3.4 2.13. Declare Directive

Restrictions

* A declare directive must be in the same scope as the declaration of any var that appears
in the clauses of the directive or any scope within a C or C++ function or Fortran function,
subroutine, or program.

» At least one clause must appear on a declare directive.

* A var in a declare directive must be a variable or array name, or a Fortran common block
name between slashes.

* A var may appear at most once in all the clauses of declare directives for a function,
subroutine, program, or module.

* In Fortran, assumed-size dummy arrays may not appear in a declare directive.

* In Fortran, pointer arrays may appear, but pointer association is not preserved in device mem-
ory.

* In a Fortran module declaration section, only create, copyin, device_resident, and
1ink clauses are allowed.

* In Fortran, any create or device_resident clause affecting a variable with the allo-
catable or pointer attribute must be visible at the allocation and deallocation of that variable.

e In C or C++ global or namespace scope, only create, copyin, deviceptr,
device_resident and 1link clauses are allowed.

* C and C++ extern variables may only appear in create, copyin, deviceptr,
device_resident and 1link clauses on a declare directive.

* In C or C++, the 1ink clause must appear at global or namespace scope or the arguments
must be extern variables. In Fortran, the 1ink clause must appear in a module declaration
section, or the arguments must be common block names enclosed in slashes.

* In C or C++, a longjmp call in the region must return to a set jmp call within the region.

* In C++, an exception thrown in the region must be handled within the region.

* See Section2.17.1][Optional Arguments|for discussion of Fortran optional dummy arguments
in data clauses, including device_resident clauses.

2.13.1 device resident clause

Summary

The device_resident clause specifies that the memory for the named variables is allocated in
the current device memory and not in local memory. The host may not be able to access variables in
adevice_resident clause. The accelerator data lifetime of global variables or common blocks
that appear in a device_resident clause is the entire execution of the program.

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable will
be allocated in and deallocated from the current device memory when the host thread executes
an allocate or deallocate statement for that variable, if the current device is a non-shared
memory device. If the variable has the Fortran pointer attribute, it may be allocated or deallocated

82

3042

3043

3044
3045
3046
3047

3048

3049
3050

3051
3052

3053

3054

3055

3056

3057

3058

3059
3060

3061

3062

3063

3064

3065
3066
3067

3068
3069

3070

3071

3072
3073

3074

3075
3076

3077

3078

3079

The OpanCC® API Version 3.4 2.13. Declare Directive

by the host in the current device memory, or may appear on the left hand side of a pointer assignment
statement, if the right hand side variable itself appears in a device_resident clause.

In Fortran, the argument to a device_resident clause may be a common block name enclosed
in slashes; in this case, all declarations of the common block must have a matching
device_resident clause. In this case, the common block will be statically allocated in de-
vice memory, and not in local memory. The common block will be available to accelerator routines;
see Section [2.15][Procedure Calls in Compute Regions|

In a Fortran module declaration section, a var in a device_resident clause will be available to
accelerator subprograms.

In C or C++ global scope, a var in a device_resident clause will be available to accelerator
routines. A C or C++ extern variable may appear in a device_resident clause only if the
actual declaration and all extern declarations are also followed by device_resident clauses.

2.13.2 create clause

For data in shared memory, no action is taken.

For data not in shared memory, the create clause on a declare directive behaves as follows,
for each var in var-list:

* At entry to an implicit data region where the declare directive appears:

— If var is present, a [present increment| action with the structured reference counter is
performed. If var is a pointer reference, an action is performed.

— Otherwise, alcreafel action with the structured reference counter is performed. If var is
a pointer reference, anlastachl action is performed.

* At exit from an implicit data region where the declare directive appears:

— If the structured reference counter for var is zero, no action is taken.

— Otherwise, a [present decrement] action with the structured reference counter is per-
formed. If var is a pointer reference, a action is performed. If both structured
and dynamic reference counters are zero, aldelete] action is performed.

If the declare directive appears in a global context, then the data in var-list is statically allocated
in device memory and the structured reference counter is set to one.

In Fortran, if a variable var in var-list has the Fortran allocatable or pointer attribute, then for a
non-shared memory device:

» For an allocate statement for var or an intrinsic assignment statement of var that will
allocate memory, memory will be allocated in both local memory as well as in the current
device memory and the dynamic reference counter will be set to one.

* For a deallocate statement for var or an intrinsic assignment statement of var that will
deallocate memory, memory will be deallocated from both local memory as well as the current
device memory and the dynamic reference counter will be set to zero.

* In Fortran, an intrinsic assignment statement that reallocates var behaves the same as a deal-
location followed by an allocation of var. Note: No update of device memory will occur as

83

3080

3081

3082

3083

3084

3085
3086
3087

3088

3089
3090

3091

3092

3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103

3104

3105

3106

3107

3108
3109
3110
3111

3112

3113

3114

3115

3116

3117

The OpanCC® API Version 3.4 2.14. Executable Directives

the result of an intrinsic assignment statement on the host; if data coherency between the host
and device is required, it is the user’s responsibility.

* An allocate, deallocate, or intrinsic assignment statement on a device other than the
host device will result in undefined behavior.

 If the structured reference counter is not zero, a runtime error is issued.

In Fortran, if a variable var in var-list has the Fortran pointer attribute, then it may appear on the
left hand side of a pointer assignment statement, if the right hand side variable itself appears in a
create clause.

Errors

* In Fortran, an acc_error_present error is issued at a deallocate statement if the struc-
tured reference counter is not zero.

See Section[5.2.2)

2.13.3 link clause

The 1ink clause is used for large global host static data that is referenced within an accelerator
routine and that has a dynamic data lifetime on the device. The 1ink clause specifies that only a
global link for the named variables is statically created in accelerator memory. The host data struc-
ture remains statically allocated and globally available. The device data memory will be allocated
only when the global variable appears on a data clause for a data construct, compute construct, or
enter data directive. The arguments to the 1ink clause must be global data. A declare 1link
clause must be visible everywhere the global variables or common block variables are explicitly or
implicitly used in a data clause, compute construct, or accelerator routine. The global variable or
common block variables may be used in accelerator routines. The accelerator data lifetime of vari-
ables or common blocks that appear in a 1ink clause is the data region that allocates the variable or
common block with a data clause, or from the execution of the enter data directive that allocates
the data until an exit data directive deallocates it or until the end of the program.

2.14 Executable Directives
2.14.1 Init Directive

Summary

The init directive initializes the runtime for the given device or devices of the given device type.
This can be used to isolate any initialization cost from the computational cost, when collecting
performance statistics. If no device type appears all devices will be initialized. An init directive
may be used in place of a call to the acc_init or acc_init_device runtime API routine, as
described in Section

Syntax

In C and C++, the syntax of the init directive is:
#pragma acc init [clause-list] new-line
In Fortran the syntax of the init directive is:

'$Sacc init [clause-list]

84

3118

3119
3120
3121

3122

3123

3124
3125

3126

3127

3128
3129
3130

3131

3132

3133
3134

3135

3136

3137

3138
3139

3140

3141

3142

3143

3144
3145
3146

3147
3148

3149

3150

3151

3152

The OpanCC® API Version 3.4 2.14. Executable Directives

where clause is one of the following:
device_type (device-type-list)

device_num (int-expr)
if (condition)

device_type clause

The device_type clause specifies the type of device that is to be initialized in the runtime. If the
device_type clause appears, then the acc-current-device-type-var for the current thread is set to
the argument value. If no device_num clause appears then all devices of this type are initialized.

device_num clause

The device_num clause specifies the device id to be initialized. If the device_num clause
appears, then the acc-current-device-num-var for the current thread is set to the argument value. If
no device_type clause appears, then the specified device id will be initialized for all available
device types.

if clause

The if clause is optional; when there is no if clause, the implementation will generate code to
perform the initialization unconditionally. When an if clause appears, the implementation will
generate code to conditionally perform the initialization only when the condition evaluates to true.

Restrictions

* This directive may only appear in code executed on the host.

* If the directive is called more than once without an intervening acc_shutdown call or
shutdown directive, with a different value for the device type argument, the behavior is
implementation-defined.

* If some accelerator regions are compiled to only use one device type, using this directive with
a different device type may produce undefined behavior.

Errors

* Anacc_error_device_type_unavailable errorisissuedif adevice_type clause
appears and no device of that device type is available, or if no device_type clause appears
and no device of the current device type is available.

* An acc_error_device_unavailable error is issued if a device_num clause ap-
pears and the int-expr is not a valid device number or that device is not available, or if no
device_num clause appears and the current device is not available.

e An acc_error_device_ init error is issued if the device cannot be initialized.

See Section[3.2.2]

2.14.2 Shutdown Directive

85

3153

3154
3155
3156
3157

3158

3159

3160

3161

3162

3163

3164

3165
3166
3167

3168

3169

3170

3171

3172

3173

3174

3175

3176
3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

The OpanCC® API Version 3.4 2.14. Executable Directives

Summary

The shutdown directive shuts down the connection to the given device or devices of the given
device type, and frees any associated runtime resources. This ends all data lifetimes in device
memory, which effectively sets structured and dynamic reference counters to zero. A shutdown
directive may be used in place of a call to the acc_shutdown or acc_shutdown_device
runtime API routine, as described in Section[3.2.8]

Syntax

In C and C++, the syntax of the shutdown directive is:
#pragma acc shutdown [clause-list] new-line

In Fortran the syntax of the shutdown directive is:
'Sacc shutdown [clause-list]

where clause is one of the following:

device_type (device-type-list)
device_num (int-expr)
if (condition)

device_type clause

The device_type clause specifies the type of device that is to be disconnected from the runtime.
If no device_num clause appears then all devices of this type are disconnected.

device_num clause

The device_num clause specifies the device id to be disconnected.

If no clauses appear then all available devices will be disconnected.

if clause

The if clause is optional; when there is no if clause, the implementation will generate code
to perform the shutdown unconditionally. When an if clause appears, the implementation will
generate code to conditionally perform the shutdown only when the condition evaluates to true.

Restrictions
* This directive may only appear in code executed on the host.
Errors

* Anacc_error_device_type_unavailable errorisissuedif adevice_type clause
appears and no device of that device type is available,

* An acc_error_device_unavailable error is issued if a device_num clause ap-
pears and the int-expr is not a valid device number or that device is not available.

* An acc_error_device_shutdown error is issued if there is an error shutting down the
device.

See Section[5.2.2)

86

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199
3200
3201

3202

3203

3204
3205
3206
3207

3208

3209

3210
3211
3212
3213

3214

3215

3216
3217
3218
3219
3220

3221

3222

3223
3224

3225

The OpanCC® API Version 3.4 2.14. Executable Directives

2.14.3 Set Directive

Summary

The set directive provides a means to modify internal control variables using directives. Each form
of the set directive is functionally equivalent to a matching runtime API routine.

Syntax

In C and C++, the syntax of the set directive is:
#pragma acc set [clause-list] new-line

In Fortran the syntax of the set directive is:
'Sacc set [clause-list]

where clause is one of the following

default_async (async-argument)
device_num (int-expr)
device_type (device-type-list')
if (condition)

default_async clause

The default_asynec clause specifies the asynchronous queue that is used if no queue appears
and changes the value of acc-default-async-var for the current thread to the argument value. If the
value is acc_async_default, the value of acc-default-async-var will revert to the initial value,
which is implementation-defined. A set default_async directive is functionally equivalent to
acall to the acc_set_default_async runtime API routine, as described in Section

device_num clause

The device_num clause specifies the device number to set as the default device for accelerator
regions and changes the value of acc-current-device-num-var for the current thread to the argument
value. If the value of device_num argument is negative, the runtime will revert to the default be-
havior, which is implementation-defined. A set device_num directive is functionally equivalent
to the acc_set_device_ num runtime API routine, as described in Section [3.2.4]

device_type clause

The device_type clause specifies the device type to set as the default device type for accelerator
regions and sets the value of acc-current-device-type-var for the current thread to the argument
value. If the value of the device_type argument is zero or the clause does not appear, the
selected device number will be used for all attached accelerator types. A set device_type
directive is functionally equivalent to a call to the acc_set_device_type runtime API routine,
as described in Section

if clause

The if clause is optional; when there is no if clause, the implementation will generate code to
perform the set operation unconditionally. When an if clause appears, the implementation will
generate code to conditionally perform the set operation only when the condition evaluates to true.

87

The OpanCC® API Version 3.4 2.14. Executable Directives

3226 Restrictions

3227 * This directive may only appear in code executed on the host.

3228 * Passing default_async the value of acc_async_noval has no effect.

3229 * Passing default_async the value of ace_async_sync will cause all asynchronous
3230 directives in the default asynchronous queue to become synchronous.

3231 * Passing default_async the value of ace_async_default will restore the default
3232 asynchronous queue to the initial value, which is implementation-defined.

3233 * Atleast one default_async, device_num, or device_type clause must appear.

3234 * Two instances of the same clause may not appear on the same directive.

s23s Errors

3236 * Anacc_error_device_type_unavailable errorisissuedif adevice_type clause
3237 appears, and no device of that device type is available.

3238 * An acc_error_device_unavailable error is issued if a device_num clause ap-
3239 pears, and the inf-expr is not a valid device number.

3240 * An acc_error_invalid_async error is issued if a default_async clause appears,
3241 and the argument is not a valid async-argument.

3242 See Section

2 2.14.4 Update Directive

3244 Summary

s245 The update directive is used during the lifetime of accelerator data to update vars in local memory
s246 with values from the corresponding data in device-accessible memory, or to update vars in device-
3247 accessible memory with values from the corresponding data in local memory.

s4s Syntax

s249 In C and C++, the syntax of the update directive is:
3250 #fpragma acc update clause-list new-line
s251 In Fortran the syntax of the update data directive is:
3252 !$acc update clause-list

3253 where clause is one of the following:

3254 async [(async-argument) |

3255 wait [(wait-argument)]

3256 device_type (device-type-list)
3257 if (condition)

3258 if present

3259 self (var-list)

3260 host (var-list)

3261 device (var-list)

88

3262
3263
3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285
3286

3287

3288

3289

3290

3291

3292

3293

3294

The OpanCC® API Version 3.4 2.14. Executable Directives

Multiple subarrays of the same array may appear in a var-list of the same or different clauses on the
same directive. For any var in var-list that is in shared memory and that is not a captured variable,
no data action will occur. When a device clause appears, then for each var in the associated
var-list an [transfer inl action is performed.

When a host or self clause appears, then for each var in the associated var-list an
action is performed.

The transfer actions are performed in the order in which they appear on the directive, from left to
right.

Restrictions

* Atleast one self, host, or device clause must appear on an update directive.

self clause

The self clause specifies that, for data not in shared memory or for captured variables, aftransfer ou]
action for the vars in var-list is performed. Otherwise, no action is taken.

An update directive with the self clause is equivalent to a call to the acc_update_self
routine, described in Section [3.2.20

host clause

The host clause is a synonym for the sel £ clause.

device clause

The device clause specifies that a[transfer in| action for the vars in var-list is performed for data
not in shared memory or for the captured variables. Otherwise, no action is taken.

An update directive with the device clause is equivalent to a call to the acc_update_device
routine, described in Section[3.2.20]

if clause

The if clause is optional; when there is no if clause, the implementation will generate code to
perform the updates unconditionally. When an i £ clause appears, the implementation will generate
code to conditionally perform the updates only when the condition evaluates to true.

async clause

The asyne clause is optional; see Section [2.16||Asynchronous Behavior|for more information.

wait clause

The wait clause is optional; see Section 2.16][Asynchronous Behavior for more information.

if_ present clause

When an if_present clause appears on the directive, no action is taken for a var which appears
in var-list that is not present in the device-accessible memory of the current device.

&9

3295

3296
3297

3298

3299
3300

3301

3302

3303

3304
3305
3306
3307

3308

3309
3310

3311
3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

The OpanCC® API Version 3.4 2.14. Executable Directives

Restrictions

The update directive is executable. It must not appear in place of the statement following
an if, while, do, switch, or label in C or C++, or in place of the statement following a logical
if in Fortran.

If no if_present clause appears on the directive, each var in var-list must be present in
the device-accessible memory of the current device.

Only the async and wait clauses may follow a device_type clause.

At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical
value; in C or C++, the condition must evaluate to a scalar integer value.

Noncontiguous subarrays may appear. It is implementation-specific whether noncontiguous
regions are updated by using one transfer for each contiguous subregion, or whether the non-
contiguous data is packed, transferred once, and unpacked, or whether one or more larger
subarrays (no larger than the smallest contiguous region that contains the specified subarray)
are updated.

In C and C++, a member of a struct or class may appear, including a subarray of a member.
Members of a subarray of struct or class type may not appear.

In C and C++, if a subarray notation is used for a struct member, subarray notation may not
be used for any parent of that struct member.

In Fortran, members of variables of derived type may appear, including a subarray of a mem-
ber. Members of subarrays of derived type may not appear.

In Fortran, if array or subarray notation is used for a derived type member, array or subarray
notation may not be used for a parent of that derived type member.

See Section[2.17.1[Optional Arguments|for discussion of Fortran optional arguments in sel£,
host, and device clauses.

Errors

An acc_error_not_present error is issued if no 1f_present clause appears and
any var in a device or self clause is not present on the current device.

An acc_error_partly present error is issued if part of var is present in the current
device memory but all of var is not.

An async or wait clause can cause an error to be issued; see Sections and

See Section[3.2.2]

2.14.5 Wait Directive

See Section [2.16l|Asynchronous Behavior| for more information.

2.14.6 Enter Data Directive

See Section [2.6.6|[Enter Data and Exit Data Directives| for more information.

90

3330

3331

3332

3333
3334

3335

3336

3337

3338
3339
3340

3341

3342

3343

3344

3345
3346
3347
3348

3349

3350

3351

3352

3353
3354
3355
3356

3357

3358

3359
3360
3361
3362
3363
3364
3365
3366

3367

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

2.14.7 Exit Data Directive
See Section [2.6.6|[Enter Data and Exit Data Directives| for more information.

2.15 Procedure Calls in Compute Regions

This section describes how routines are compiled for an accelerator and how procedure calls are
compiled in compute regions. See Section 2.17.1][Optional Arguments| for discussion of Fortran
optional arguments in procedure calls inside compute regions.

2.15.1 Routine Directive

Summary

The routine directive is used to tell the compiler to compile the definition for a procedure, such
as a function or C++ lambda, for an accelerator as well as for the host. The routine directive is
also used to tell the compiler the attributes of the procedure when called on the accelerator.

Syntax

In C and C++, the syntax of the rout ine directive is:

#fpragma acc routine clause-list new-line
#pragma acc routine (name) clause-list new-line

In C and C++, the routine directive without a name may appear immediately before a function
definition, a function prototype, or a C++ lambda and applies to the function or C++ lambda. The
routine directive with a name may appear anywhere that a function prototype is allowed and
applies to the function or the C++ lambda in scope with that name. See for recom-
mended diagnostics for a routine directive with a name.

In Fortran the syntax of the routine directive is:

'$Sacc routine clause-list
'Sacc routine (name) clause-list

In Fortran, the routine directive without a name may appear within the specification part of a
subroutine or function definition, or within an interface body for a subroutine or function in an
interface block, and applies to the containing subroutine or function. The routine directive with
a name may appear in the specification part of a subroutine, function or module, and applies to the
named subroutine or function.

The clause is one of the following:

gang [(dim:int-expr)]
worker

vector

seq

bind (name)

bind (string)

device_type (device-type-list)
nohost

A gang, worker, vector, or seq clause specifies the level of parallelism in the routine.

91

3368

3369

3370
3371

3372

3373

3374

3375

3376

3377

3378

3379
3380

3381

3382

3383
3384
3385
3386
3387
3388

3389

3390
3391

3392

3393
3394
3395
3396
3397

3398

3399

3400

3401

3402

3403

3404
3405
3406

3407

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

A procedure compiled with the rout ine directive for an accelerator is called an accelerator rou-
tine.

If no explicit rout ine directive applies to a procedure whose definition appears in the program unit
being compiled, then the implementation applies an implicit rout ine directive to that procedure
if any of the following conditions holds:

* The procedure is called or its address is accessed in a compute region.

* The procedure is a C++ lambda defined in an accelerator routine that has a nohost clause,
which is considered relevant below.

* The procedure is the parent compute scope of either:

— A loop construct. If it is data-independent without auto clause, then its explicit
gang, worker, and vector clauses are considered relevant below.

— A call to an accelerator routine whose routine directive has a gang, worker,
vector clause explicitly or implicitly determined, each of which is considered rele-
vant below.

The implicit routine directive is determined as follows:

* An implicit routine directive has a seq clause if the procedure is a C++ virtual function
or a Fortran type-bound procedure. Otherwise, from the set containing seq and all relevant
clauses identified above, the implicit routine directive then copies the highest level-of-
parallelism clause. Loop constructs that do not have any parallelism clauses identified above
are ignored when determining the enclosing routine’s parallelism. However, if a routine with
a parallelism clause is called within such a loop, its clause is still considered when selecting
the highest level of parallelism.

* A C++ lambda’s implicit routine directive also copies a nohost clause if the lambda is
defined in an accelerator routine that has a nohost clause or if it contains a call to an accel-
eration routine with nohost clause.

* When the implementation applies an implicit routine directive to a procedure, it must
recursively apply implicit rout ine directives to other procedures for which the above rules
specify relevant dependencies. Such dependencies can form a cycle, so the implementation
must take care to avoid infinite recursion. The implicit routine parallelism clause for the
procedures being called must be determined before determining the parallelism clause of the
caller procedure.

The implementation may apply predetermined routine directives with a seq clause to any pro-
cedures that it provides for an accelerator, such as those of base language standard libraries.

gang clause

The associated dimension is the value of the dim clause, if it appears, or is dimension one. The
dim argument must be an integral-constant-expression that evaluates to the value 1, 2, or 3.

The gang clause with dimension d specifies that the procedure can be the parent compute scope
of a loop or a call to a routine with a gang clause associated with dimension d or less, but it must
not be the parent compute scope of a loop or a call to a routine with a gang clause with dimension
greater than d.

92

3408

3409
3410
3411
3412
3413
3414

3415

3416

3417
3418
3419
3420
3421
3422
3423

3424

3425

3426
3427

3428

3429

3430
3431
3432
3433
3434
3435

3436

3437
3438

3439

3440

3441

3442

3443

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

worker clause

The worker clause specifies that the procedure can be the parent compute scope of a loop or a call
to a routine with a worker clause, but it must not be the parent compute scope of a loop or a call
to a routine with a gang clause. A loop in this procedure with an auto clause may be selected by
the compiler to execute in worker or vector mode. A call to this procedure must appear in code
that is executed in worker-single mode, though it may be in gang-redundant or gang-partitioned
mode. For instance, a procedure with a routine worker directive may be called from within a
loop that has the gang clause, but not from within a loop that has the worker clause.

vector clause

The vector clause specifies that the procedure can be the parent compute scope of a loop or a
call to a routine with a vector clause, but it must not be the parent compute scope of a loop or
a call to a routine with a gang or worker clause. A loop in this procedure with an auto clause
may be selected by the compiler to execute in vector mode, but not worker mode. A call to
this procedure must appear in code that is executed in vector-single mode, though it may be in
gang-redundant or gang-partitioned mode, and in worker-single or worker-partitioned mode. For
instance, a procedure with a rout ine vector directive may be called from within a loop that has
the gang clause or the worker clause, but not from within a loop that has the vector clause.

seq clause

The seq clause specifies that the procedure must not be the parent compute scope of a loop or a
call to a routine with a gang, worker, or vector clause. A loop in this procedure with an auto
clause will be executed in seq mode. A call to this procedure may appear in any mode.

bind clause

The bind clause specifies the name to use when calling the procedure on a device other than the
host. If the name is specified as an identifier, it is called as if that name were specified in the
language being compiled. If the name is specified as a string, the string is used for the procedure
name unmodified. A bind clause on a procedure definition behaves as if it had appeared on a
declaration by changing the name used to call the procedure on a device other than the host; however,
the procedure is not compiled for the device with either the original name or the name in the bind
clause.

If there is both a Fortran bind and an acc bind clause for a procedure definition then a call on the
host will call the Fortran bound name and a call on another device will call the name in the bind
clause.

device_type clause

The device_type clause is described in Section [2.4][Device-Specific Clauses]

nohost clause

The nohost clause tells the compiler not to compile a version of this procedure for the host.

93

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

444 Restrictions

3445 * Only the gang, worker, vector, seq and bind clauses may follow a device_type
3446 clause.

3447 * Exactly one of the gang, worker, vector, or seq clauses must appear.

3448 * In C and C++, function static variables are not supported in functions to which a routine
3449 directive applies.

3450 * In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported
3451 in subprograms to which a routine directive applies.

3452 * A call to a procedure with a nohost clause must not appear in a compute construct that is
3453 compiled for the host. See examples below.

3454 If a call to a procedure with a nohost clause appears in another procedure but outside any
3455 compute construct, that other procedure must also have a nohost clause.

3456 * A call to a procedure with a gang (dim:d) clause must appear in code that is executed
3457 in gang-redundant mode in all dimensions d and lower. For instance, a procedure with a
3458 gang (dim:2) clause may not be called from within a loop that has a gang (dim:1)
3459 or a gang (dim:2) clause. The user needs to ensure that a call to a procedure with a
3460 gang (dim:d) clause, when present in a region executing in GRe or GPe mode with e > d
3461 and called by a gang along dimension e, is executed by all of its corresponding gangs along
3462 dimension d.

3463 * A bind clause may not bind to a routine name that has a visible bind clause.

3464 If a procedure has a bind clause on both the declaration and the definition then they both
3465 must bind to the same name.

3466 * In C and C++, a definition or use of a procedure must appear within the scope of at least
3467 one explicit and applying routine directive if any appears in the same compilation unit.
3468 An explicit routine directive’s scope is from the directive to the end of the compilation
3469 unit. If the routine directive appears in the member list of a C++ class, then its scope also
3470 extends in the same manner as any class member’s scope (e.g., it includes the bodies of all
3471 other member functions).

3472 .v V

3473 Examples

3474

3475 A function, such as £ below, requires a nohost clause if it contains accelerator-specific code
3476 that cannot be compiled for the host. By default, some implementations compile all compute
3477 constructs for the host in addition to accelerators. In that case, a call to £ must not appear in
3478 any compute construct or compilation will fail. However, £ can appear in the bind clause of
3479 another function, such as g below, that does not have a nohost clause, and a call to g can
3480 appear in a compute construct. Thus, g is called when the compute construct is compiled for
3481 the host, and £ is called when the compute construct is compiled for accelerators.

3482 #fpragma acc routine seq nohost

3483 void £() { /raccelerator implementationx/ }

94

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

3484

3485 #fpragma acc routine seq bind(f)

3486 void g() { /+host implementationx/ }

3487

3488 void h() {

3489 #pragma acc parallel

3490 g();

3491 }

3492 * In C, the restriction that a function’s definitions and uses must appear within any applying
3493 routine directive’s scope has a simple interpretation: the routine directive must appear
3494 first. This interpretation seems intuitive for the common case in C where prototypes, defini-
3495 tions, and routine directives for a function, such as £ below, appear at global scope.

3496 void £();

3497 void scopeA() {

3498 #pragma acc parallel

3499 £f(); // nonconforming

3500 }

3501 // The routine directive’s scope 1s not f’s full scope.

3502 // Instead, it starts at the routine directive.

3503 #pragma acc routine(f) gang

3504 void scopeB() {

3505 #fpragma acc parallel

3506 £(); // conforming

3507 }

3508 void £() {} // conforming

3509 * C++ classes permit forward references from member function bodies to other members de-
3510 clared later. For example, immediately within class A below, g’s scope does not start until
3511 after £’s definition. Nevertheless, within £’s body, g is in scope throughout. The same is true
3512 for g’s routine directive. Thus, £’s call to g is conforming.

3513 class A {

3514 void £() {

3515 #pragma acc parallel

3516 g(); // conforming

3517 }

3518 #pragma acc routine gang

3519 void g();

3520 };

3521 * In some places, C++ classes do not permit forward references. For example, in the return type
3522 of a member function, a member typedef that is declared later is not in scope. Likewise, g’s
3523 definition below is not fully within the scope of g’s routine directive even though its body
3524 is, so its definition is nonconforming.

3525 class A {

3526 #pragma acc routine(f) gang

3527 void £() {} // conforming

3528 void g() {} // nonconforming

3529 #pragma acc routine(g) gang

3530 };

95

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

3531 * The C++ scope resolution operator and using directive do not affect the scope of routine
3532 directives. For example, the routine directive below is specified for the name £, which
3533 resolves to A: : £. Every reference to both A: : £ and C: : £ afterward is in the routine
3534 directive’s scope, but the routine directive always applies to A: : £ and never C: : £ even
3535 when referenced as just £.

3536 namespace A {

3537 void £();

3538 namespace B {

3539 #pragma acc routine(f) gang // applies to A::f

3540 }

3541 }

3542 void g() {

3543 #pragma acc parallel

3544 A::£(); // conforming

3545 }

3546 void h() {

3547 using A::f;

3548 #pragma acc parallel

3549 £(); // conforming

3550 }

3551 namespace C {

3552 void £();

3553 using namespace A::B;

3554 void i() {

3555 #pragma acc parallel

3556 £f(); // nonconforming

3557 }

3558 }

3559 * As specified earlier in this section, before the implementation determines the implicit rout ine
3560 directive for the procedure g, it must determine the implicit routine directive for the procedure
3561 £ that is called from g.

3562 // stepl: implicit #pragma acc routine vector

3563 void £ () {

3564 #pragma acc loop vector

3565 for (int i = 0; 1 < I; ++i)

3566 ;

3567 };

3568 // step2: implicit #pragma acc routine vector

3569 void g() {

3570 £(); // has implicit routine directive

3571 }

3572 void h() {

3573 #fpragma acc parallel loop gang worker

3574 for (int i = 0; 1 < I; ++i)

3575 g(); // calling function with vector parallelism

3576 }

3577 * Since the call site of the procedure is not taken into account when determining its routine par-
3578 allelism, calling procedures may become illegal after their routine parallelism is determined
3579 implicitly. In the example below, £ is resolved to be a vector routine implicitly, this means

96

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

3580 it is legal to call £ from g since g is executing in vector-single mode, but calling £ from the
3581 loop in h is illegal as the loop iterations are partitions across vector lanes.

3582 // implicit #pragma acc routine vector

3583 void £ () {

3584 #fpragma acc loop vector

3585 for (int i = 0; i < I; ++i)

3586 ;

3587 };

3588 // executing in vector-signle mode.

3589 #fpragma acc routine vector

3590 void g() {

3591 £f(); // has implicit vector routine directive

3592 }

3593 void h() {

3594 #fpragma acc parallel loop gang vector

3595 for (int i = 0; i < I; ++i)

3596 £f(); // illegal to call a function with vector parallelism
3597 // from within a loop partitioned across vector lanes.
3598 }

3599 ¢ Based on the specification of implicit gang clauses in[Section 2.9.2] the implementation must

3600 determine the implicit rout ine directive for a procedure before it determines implicit gang
3601 clauses on its orphaned loop constructs. This behavior minimizes the implicit routine
3602 directive’s level of parallelism and thus maximizes the number of places the lambda can be
3603 called. For example, the implicit routine directive for the C++ lambda £ below has only
3604 a vector clause so that £ can be called within gang or worker loops. An orphaned loop
3605 construct has an implicit gang clause only if, as in h below, it does not have an explicit gang
3606 clause but gang parallelism appears elsewhere in the lambda, such as the call to g.

3607 // step 1: implicit #pragma acc routine vector

3608 auto £ = []1() {

3609 #pragma acc loop vector // step 2: no implicit gang clause

3610 for (int i = 0; 1 < I; ++i)

3611 ;

3612 };

3613

3614 #fpragma acc routine gang

3615 void g{();

3616

3617 // step 1: implicit #pragma acc routine gang

3618 auto h = []() {

3619 #pragma acc loop // step 2: implicit gang clause

3620 for (int i = 0; 1 < I; ++i)

3621 ;

3622 g();

3623 };

3624 * As specified earlier in this section, when the implementation determines the implicit rout ine
3625 directive for a procedure, it must assume that the orphaned loops with the auto clauses are
3626 data-dependent. This behavior can result in unexploited additional parallelism in such loops
3627 in the procedures without the explicit routine directive. For example, within the C++ lambda
3628 £ below, the implementation treats auto as seq, then £’s implicit rout ine directive has a

97

3629
3630
3631

3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652

3653
3654
3655
3656
3657
3658
3659
3660
3661

3662

3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676

3677

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

seq clause, which permits the implementation to worker- or vector-partition h’s 1oop con-
struct but prevents parallelising the loop in £ even if the implementation resolves the auto
clause as data-independent.

// step 1: implicit #pragma acc routine with seq
auto £ = []() {

// step 2: auto -> seq

#pragma acc loop auto worker vector

for (int j = 0; j < J; ++3) {

// complex loop body

}

};

#fpragma acc routine seq
void g{();

void h() {
#pragma acc parallel num_gangs (NG)
// step 3: implicit gang, possibly worker or vector
#fpragma acc loop
for (int i = 0; i < I; ++i) {
£0;
g();
}

* By specifying a contract between a procedure and its callers, implicit routine directives
help to establish the semantics of OpenACC programs to facilitate both the user’s under-
standing of the behavior and also the implementation’s analysis and diagnostics. However,
as usual, the implementation is free to perform optimizations that preserve program seman-
tics. For example, the implicit routine directive for the C++ lambda £ below has a seq
clause because £’s definition provides no means to determine a higher parallelism level and
because executing £’s 1oop constructs sequentially is compatible with any conceivable call
site. Nevertheless, observing that both of £’s 1oop constructs are data-independent and that
g’s call to £ is in vector-single mode, the implementation might choose to inline a version of
£ such that both loop constructs are vector-partitioned.

// implicit #pragma acc routine seq
auto £ = [1() {
#pragma acc loop auto // auto -> independent
for (int i = 0; i < I; ++i)
7
#pragma acc loop // implicit independent
for (int i = 0; i < I; ++i)
7
}i
void g() {
#fpragma acc parallel loop gang worker
for (int i = 0; 1 < I; ++i)
£f(); // can inline with vector partitioning

* As specified earlier in this section, when the implementation determines the implicit rout ine

98

3678
3679
3680
3681
3682
3683

3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703

3704

3705

3706
3707
3708
3709
3710

3711

3712

3713

3714

3715
3716
3717
3718
3719

3720

3721

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

directive for a procedure it ignores the loop constructs without any explicit parallelism
clause, however the parallelism level set on any routine enclosed within such loop con-
structs is considered when determining the implicit routine parallelism. In the example below
the routine parallelism clause of bar is determined as vector implicitly, because it is taken
from the parallelism of f£oo even though foo is enclosed into the 1oop construct that has
no parallelism clause.

#fpragma acc routine vector
void foo () {

}
// implicit #pragma acc routine vector
void bar (int n) {
#pragma acc loop

for (int i=0; i<n; i++)
// bar’s routine parallelism is based on foo’s parallelism
// clause, because foo 1s 1inside the loop construct with
// no parallelism set.

foo();

void f£(){
// This loop can be parallelised as gang or worker loop.
#pragma acc parallel loop
for (int i=0; i<100; i++)
bar(100); // has implicit vector routine.

A A

2.15.2 Global Data Access

C or C++ global, file static, or extern variables or array, and Fortran module or common block vari-
ables or arrays, that are used in accelerator routines must appear in a declare directive in a create,
copyin, device_resident or link clause. If the data appears in a device_resident
clause, the routine directive for the procedure must include the nohost clause. If the data ap-
pears in a 1ink clause, that data must have an active accelerator data lifetime by virtue of appearing
in a data clause for a data construct, compute construct, or enter data directive.

2.16 Asynchronous Behavior

This section describes the asyne clause, the wait clause, the wait directive, and the behavior of
programs that use asynchronous data movement, compute regions, and asynchronous API routines.

In this section and throughout the specification, the term async-argument means a nonnegative
scalar integer expression (int for C or C++, integer for Fortran), or one of the special values
acc_async_default, acc_async_noval,oracc_async_sync as defined in the C header
file and the Fortran openacc module. The special values are negative values, so as not to conflict
with a user-specified nonnegative async-argument. An async-argument is used in async clauses,
wait clauses, wait directives, and as an argument to various runtime routines.

The async-value of an async-argument is

99

3722

3723

3724

3725

3726

3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738

3739

3740
3741
3742
3743
3744
3745
3746
3747
3748

3749

3750
3751
3752
3753
3754
3755
3756
3757
3758

3759

3760

3761

3762
3763

3764

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

* acc_async_sync if async-argument has a value equal to the special value acc_async_sync,

* the value of acc-default-async-var if async-argument has a value equal to the special value
acc_async_noval or acc_async_default,

* the value of the async-argument, if it is nonnegative,
* implementation-defined, otherwise.

The async-value is used to select the activity queue to which the clause or directive or API routine
refers. The properties of the current device and the implementation will determine how many actual
activity queues are supported, and how the async-value is mapped onto the actual activity queues.
Two asynchronous operations on the same device with the same async-value will be enqueued
onto the same activity queue, and therefore will be executed on the device in the order they are
encountered by the local thread. Two asynchronous operations with different async-values may be
enqueued onto different activity queues, and therefore may be executed on the device in either order
or concurrently relative to each other. If there are two or more host threads executing and sharing the
same device, asynchronous operations on any thread with the same async-value will be enqueued
onto the same activity queue. If the threads are not synchronized with respect to each other, the
operations may be enqueued in either order and therefore may execute on the device in either order.
Asynchronous operations enqueued to difference devices may execute in any order or may execute
concurrently, regardless of the async-value used for each.

If a compute construct, data directive, or runtime API call has an async-value of acc_async_sync,
the associated operations are executed on the activity queue associated with the async-value
acc_async_sync, and the local thread will wait until the associated operations have completed
before executing the code following the construct or directive. If a data construct has an async-
value of ace_async_sync, the associated operations are executed on the activity queue associ-
ated with the async-value ace_async_sync, and the local thread will wait until the associated
operations that occur upon entry of the construct have completed before executing the code of the
construct’s structured block or block construct, and after that, will wait until the associated opera-
tions that occur upon exit of the construct have completed before executing the code following the
construct.

If a compute construct, data directive, or runtime API call has an async-value other than
acc_async_syngc, the associated operations are executed on the activity queue associated with
that async-value and the associated operations may be processed asynchronously while the local
thread continues executing the code following the construct or directive. If a data construct has an
async-value other than acc_async_synec, the associated operations are executed on the activity
queue associated with that async-value, and the associated operations that occur upon entry of the
construct may be processed asynchronously while the local thread continues executing the code
of the construct’s structured block or block construct, and after that, the associated operations that
occur upon exit of the construct may be processed asynchronously while the local thread continues
executing the code following the construct.

In this section and throughout the specification, the term wait-argument, means:
[devnum : int-expr: 1 [queues : 1 async-argument-list

If a devnum modifier appears in the wait-argument then the associated device is the device with
that device number of the current device type. If no devnum modifier appears then the associated
device is the current device.

100

3765
3766

3767

3768

3769

3770
3771
3772
3773
3774

3775

3776

3777

3778

3779

3780

3781
3782
3783

3784

3785
3786
3787
3788
3789
3790
3791
3792
3793

3794

3795

3796

3797

3798
3799
3800

3801

3802

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

Each async-argument is associated with an async-value. The async-values select the associated
activity queue or queues on the associated device. If there is no async-argument-list, the associated
activity queues are all activity queues for the associated device.

The queues modifier within a wait-argument is optional to improve clarity of the expression list.

2.16.1 async clause

The async clause may appear on a parallel, serial, kernels, or data construct, or an
enterdata, exit data, update, orwait directive. In all cases, the async clause is optional.
The asynec clause may have a single async-argument, as defined above. If the async clause does
not appear, the behavior is as if the async-argument is ace_async_sync. If the async clause
appears with no argument, the behavior is as if the async-argument is acc_async_noval. The
async-value for a construct or directive is defined in Section

Errors

* An acc_error_invalid_async error is issued if an async clause with an argument
appears on any directive and the argument is not a valid async-argument.

See Section[3.2.2]

2.16.2 wait clause

The wait clause may appear on a parallel, serial, or kernels, or data construct, or
an enter data, exit data, or update directive. In all cases, the wait clause is optional.
When there is no wait clause, the associated operations may be enqueued or launched or executed
immediately on the device.

If there is an argument to the wait clause, it must be a wait-argument, the associated device and
activity queues are as specified in the wait-argument; see Section If there is no argument to
the wait clause, the associated device is the current device and associated activity queues are all
activity queues. The associated operations may not be launched or executed until all operations
already enqueued up to this point by this thread on the associated asynchronous device activity
queues have completed. Note: One legal implementation is for the local thread to wait until the
operations already enqueued on the associated asynchronous device activity queues have completed;
another legal implementation is for the local thread to enqueue the associated operations in such a
way that they will not start until the operations already enqueued on the associated asynchronous
device activity queues have completed.

Errors

* An acc_error_device_unavailable error is issued if a wait clause appears on any
directive with a devnum modifier and the associated int-expr is not a valid device number.

* An acc_error_invalid_async error is issued if a wait clause appears on any direc-
tive with a queues modifier or no modifier and any value in the associated list is not a valid
async-argument.

See Section

2.16.3 Wait Directive

101

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

33 Summary

sso4 The wait directive causes the local thread or operations enqueued onto a device activity queue on
ss0s the current device to wait for completion of asynchronous operations.

a6 Syntax

sso7 In C and C++, the syntax of the wait directive is:

3808 #pragma acc wait [(wait-argument) || clause-list | new-line
ssos In Fortran the syntax of the wait directive is:

3810 'Sacc wait [(wait-argument) | [clause-list |

st where clause is:

3812 async [(async-argument)]
3813 if (condition)

ss14 If it appears, the wait-argument is as defined in Section[2.16l and the associated device and activity
ss1s queues are as specified in the wait-argument. If there is no wait-argument clause, the associated
sste device is the current device and associated activity queues are all activity queues.

ss17 If there is no asynec clause, the local thread will wait until all operations enqueued by this thread
ss1s onto each of the associated device activity queues for the associated device have completed. There
ss1e 1S no guarantee that all the asynchronous operations initiated by other threads onto those queues will
ss20 have completed without additional synchronization with those threads.

ss21 If there is an asynec clause, no new operation may be launched or executed on the activity queue
ss22 associated with the async-argument on the current device until all operations enqueued up to this
ss2s point by this thread on the activity queues associated with the wait-argument have completed. Note:
ss24 One legal implementation is for the local thread to wait for all the associated activity queues; another
ss2s legal implementation is for the thread to enqueue a synchronization operation in such a way that
ss26 N0 new operation will start until the operations enqueued on the associated activity queues have
ss27 completed.

ss2s The if clause is optional; when there is no if clause, the implementation will generate code to
ss2e perform the wait operation unconditionally. When an if clause appears, the implementation will
ss30 generate code to conditionally perform the wait operation only when the condition evaluates to true.

ssst A wait directive is functionally equivalent to a call to one of the acc_wait, acc_wait_async,
a2 acc_wait_all,oracc_wait_all_async runtime API routines, as described in Sections[3.2.10]

3833 and

ss4 Errors

3835 * An acc_error_device_unavailable error is issued if a devnum modifier appears
3836 and the int-expr is not a valid device number.

3837 * An acc_error_invalid_async error is issued if a queues modifier or no modifier
3838 appears and any value in the associated list is not a valid async-argument.

sess See Section[3.2.2]

102

3840

3841

3842
3843
3844

3845

3846

3847

3848

3849

3850

3851

3852

3853
3854

3855

3856

3857

3858
3859
3860
3861
3862
3863

3864

3865

3866
3867
3868
3869

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

2.17 Fortran Specific Behavior
2.17.1 Optional Arguments

This section refers to the Fortran intrinsic function PRESENT. A call to the Fortran intrinsic function
PRESENT (arg) returns .true., if arg is an optional dummy argument and an actual argument
for arg was present in the argument list of the call site. This is unrelated to the OpenACC present
data clause.

The appearance of a Fortran optional argument arg as a var in any of the following clauses has no
effect at runtime if PRESENT (arg) is . false.:

* in data clauses on compute and data constructs;

¢ in data clauses on enter data and exit data directives;

* in data and device_resident clauses on declare directives;
e in use_device clauses on host_data directives;

* in self, host, and device clauses on update directives.

The appearance of a Fortran optional argument arg in the following situations may result in unde-
fined behavior if PRESENT (arg) is . false. when the associated construct is executed:

* asavarinprivate, firstprivate, and reduction clauses;
e as a var in cache directives;
* as part of an expression in any clause or directive.

A call to the Fortran intrinsic function PRESENT behaves the same way in a compute construct or
an accelerator routine as on the host. The function call PRESENT (arg) must return the same value
in a compute construct as PRESENT (arg) would outside of the compute construct. If a Fortran
optional argument arg appears as an actual argument in a procedure call in a compute construct
or an accelerator routine, and the associated dummy argument subarg also has the optional
attribute, then PRESENT (subarg) returns the same value as PRESENT (subarg) would when
executed on the host.

2.17.2 Do Concurrent Construct

This section refers to the Fortran do concurrent construct that is a form of do construct. When
do concurrent appears without a Loop construct in a kernels construct it is treated as if it is
annotated with Lloop auto. If it appears in a parallel construct or an accelerator routine then
it is treated as if it is annotated with loop independent.

103

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

104

3870

3871
3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885
3886
3887

3888

3889
3890

3891

3892

3893

3894
3895

3896

3897

3898
3899

3900

3901

3902

The OpanCC® API Version 3.4 3.1. Runtime Library Definitions

3. Runtime Library

This chapter describes the OpenACC runtime library routines that are available for use by program-
mers. Use of these routines may limit portability to systems that do not support the OpenACC APL
Conditional compilation using the _ OPENACC preprocessor variable may preserve portability.

This chapter has two sections:
* Runtime library definitions
* Runtime library routines
There are four categories of runtime routines:
* Device management routines, to get the number of devices, set the current device, and so on.

* Asynchronous queue management, to synchronize until all activities on an async queue are
complete, for instance.

* Device test routine, to test whether this statement is executing on the device or not.
* Data and memory management, to manage memory allocation or copy data between memo-
ries.
3.1 Runtime Library Definitions

In C and C++, prototypes for the runtime library routines described in this chapter are provided in
a header file named openacc.h. All the library routines are extern functions with “C” linkage.
This file defines:

* The prototypes of all routines in the chapter.

* Any datatypes used in those prototypes, including an enumeration type to describe the sup-
ported device types.

* The values of acc_async_noval, acc_async_sync, and acc_async_default.

In Fortran, interface declarations are provided in a Fortran module named openacc. The openacc
module defines:

* The integer parameter openacc_version with a value yyyymm where yyyy and mm are the
year and month designations of the version of the Accelerator programming model supported.
This value matches the value of the preprocessor variable _ OPENACC.

* Interfaces for all routines in the chapter.

* Integer parameters to define integer kinds for arguments to and return values for those rou-
tines.

 Integer parameters to describe the supported device types.

* Integer parameters to define the values of acc_async_noval, acc_async_sync, and
acc_async_default.

105

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

se03 Many of the routines accept or return a value corresponding to the type of device. In C and C++, the
se04 datatype used for device type values is ace_device_t; in Fortran, the corresponding datatype
3005 is integer (kind=acc_device_kind). The possible values for device type are implemen-
se06 tation specific, and are defined in the C or C++ include file openacc.h and the Fortran module
se07 openacc. Five values are always supported: acc_device_none, acc_device_default,
3908 acc_device host,acc_device_not_host, and acc_device_current. For other val-
se0s ues, look at the appropriate files included with the implementation, or read the documentation for
set0 the implementation. The value acc_device_default will never be returned by any function;
o1 its use as an argument will tell the runtime library to use the default device type for that implemen-
g1z tation.

w3 3.2 Runtime Library Routines

914 In this section, for the C and C++ prototypes, pointers are typed h_void+ or d_wvoidx* to desig-
se1s nate a host memory address or device memory address, when these calls are executed on the host,
se1e as if the following definitions were included:

3917 #define h_void void
3918 f##define d _void wvoid

st Many Fortran API bindings defined in this section rely on types defined in Fortran’s iso_c_binding
ss20 module. It is implied that the iso_c_binding module is used in these bindings, even if not ex-
se2t plicitly stated in the format section for that routine.

se22 Restrictions

sees Except for ace_on_device, these routines are only available on the host.

w24 3.2.1 acc_get_num_devices

3925 Summary
se2s The acc_get_num_devices routine returns the number of available devices of the given type.
sz Format

3928 C or C++:
3929 int acc_get_num_devices (acc_device_t dev_type);

3930 Fortran:
3931 integer function acc_get_num devices (dev_type)
3932 integer (acc_device_kind) :: dev_type

s93s Description

sssa The acc_get_num_devices routine returns the number of available devices of device type
se35 dev_type. If device type dev_type is not supported or no device of dev_type is available,
3936 this routine returns zero.

w7 3.2.2 acc_set device type

338 Summary

ssss The acc_set_device_type routine tells the runtime which type of device to use when exe-
ses0 cuting a compute region and sets the value of acc-current-device-type-var. This is useful when the
s+t implementation allows the program to be compiled to use more than one type of device.

106

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

3042 Format

3043 C or C++:
3944 void acc_set_device_type (acc_device_t dev_type);

3945 Fortran:
3946 subroutine acc_set_device_type (dev_type)
3047 integer (acc_device_kind) :: dev_type

s4s Description

ssss A calltoacc_set_device_type is functionally equivalent to a set device_type (dev_type)
seso directive, as described in Section This routine tells the runtime which type of device to use

se51 among those available and sets the value of acc-current-device-type-var for the current thread to

3952 dev_type.

sess Restrictions

3954 * If some compute regions are compiled to only use one device type, the result of calling this
3955 routine with a different device type may produce undefined behavior.

se56 Errors

3957 * Anacc_error_device_type_unavailable errorisissued if device type dev_type
3958 is not supported or no device of dev_type is available.

sess See Section[53.2.2]

w0 3.2.3 acc_get device_type

a6t Summary

sse2 The acc_get_device_type routine returns the value of acc-current-device-type-var, which is
se6s the device type of the current device. This is useful when the implementation allows the program to
see4 be compiled to use more than one type of device.

sses Format
sges C or C++:

3967 acc_device_t acc_get_device_type (void);

3968 Fortran:
3969 function acc_get_device_type()
3970 integer (acc_device_kind) :: acc_get_device_type

so71 Description

ss72 The acc_get_device_type routine returns the value of acc-current-device-type-var for the
se7s current thread to tell the program what type of device will be used to run the next compute region, if
ss74 one has been selected. The device type may have been selected by the program with a runtime API
sg7s call or a directive, by an environment variable, or by the default behavior of the implementation; see
as7e the table in Section 2.3.1]

s977 Restrictions

3978 * If the device type has not yet been selected, the value acc_device_none may be returned.

107

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

w 3.2.4 acc_set device_num

ss0 Summary

3981 The acec_set_device num routine tells the runtime which device to use and sets the value of
3982 acc-current-device-num-var.

3083 Format

sos4 C or C++:
3985 void acc_set_device_num(int dev_num, acc_device_t dev_type);

3986 Fortran:

3987 subroutine acc_set_device_num(dev_num, dev_type)
3988 integer :: dev_num
3989 integer (acc_device_kind) :: dev_type

a0 Description

se91 A calltoacc_set_device_numis functionally equivalent to a set device_type (dev_type)
302 device_ num(dev_num) directive, as described in Section[2.14.3] This routine tells the runtime
sses which device to use among those available of the given type for compute or data regions in the cur-
see4 rent thread and sets the value of acc-current-device-num-var to dev_num. If the value of dev_num
se95 1S negative, the runtime will revert to its default behavior, which is implementation-defined. If the
see6 value of the dev_type is zero, the selected device number will be used for all device types. Calling
3997 acc_set_device_numimplies a call to acc_set_device_type (dev_type).

se0s Errors

3999 * Anacc_error_device_type_unavailable errorisissued if device type dev_type
4000 is not supported or no device of dev_type is available.

4001 e An acc_error_device_ unavailable error is issued if the value of dev_num is not
4002 a valid device number.

4003 See Section[5.2.2)

s 3.2.5 acc_get_device_.num

s00s Summary

s00s The ace_get_device_numroutine returns the value of acc-current-device-num-var for the cur-
4007 rent thread.

s0s Format

4009 C or C++:

4010 int acc_get_device_num(acc_device_t dev_type);
4011 Fortran:

4012 integer function acc_get_device_num(dev_type)
4013 integer (acc_device_kind) :: dev_type

s014 Description

4015 The ace_get_device_numroutine returns the value of acc-current-device-num-var for the cur-
aote rent thread. If there are no devices of device type dev_type or if device type dev_type is not
4017 supported, this routine returns —1.

108

4018

4019

4020

4021

4022

4023

4024
4025
4026
4027
4028

4029

4030

4031
4032
4033
4034
4035
4036
4037

4038

4039

4040

4041

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

3.2.6 acc_get _property

Summary

The acc_get_property and acc_get_property string routines return the value of a
device-property for the specified device.

Format

Cor C++:

size_t acc_get_property(int dev_num,
acc_device_t dev_type,
acc_device_property t property);

const

charx acc_get_property string(int dev_num,
acc_device_t dev_type,
acc_device_property t property);

Fortran:
function acc_get_property(dev_num, dev_type, property)
subroutine acc_get_property_string(dev_num, dev_type, &
property, string)

integer, value :: dev_num
integer (acc_device_kind), value :: dev_type
integer (acc_device_property _kind), value :: property
integer (c_size_t) :: acc_get_property
character* (x) :: string
Description

The acc_get_property and acc_get_property_string routines return the value of the
property. dev_num and dev_type specify the device being queried. If dev_type has the
value acc_device_current, then dev_num is ignored and the value of the property for the
current device is returned. property is an enumeration constant, defined in openacc.h, for
C or C++, or an integer parameter, defined in the openacc module, for Fortran. Integer-valued
properties are returned by acc_get_property, and string-valued properties are returned by
acc_get_property_ string. In Fortran, acc_get_property_string returns the result
into the string argument.

The supported values of property are given in the following table.

property return type return value
acc_property_memory integer size of device memory in bytes
acc_property free_memory integer free device memory in bytes
acc_property_shared memory_ support
integer nonzero if the specified device sup-
ports sharing memory with the local
thread
acc_property_name string device name
acc_property_vendor string device vendor
acc_property_driver string device driver version

An implementation may support additional properties for some devices.

109

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051
4052

4053

4054

4055
4056

4057

4058
4059
4060
4061

4062

4063

4064
4065
4066
4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Restrictions

* acc_get_property will return 0 and acc_get_property_string will return a null
pointer (in C or C++) or a blank string (in Fortran) in the following cases:

— If device type dev_type is not supported or no device of dev_type is available.
— If the value of dev_num is not a valid device number for device type dev_type.

— If the value of property is not one of the known values for that query routine, or that
property has no value for the specified device.

3.2.7 acc.init

Summary

The ace_init and ace_init_device routines initialize the runtime for the specified device
type and device number. This can be used to isolate any initialization cost from the computational
cost, such as when collecting performance statistics.

Format

C or C++:
void acc_init (acc_device_t dev_type);
void acc_init_device (int dev_num, acc_device_t dev_type);

Fortran:
subroutine acc_init (dev_type)
subroutine acc_init_device (dev_num, dev_type)

integer :: dev_num
integer (acc_device_kind) :: dev_type
Description

Acalltoace_init oracc_init_device is functionally equivalent to an init directive with
matching dev_type and dev_num arguments, as described in Section 2.14.1l dev_type must
be one of the defined accelerator types. dev_num must be a valid device number of the device type
dev_type. These routines also implicitly call acc_set_device_type (dev_type). In the
case of ace_init_device, acc_set_device_num(dev_num) is also called.

If a program initializes one or more devices without an intervening shutdown directive or
acc_shutdown call to shut down those same devices, no action is taken.

Errors

* Anacc_error_device_type_unavailable errorisissued if device type dev_type
is not supported or no device of dev_type is available.

e Anacc_error_device unavailable errorisissued if dev_numis not a valid device
number.

See Section[3.2.2]

3.2.8 acc_shutdown

110

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

s078 Summary

4079 The acc_shutdown and acc_shutdown_device routines shut down the connection to spec-
080 ified devices and free up any related resources in the runtime. This ends all data lifetimes in device
a8t memory for the device or devices that are shut down, which effectively sets structured and dynamic
a0s2 reference counters to zero.

4083 Format

4084 C or C++:
4085 void acc_shutdown (acc_device_t dev_type);
4086 void acc_shutdown_device (int dev_num, acc_device_t dev_type);

4087 Fortran:

4088 subroutine acc_shutdown (dev_type)

4089 subroutine acc_shutdown_device (dev_num, dev_type)
4090 integer :: dev_num

4091 integer (acc_device_kind) :: dev_type

a9z Description

a0e3 A call to ace_shutdown or acc_shutdown_device is functionally equivalent to a shutdown
a004 directive, with matching dev_type and dev_num arguments, as described in Section 2.14.2]
s95 dev_type must be one of the defined accelerator types. dev_num must be a valid device number
a09s of the device type dev_type. acc_shutdown routine disconnects the program from all devices
a097 of device type dev_type. The acc_shutdown_device routine disconnects the program from
4098 dev_num of type dev_type. Any data that is present in the memory of a device that is shut down
099 1s immediately deallocated.

4100 Restrictions

4101 * This routine may not be called while a compute region is executing on a device of type
4102 dev_type.

4103 * If the program attempts to execute a compute region on a device or to access any data in the
4104 memory of a device that was shut down, the behavior is undefined.

4105 * If the program attempts to shut down the acc_device_host device type, the behavior is
4106 undefined.

a7 Errors

4108 * Anacc_error_device_type_unavailable errorisissued if device type dev_type
4109 is not supported or no device of dev_type is available.

4110 e Anacc_error_ device_unavailable errorisissued if dev_numis not a valid device
4111 number.

4112 * An acc_error_device_shutdown error is issued if there is an error shutting down the
4113 device.

s114 See Section[5.2.2

a5 3.2.9 acc_async test

s116 Summary

#2117 The acc_async_test routines test for completion of all associated asynchronous operations for
4118 a single specified async queue or for all async queues on the current device or on a specified device.

111

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4119 Format

a120 C or C++:

4121 int acc_async_test (int wait_argqg);

4122 int acc_async_test_device (int wait_arg, int dev_num);
4123 int acc_async_test_all (void);

4124 int acc_async_test_all_device(int dev_num);

4125 Fortran:

4126 logical function acc_async_test (wait_arqg)

4127 logical function acc_async_test_device(wait_arg, dev_num)
4128 logical function acc_async_test_all()

4129 logical function acc_async_test_all_device (dev_num)

4130 integer (acc_handle_kind) :: wait_arg

4131 integer :: dev_num

#1322 Description

s133 wait_arg mustbe an async-argument as defined in Section[2. 16JAsynchronous Behavior dev_num
4134 must be a valid device number of the current device type.

4135 The behavior of the ace_async_test routines is:

4136 * If there is no dev_num argument, it is treated as if dev_num is the current device number.
4137 * If any asynchronous operations initiated by this host thread on device dev_num either on
4138 async queue wait_arg (if there is a wait_arg argument), or on any async queue (if there
4139 is no wait_arg argument) have not completed, a call to the routine returns false.

4140 « If all such asynchronous operations have completed, or there are no such asynchronous op-
4141 erations, a call to the routine returns frue. A return value of true is no guarantee that asyn-
4142 chronous operations initiated by other host threads have completed.

w3 Errors

4144 * An acc_error_invalid_async error is issued if wait_arg is not a valid async-
4145 argument value.

4146 * Anacc_error device unavailable errorisissued if dev_numis not a valid device
4147 number.

s148 See Section[3.2.2]

s 3.2.10 acc_wait

s150 Summary

s151 The ace_wait routines wait for completion of all associated asynchronous operations on a single
s152 specified async queue or on all async queues on the current device or on a specified device.

4153 Format

4154 C or C++:

4155 void acc_wait (int wait_argqg);

4156 void acc_wait_device (int wait_arg, int dev_num);
4157 void acc_wait_all (void);

4158 void acc_wait_all device(int dev_num);

112

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4159 Fortran:

4160 subroutine acc_wait (wait_arg)

4161 subroutine acc_wait_device (wait_arg, dev_num)
4162 subroutine acc_wait_all()

4163 subroutine acc_wait_all_ device (dev_num)

4164 integer (acc_handle_kind) :: wait_arg

4165 integer :: dev_num

s16s Description

s167 A call to an acc_wait routine is functionally equivalent to a wait directive as follows, see Sec-

4168 tion m:

4169 * acc_wait toawait (wait_arg) directive.

4170 * acc_wait_devicetoawait (devnum:dev_num, queues:wait_arg) directive.
a7 * acc_wait_all to await directive with no wait-argument.

4172 e acc_wait_all devicetoawait (devnum:dev_num) directive.

#173 wait_arg must be an async-argument as defined in Section[2.16JAsynchronous Behaviorl dev_num
4174 must be a valid device number of the current device type.

4175 The behavior of the ace_wait routines is:

4176 * If there is no dev_num argument, it is treated as if dev_num is the current device number.
4177 * The routine will not return until all asynchronous operations initiated by this host thread on
4178 device dev_num either on async queue wait_arg (if there is a wait_arg argument) or
4179 on all async queues (if there is no wait_arg argument) have completed.

4180 * If two or more threads share the same accelerator, there is no guarantee that matching asyn-
4181 chronous operations initiated by other threads have completed.

s1e2 For compatibility with OpenACC version 1.0, acc_wait may also be spelled acc_async_wait,
#1833 and ace_wait_all may also be spelled ace_async_wait_all.

4184 Errors

4185 * An acc_error_invalid_async error is issued if wait_arg is not a valid async-
4186 argument value.

4187 e Anacc_error_device_unavailable errorisissued if dev_numis not a valid device
4188 number.

4189 See Section

s 3.2.11 acc_wait async

4191 Summary

4192 The ace_wait_async routines enqueue a wait operation on one async queue of the current
s1e3 device or a specified device for the operations previously enqueued on a single specified async
4194 queue or on all other async queues.

113

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4105 Format
Cor C++:
void acc_wait_async(int wait_arg, int async_arg);
void acc_wait_device_async (int wait_arg, int async_arg,

4196 int dev_num);

4197 void acc_wait_all_async(int async_arg);

4198 void acc_wait_all_device_async(int async_arg, int dev_num);
4199 Fortran:

4200 subroutine acc_wait_async(wait_arg, async_arg)

4201 subroutine acc_wait_device_async(wait_arg, async_arg, dev_num)
4202 subroutine acc_wait_all_async(async_argq)

4203 subroutine acc_wait_all_ device_async(async_arg, dev_num)

4204 integer (acc_handle_kind) :: wait_arg, async_arg

4205 integer :: dev_num

«206 Description

4207 Acalltoanace_wait_async routine is functionally equivalentto await async (async_arg)
4208 directive as follows, see Section [2.16.3t

4209 * A call to acc_wait_async is functionally equivalent to a wait (wait_arg)

4210 async (async_arg) directive.

4211 * A call to acc_wait_device_async is functionally equivalent to a wait (devnum:
4212 dev_num, queues:wait_arg) async (async_arg) directive.

4213 * Acalltoacc_wait_all_async s functionally equivalentto await async (async_arg)
4214 directive with no wait-argument.

4215 * Acallto acc_wait_all_device_async is functionally equivalent to a

4216 wait (devnum:dev_num) async (async_arg) directive.

4217 async_arg and wait_arg must must be async-arguments, as defined in
a218 Section [2.16l[Asynchronous Behaviorl dev_num must be a valid device number of the current
4219 device type.

4220 The behavior of the ace_wait_async routines is:

4221 e If there is no dev_num argument, it is treated as if dev_num is the current device number.
4222 * The routine will enqueue a wait operation on the async queue associated with asynec_arg
4223 for the current device which will wait for operations initiated on the async queue wait_arg
4224 of device dev_num (if there is a wait_arg argument), or for each async queue of device
4225 dev_num (if there is no wait_arg argument).

a6 See Section [2.16][Asynchronous Behavior| for more information.
a227 Errors

4228 * Anacc_error_invalid_async error is issued if either async_argorwait_argis
4229 not a valid async-argument value.

4230 e Anacc_error device_unavailable errorisissued if dev_numis not a valid device
4231 number.

4232 See Section[5.2.2)

114

4233

4234

4235
4236
4237

4238

4239

4240
4241
4242

4243
4244
4245
4246

4247

4248

4249
4250
4251
4252
4253
4254
4255
4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

3.2.12 acc _wait any

Summary

The acc_wait_any and acc_wait_any_ device routines wait for any of the specified asyn-
chronous queues to complete all pending operations on the current device or the specified device
number, respectively. Both routines return the queue’s index in the provided array of asynchronous
queues.

Format

C or C++:
int acc_wait_any(int count, int wait_arg[]);
int acc_wait_any_device (int count, int wait_arg[], int dev_num);

Fortran:
integer function acc_wait_any(count, wait_arg)
integer function acc_wait_any device(count, wait_arg, dev_num)

integer :: count, dev_num
integer (acc_handle_kind) :: wait_arg(count)
Description

wait_arg is an array of async-arguments as defined in Section and count is a nonneg-
ative integer indicating the array length. If there is no dev_num argument, it is treated as if
dev_num is the current device number. Otherwise, dev_num must be a valid device number
of the current device type. A call to any of these routines returns an index i associated with
a wait_arg[i] that is not acc_async_sync and meets the conditions that would evalu-
ate acc_async_test_device (wait_arg[i], dev_num) to true. If all the elements in
wait_arg are equal to acc_async_sync or count is equal to 0, these routines return —1.
Otherwise, the return value is an integer in the range of 0 < i < count in C or C++ and
1 < i < count in Fortran.

Errors

* An acc_error_invalid_ argument error is issued if count is a negative number.

* Anacc_error_invalid_async error is issued if any element encountered in wait_arg
is not a valid async-argument value.

e Anacc_error device unavailable errorisissuedif dev_numis not a valid device
number.

See Section[3.2.2]

3.2.13 acc_get default_async

Summary

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-
rent thread.

Format

C or C++:
int acc_get_default_async(void);

115

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4272 Fortran:
4273 function acc_get_default_async()
4274 integer (acc_handle_kind) :: acc_get_default_async

«27s Description

4276 The acc_get_default_async routine returns the value of acc-default-async-var for the cur-
4277 rent thread, which is the asynchronous queue used when an asynec clause appears without an
4278 async-argument or with the value ace_async_noval.

2 3.2.14 acc_set_default_async

s280 Summary

428t The acc_set_default_async routine tells the runtime which asynchronous queue to use
a282 when an async clause appears with no queue argument.

s283 Format

4284 C or C++:
4285 void acc_set_default_async (int async_arg);

4286 Fortran:

4287 subroutine acc_set_default_async (async_argqg)
4288 integer (acc_handle_kind) :: async_arg
s289 Description

s200 Acalltoacc_set_default_asyncis functionally equivalent to a set default_async (async_arg)
a201 directive, as described in Section This acc_set_default_async routine tells the
4292 runtime to place any directives with an async clause that does not have an async-argument or
4293 with the special ace_asynec_noval value into the asynchronous activity queue associated with
s204 async_arg instead of the default asynchronous activity queue for that device by setting the value
4205 of acc-default-async-var for the current thread. The special argument ace_async_default will
4296 reset the default asynchronous activity queue to the initial value, which is implementation-defined.

4297 Errors

4298 * An acc_error_invalid_async error is issued if asynec_arg is not a valid async-
4299 argument value.

4300 See Section[5.2.2)

s 3.2.15 acc_on_device

4302 Summary
4303 The ace_on_device routine tells the program whether it is executing on a particular device.
a304 Format

4305 C or C++:
4306 int acc_on_device (acc_device_t dev_type);

4307 Fortran:
4308 logical function acc_on_device (dev_type)
4309 integer (acc_device_kind) :: dev_type

116

4310

4311
4312
4313

4314

4315

4316
4317
4318

4319

4320

4321
4322

4323

4324

4325

4326

4327

4328

4329

4330

4331
4332

4333

4334

4335
4336
4337

4338

4339

4340

4341

4342

4343

4344

4345
4346
4347

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Description

The acc_on_device routine may be used to execute different paths depending on whether the
code is running on the host or on some accelerator. If the ace_on_dewvice routine has a compile-
time constant argument, the call evaluates at compile time to a constant. dev_type must be one
of the defined accelerator types.

The behavior of the ace_on_device routine is:

* If dev_type is acc_device_host, then outside of a compute region or accelerator rou-
tine, or in a compute region or accelerator routine that is executed on the host CPU, a call to
this routine will evaluate to true; otherwise, it will evaluate to false.

* If dev_type is acc_device_not_host, the result is the negation of the result with
argument acc_device_host.

* If dev_type is an accelerator device type, then in a compute region or routine that is ex-
ecuted on a device of that type, a call to this routine will evaluate to true; otherwise, it will
evaluate to false.

* The result with argument acc_device_default is undefined.

3.2.16 acc_malloc

Summary
The acc_malloc routine allocates space in the current device memory.
Format

C or C++:
d_void* acc_malloc(size_t bytes);

Fortran:
type (c_ptr) function acc_malloc (bytes)
integer (c_size_t), value :: Dbytes
Description

The acc_malloc routine may be used to allocate space in the current device memory. Pointers
assigned from this routine may be used in deviceptr clauses to tell the compiler that the pointer
target is resident on the device. In case of an allocation error or if bytes has the value zero,
acc_malloc returns a null pointer.

3.2.17 acc free

Summary
The acc_free routine frees memory on the current device.
Format

C or C++:
void acc_free(d_voidx data_dev);

Fortran:
subroutine acc_free (data_dev)
type(c_ptr), value :: data_dev

117

4348

4349
4350

4351

4352

4353

4354

4355

4356
4357
4358

4359

4360

4361
4362
4363
4364
4365
4366
4367
4368

4369

4370
4371
4372
4373
4374
4375
4376
4377
4378

4379

4380

4381
4382
4383
4384
4385
4386
4387
4388
4389
4390

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Description

Calling acc_free with a pointer in the current device memory that was previously allocated by
acc_malloc will free that memory. If data_dewv is a null pointer, no operation is performed.
For all other pointers, the result is undefined.

Note: Calling acc_free on a pointer that was previously associated using acc_map_data and
not yet unassociated with ace_unmap_data may lead to undefined behavior.

3.2.18 acc_copyin and acc _create

Summary

The acc_copyin and acc_create routines test to see if the argument is in shared memory or
already present in device-accessible memory of the current device; if not, they allocate space in
device-accessible memory of the current device to correspond to the specified local memory, and
the acc_copyin routines copy the data to that device-accessible memory.

Format

C or C++:
d_void* acc_copyin(h_voidx data_arg, size_t bytes);
d_void* acc_create (h_voidx data_arg, size_t bytes);

void acc_copyin_async (h_void* data_arg, size_t bytes,
int async_arg);

void acc_create_async(h_void* data_arg, size_t bytes,
int async_arqg);

Fortran:
subroutine acc_copyin(data_arg [, bytes])
subroutine acc_create(data_arg [, bytes])

subroutine acc_copyin_async (data_arg [, bytes], async_arqg)
subroutine acc_create_async(data_arg [, bytes], async_argqg)

type(*), dimension(..) :: data_arg

integer :: Dbytes

integer (acc_handle_kind) :: async_arg
Description

A call to an acc_copyin or acc_create routine is similar to an enter data directive with
a copyin or create clause, respectively, as described in Sections and except that
no attach pointer action is performed for a pointer reference. In C/C++, data_arg is a pointer
to the data, and bytes specifies the data size in bytes; the associated data section starts at the
address in data_arg and continues for bytes bytes. The synchronous routines return a pointer
to the allocated device memory, as with ace_malloc. In Fortran, two forms are supported. In
the first, data_arg is a variable or a contiguous array section; the associated data section starts at
the address of, and continues to the end of the variable or array section. In the second, data_arg
is a variable or array element and bytes is the length in bytes; the associated data section starts
at the address of the variable or array element and continues for bytes bytes. For the _async

118

4391

4392

4393

4394
4395

4396

4397
4398
4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411
4412

4413

4414

4415

4416
4417
4418
4419

4420

4421
4422

4423

4424

4425

4426

4427

4428

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

versions of these routines, async_arg must be an async-argument as defined in Section
[Asynchronous Behavior]

The behavior of these routines for the associated data section is:

* If the data section is in shared memory and does not refers to a captured variable, no ac-
tion is taken. The C/C++ synchronous acc_copyin and acc_create routines return the
incoming pointer.

* If the data section is present in device-accessible memory of the current device, the routines
perform a [increment counter] action with the dynamic reference counter. The C/C++ syn-
chronous acc_copyin and acc_create routines return a pointer to the existing device-
accessible memory.

¢ Otherwise:

— The ace_copyin routines behave as follows:

1. Anlallocate memory|action is performed.

2. A action is performed.
3. Alincrement counterlaction with the dynamic reference counter is performed.

— The acc_create routines behave as follows:

1. Anlallocate memory|action is performed.

2. Alincrement counterlaction with the dynamic reference counter is performed.

The C/C++ synchronous acc_copyin and acc_create routines return a pointer to the
newly allocated device memory.

This data may be accessed using the present data clause. Pointers assigned from the C/C++
synchronous ace_copyin and acc_create routines may be used in deviceptr clauses to
tell the compiler that the pointer target is resident on the device.

The synchronous versions will not return until the memory has been allocated and any data transfers
are complete.

The _async versions of these routines will perform any data transfers asynchronously on the async
queue associated with async_arg. The routine may return before the data has been transferred;
see Section 2.16l[Asynchronous Behavior] for more details. The data will be treated as present in
device-accessible memory of the current device even if the data has not been allocated or transferred
before the routine returns.

For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are al-
ternate names for acc_copyin, and acc_present_or_create and acc_pcreate are al-
ternate names for acc_create.

Errors

* An acc_invalid_null_pointer error is issued if data_arg is a null pointer and
bytes is nonzero.

* An acc_error_partly_ present error is issued if part of the data section is already
present in device-accessible memory of the current device but all of the data section is not.

119

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4429 * Anacc_error_invalid_data_section errorisissued if data_argis an array sec-
4430 tion that is not contiguous (in Fortran).

4431 * An acc_error_out_of_memory error is issued if the accelerator device does not have
4432 enough memory for the data.

4433 * An acc_error_invalid_async error is issued if asynec_arg is not a valid async-
4434 argument value.

4435 See Section[5.2.2)

w3 3.2.19 acc_copyout and acc_delete

4437 Summary

433 The ace_copyout and acc_delete routines test to see if the argument is in shared memory
s430 and does not refer to a captured variable; if not, the argument must be present in device-accessible
420 memory of the current device. The acc_copyout routines copy data from device-accessible
s41 - memory to the corresponding local memory, and both acc_copyout and acc_delete routines
aas2 deallocate that space from the device-accessible memory.

443 Format
4444 C or C++:

4445 void acc_copyout (h_voidx data_arg, size_t bytes);

4446 void acc_delete (h_voidx data_arg, size_t bytes);

4447

4448 void acc_copyout_finalize (h_voidx data_arg, size_t bytes);

4449 void acc_delete_finalize (h_voidx data_arg, size_t bytes);

4450

4451 void acc_copyout_async (h_void* data_arg, size_t bytes,

4452 int async_arg);

4453 void acc_delete_async (h_void* data_arg, size_t bytes,

4454 int async_arqg);

4455

4456 void acc_copyout_finalize_async (h_void* data_arg, size_t bytes,
4457 int async_arg);

4458 void acc_delete_finalize_async (h_void* data_arg, size_t bytes,
4459 int async_arg);

4460

4461 Fortran:

4462 subroutine acc_copyout (data_arg [, bytes])

4463 subroutine acc_delete (data_arg [, bytes])

4464

4465 subroutine acc_copyout_finalize (data_arg [, bytes])

4466 subroutine acc_delete_finalize (data_arg [, bytes])

4467

4468 subroutine acc_copyout_async(data_arg [, bytes], async_arqg)
4469 subroutine acc_delete_async (data_arg [, bytes], async_arg)
4470

4471 subroutine acc_copyout_finalize_async(data_arg [, bytes], &

120

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4472 async_arg)

4473 subroutine acc_delete_finalize_async (data_arg [, bytes], &
4474 async_argq)

4475

4476 type(*), dimension(..) :: data_arg

4477 integer :: Dbytes

4478 integer (acc_handle_kind) :: async_arg

w79 Description

a0 A call to an acc_copyout or acc_delete routine is similar to an exit data directive
ws1 with a copyout or delete clause, respectively, and a call to an acc_copyout_finalize
as2 or acc_delete_finalize routine is similar to an exit data finalize directive with a
w83 copyout or delete clause, respectively, as described in Section and except that no
a4 detach pointer action is performed for a pointer reference. The arguments and the associated data
a5 section are as for acc_copyin.

4ass The behavior of these routines for the associated data section is:

4487 * If the data section is in shared memory and does not refer to a captured variable, no action is
4488 taken.

4489 * If the dynamic reference counter for the data section is zero, no action is taken.

4490 * Otherwise, the dynamic reference counter is updated:

4491 — The acc_copyout and acc_delete) routines perform aldecrement counter] action
4492 with the dynamic reference counter.

4493 — The acc_copyout_finalize or acc_delete_finalize routines perform a
4494 action with the dynamic reference counter.

4495 If both reference counters are then zero:

4496 - The acc_copyout routines perform aftransfer outlaction followed by aldeallocate memory]
4497 action.

4498 — The acc_delete routines perform aldeallocate memory|action.

4499 The synchronous versions will not return until the data has been completely transferred and the
4500 memory has been deallocated.

a0t The _asyne versions of these routines will perform any associated data transfers asynchronously
4502 on the async queue associated with asynec_arg. The routine may return before the data has been
ss03 transferred or deallocated; see Section [2.16][Asynchronous Behavior] for more details. Even if the
504+ data has not been transferred or deallocated before the routine returns, the data will be treated as not
4505 present in device-accessible memory of the current device if both reference counters are zero.

405 Errors

4507 * An acc_invalid_null_pointer error is issued if data_arg is a null pointer and
4508 bytes is nonzero.

4509 * An acc_error_not_present error is issued if the data section is not in shared memory
4510 and is not present in the current device memory.

121

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4511 * Anacc_error_invalid_data_section errorisissued if data_argis an array sec-
4512 tion that is not contiguous (in Fortran).

4513 * An acc_error_partly_present error is issued if part of the data section is already
4514 present in device-accessible memory of the current device but all of the data section is not.
4515 * An acc_error_invalid_async error is issued if asynec_arg is not a valid async-
4516 argument value.

4517 See Section[5.2.2)

w8 3.2.20 acc_update_device and acc_update_self

4519 Summary

420 The ace_update_device and acc_update_self routines test to see if the argument is in
ss21 shared memory and it is not a captured variable; if not, the argument must be present in the device-
4522 accessible memory of the current device, and the routines update the data in device memory from
523 the corresponding local memory (acc_update_device) or update the data in local memory
4524 from the corresponding device-accessible memory (acc_update_self).

425 Format
4526 C or C++:

4527 void acc_update_device (h_void* data_arg, size_t bytes);

4528 void acc_update_self (h_void* data_arg, size_t bytes);

4529

4530 void acc_update_device_async (h_voidx data_arg, size_t bytes,
4531 int async_argqg);

4532 void acc_update_self_ _async (h_voidx data_arg, size_t bytes,
4533 int async_argqg);

4534

4535 Fortran:

4536 subroutine acc_update_device (data_arg [, bytes])

4537 subroutine acc_update_self (data_arg [, bytes])

4538

4539 subroutine acc_update_device_async(data_arg [, bytes], async_arqg)
4540 subroutine acc_update_self_ async (data_arg [, bytes], async_arg)
4541

4542 type(*), dimension(..) :: data_arg

4543 integer :: Dbytes

4544 integer (acc_handle_kind) :: async_arg

w545 Description

4ss6 - A call to an acc_update_device routine is functionally equivalent to an update device
4547 directive. A call to an acc_update_self routine is functionally equivalent to an update self
asas directive. See Section[2.14.4] The arguments and the data section are as for ace_copyin.

4520 The behavior of these routines for the associated data section is:

4550 o If the data section is in shared memory and does not refer to a captured variable or bytes is
4551 zero, no action is taken.

122

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

4552 * Otherwise:

4553 — A call to an acc_update_device routine performs a [fransfer in| action with the
4554 corresponding memory.

4555 — A call to an acc_update_self routine performs a action with the cor-
4556 responding memory.

ss57 The _async versions of these routines will perform the data transfers asynchronously on the async
4558 queue associated with asynec_arg. The routine may return before the data has been transferred;
4559 see Section[2.16]|Asynchronous Behavior|for more details. The synchronous versions will not return
ase0 until the data has been completely transferred.

w61 Errors

4562 * An acc_invalid_null_pointer error is issued if data_arg is a null pointer and
4563 bytes is nonzero.

4564 * An acc_error_not_present error is issued if the data section is not in shared memory
4565 and is not present in the current device memory.

4566 * Anacc_error_invalid_data_section errorisissued if data_argis an array sec-
4567 tion that is not contiguous (in Fortran).

4568 * An acc_error_partly_present error is issued if part of the data section is already
4569 present in device-accessible memory of the current device but all of the data section is not.
4570 * An acc_error_invalid_async error is issued if async_arg is not a valid async-
4571 argument value.

4572 See Section[5.2.2)

s 3.2.21 acc_map_data

574 Summary

4575 The ace_map_data routine maps previously allocated space in the current device memory to the
4576 specified host data.

477 Format

C or C++:
void acc_map_data (h_voidx data_arg, d_voidx data_dev,
4578 size_t bytes);

4579 Fortran:

4580 subroutine acc_map_data(data_arg, data_dev, bytes)
4581 type (*) ,dimension(*x) :: data_arg

4582 type(c_ptr), value :: data_dev

4583 integer (c_size_t), value :: bytes

s8¢ Description

4s5 A call to the ace_map_data routine is similar to a call to acc_create, except that instead of
4sgs allocating new device memory to start a data lifetime, the device address to use for the data lifetime
ass7 1s specified as an argument. data_arg is a host address, data_dev is the corresponding device
4sss address, and bytes is the length in bytes. data_dewv may be the result of a call to acc_malloc,

123

4589

4590

4591

4592

4593

4594

4595
4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611
4612

4613
4614

4615

4616

4617

4618

4619

4620

4621

4622
4623

4624

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

or may come from some other device-specific API routine. The associated data section is as for
acc_copyin.

The behavior of the acc_map_data routine is:
* If the data section is in shared memory, the behavior is undefined.

 If any of the data referred to by data_dev is already mapped to any host memory address,
the behavior is undefined.

» Otherwise, after this call, when data_arg appears in a data clause, the data_dewv address
will be used. The dynamic reference count for the data referred to by data_arg is set to
one, but no data movement will occur.

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-
mented to zero, except by a call to ace_unmap_data. See Section [2.6.7|[Reference Counters|

Errors

* Anacc_invalid null_pointer error is issued if either data_arg or data_devis
a null pointer.

* An acc_invalid_argument error is issued if bytes is zero.

* An acc_error_present error is issued if any part of the data section is already present
in the current device memory.

See Section

3.2.22 acc_unmap_data

Summary
The acc_unmap_data routine unmaps device data from the specified host data.
Format

C or C++:
void acc_unmap_data (h_voidx data_arg);

Fortran:
subroutine acc_unmap_data (data_argqg)
type(x) ,dimension(*) :: data_arg
Description

A call to the acc_unmap_data routine is similar to a call to ace_delete, except the device
memory is not deallocated. data_arg is a host address.

The behavior of the acc_unmap_data routine is:

* Ifdata_arg was not previously mapped to some device address via a call to ace_map_data,
the behavior is undefined.

* Otherwise, the data lifetime for data_arg is ended. The dynamic reference count for
data_arg is set to zero, but no data movement will occur and the corresponding device
memory is not deallocated. See Section Reference Countersl

124

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636
4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655
4656
4657

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Errors

* An acc_invalid null_pointer error is issued if data_arg is a null pointer.

* An acc_error_present error is issued if the structured reference count for the any part
of the data is not zero.

See Section

3.2.23 acc_deviceptr

Summary
The acc_deviceptr routine returns the device pointer associated with a specific host address.
Format

Cor C++:
d_void* acc_deviceptr (h_voidx data_argqg);

Fortran:
type (c_ptr) function acc_deviceptr (data_argqg)
type (x) ,dimension(*) :: data_arg
Description

The acc_deviceptr routine returns the device pointer associated with a host address. data_arg
is the address of a host variable or array that may have an active lifetime on the current device.

The behavior of the acc_deviceptr routine for the data referred to by data_argis:

* If the data is in shared memory or data_arg is a null pointer, acc_deviceptr returns
the incoming address.

 If the data is not present in the current device memory, acc_deviceptr returns a null
pointer.

* Otherwise, acc_deviceptr returns the address in the current device memory that corre-
sponds to the address data_arg.

3.2.24 acc_hostptr

Summary
The acc_hostptr routine returns the host pointer associated with a specific device address.
Format

C or C++:
h_voidx acc_hostptr(d_voidx data_dev);

Fortran:
type (c_ptr) function acc_hostptr(data_dev)
type (c_ptr), wvalue :: data_dev

125

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

sss Description

459 The acc_hostptr routine returns the host pointer associated with a device address. data_dev
as60 is the address of a device variable or array, such as that returned from ace_deviceptr, acc_create
4661 Or acc_copyin.

as62 The behavior of the ace_hostptr routine for the data referred to by data_dewv is:

4663 * If the data is in shared memory or data_dewv is a null pointer, acc_hostptr returns the
4664 incoming address.

4665 If the data corresponds to a host address which is present in the current device memory,
4666 acc_hostptr returns the host address.

4667 * Otherwise, acc_hostptr returns a null pointer.

wes 3.2.25 acc_is_present

s69 Summary

sw70 The acc_is_present routine tests whether a variable or array region is accessible from the
4671 current device.

472 Format

4673 Cor C++:
4674 int acc_is_present (h_voidx data_arg, size_t bytes);

4675 Fortran:

4676 logical function acc_is_present (data_argqg)

4677 logical function acc_is_present (data_arg, bytes)
4678 type(*), dimension(..) :: data_arg

4679 integer :: Dbytes

w80 Description

481 The acc_is_present routine tests whether the specified host data is accessible from the current
ses2 device. In C/C++, data_argis a pointer to the data, and bytes specifies the data size in bytes. In
4683 Fortran, two forms are supported. In the first, data_arg is a variable or contiguous array section.
ses4 In the second, data_arg is a variable or array element and bytes is the length in bytes. A
4685 bytes value of zero is treated as a value of one if data_arg is not a null pointer.

sess The behavior of the acc_is_present routines for the data referred to by data_arg is:

4687 * If the data is in shared memory, a call to ace_is_present will evaluate to frue.

4688 * If the data is present in the current device memory, a call to acc_is_present will evaluate
4689 to true.

4690 * Otherwise, a call to ace_is_present will evaluate to false.

w01 Errors

4692 * An acc_error_invalid_argument error is issued if bytes is negative (in Fortran).
4693 * Anacc_error_invalid_data_sectionerrorisissued if data_argis an array sec-
4694 tion that is not contiguous (in Fortran).

405 See Section[5.2.2)

126

4696

4697

4698

4699

4700

4701
4702
4703
4704

4705

4706

4707
4708
4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721
4722

4723
4724
4725

4726

The OpanCC® API Version 3.4

3.2. Runtime Library Routines

3.2.26 acc_memcpy_to_device

Summary

The acc_memcpy_to_device routine copies data from local memory to device memory.

Format

C or C++:

void acc_memcpy to_device(d_voidx data_dev_dest,

h_voidx data_host_src, size_t bytes);

void acc_memcpy to_device_async(d_void* data_dev_dest,

h_voidx data_host_src, size_t bytes,
int async_arg);

Fortran:

subroutine acc_memcpy to_device (data_dev_dest,
data_host_src, bytes)

subroutine acc_memcpy_ to_device_async(data_dev_dest,
data_host_src, bytes, async_arg)

type (c_ptr), wvalue :: data_dev_dest

type (x) ,dimension (*) :: data_host_src

integer (c_size_t), value :: Dbytes

integer (acc_handle_kind), value :: async_arg
Description

The acc_memepy_to_device routine copies bytes bytes of data from the local address in
data_host_src to the device address in data_dev_dest. data_dev_dest must be an
address accessible from the current device, such as an address returned from ace_malloc or
acc_deviceptr, or an address in shared memory.

The behavior of the ace_memepy_ to_device routines is:

The

If bytes is zero, no action is taken.

Ifdata_dev_dest and data_host_src both refer to shared memory and have the same
value, no action is taken.

If data_dev_dest and data_host_src both refer to shared memory and the memory
regions overlap, the behavior is undefined.

If the data referred to by data_dev_dest is not accessible by the current device, the be-
havior is undefined.

If the data referred to by data_host_src is not accessible by the local thread, the behavior
is undefined.

Otherwise, bytes bytes of data at data_host_src in local memory are copied to
data_dev_dest in the current device memory.

_async version of this routine will perform the data transfers asynchronously on the async
queue associated with asynec_arg. The routine may return before the data has been transferred;
see Section [2.16[Asynchronous Behavior{for more details. The synchronous versions will not return
until the data has been completely transferred.

127

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739
4740
4741
4742

4743

4744

4745
4746
4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Errors

* Anacc_error_invalid null_pointer error is issued if data_dev_dest or
data_host_src is a null pointer and bytes is nonzero.

* An acc_error_invalid_async error is issued if async_arg is not a valid async-
argument value.

See Section[5.2.2)

3.2.27 acc_memcpy_from device

Summary

The acc_memcpy_ from_device routine copies data from device memory to local memory.

Format

C or C++:
void acc_memcpy from_device (h_voidx data_host_dest,
d_void* data_dev_src, size_t bytes);
void acc_memcpy from_ device_async(h_voidx data_host_dest,
d _void* data_dev_src, size_t bytes,
int async_argqg);

Fortran:
subroutine acc_memcpy_ from_device (data_host_dest,
data_dev_src, bytes)
subroutine acc_memcpy_ from_device_async(data_host_dest,
data_dev_src, bytes, async_argqg)

type(x) ,dimension(*) :: data_host_dest

type(c_ptr), value :: data_dev_src

integer (c_size_t), value :: Dbytes

integer (acc_handle_kind), value :: async_arg
Description

The acc_memcpy_from_device routine copies bytes bytes of data from the device address
in data_dev_src to the local address in data_host_dest. data_dev_src must be an
address accessible from the current device, such as an address returned from ace_malloc or
acc_deviceptr, or an address in shared memory.

The behavior of the acc_memcpy_from device routines is:
* If bytes is zero, no action is taken.

* Ifdata_host_dest and data_dev_src both refer to shared memory and have the same
value, no action is taken.

* If data_host_dest and data_dev_src both refer to shared memory and the memory
regions overlap, the behavior is undefined.

* If the data referred to by data_dev_src is not accessible by the current device, the behav-
ior is undefined.

* If the data referred to by data_host_dest is not accessible by the local thread, the behav-
ior is undefined.

128

4759

4760

4761
4762
4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776
4777

4778
4779
4780
4781

4782

4783

4784
4785

4786

4787

4788

4789

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

* Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied
to data_host_dest in local memory.

The _async version of this routine will perform the data transfers asynchronously on the async
queue associated with async_arg. The routine may return before the data has been transferred;
see Section [2.16[Asynchronous Behavior|for more details. The synchronous versions will not return
until the data has been completely transferred.

Errors

* An acc_error_invalid null_pointer error is issued if data_host_dest or
data_dev_src is a null pointer and bytes is nonzero.

* An acc_error_invalid_async error is issued if async_arg is not a valid async-
argument value.

See Section

3.2.28 acc_memcpy_device

Summary

The acc_memcpy_device routine copies data from one memory location to another memory
location on the current device.

Format

C or C++:
void acc_memcpy device (d_void* data_dev_dest,
d _void* data_dev_src, size_t bytes);
void acc_memcpy_device_async(d_void* data_dev_dest,
d _void* data_dev_src, size_t bytes,
int async_arg);

Fortran:

subroutine acc_memcpy_device (data_dev_dest,
data_dev_src, bytes);

subroutine acc_memcpy_device_async (data_dev_dest,
data_dev_src, bytes,
async_arg) ;

type (c_ptr), value :: data_dev_dest

type (c_ptr), value :: data_dev_src

integer (c_size_t), value :: bytes

integer (acc_handle_kind), value :: async_arg

Description

The acc_memcpy_device routine copies bytes bytes of data from the device address in
data_dev_src to the device address in data_dev_dest. Both addresses must be addresses in
the current device memory, such as would be returned from ace_malloc or acc_deviceptr.

The behavior of the acc_memcpy_device routines is:
* If bytes is zero, no action is taken.

e [fdata_dev_dest and data_dev_src have the same value, no action is taken.

129

4790

4791

4792

4793

4794

4795

4796
4797
4798
4799

4800

4801

4802

4803

4804

4805

4806

4807

4808
4809

4810

4811

4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830

4831

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

* If the memory regions referred to by data_dev_dest and data_dev_src overlap, the
behavior is undefined.

* If the data referred to by data_dev_src or data_dev_dest is not accessible by the
current device, the behavior is undefined.

* Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied
to data_dev_dest in the current device memory.

The _async version of this routine will perform the data transfers asynchronously on the async
queue associated with async_arg. The routine may return before the data has been transferred;
see Section [2.16[Asynchronous Behavior{for more details. The synchronous versions will not return
until the data has been completely transferred.

Errors

* An acc_error_invalid null_pointer error is issued if data_dev_dest or
data_dev_src is a null pointer and bytes is nonzero.

* An acc_error_invalid_async error is issued if async_arg is not a valid async-
argument value.

See Section[5.2.2)

3.2.29 acc_attach and acc_detach

Summary

The acc_attach routines update a pointer in device-accessible memory to point to the corre-
sponding copy of the host pointer target. The acc_detach routines restore a pointer in device-
accessible memory to point to the host pointer target.

Format

C or C++:
void acc_attach(h_void*x ptr_addr);
void acc_attach_async (h_voidxx ptr addr, int async_arg);

void acc_detach (h_void** ptr_addr);
void acc_detach_async(h_void** ptr addr, int async_arg);
void acc_detach_finalize(h_void*x ptr_addr);
void acc_detach_ finalize_async (h_void*x* ptr_ addr,
int async_argqg);
Fortran:

subroutine acc_attach (ptr_addr)

subroutine acc_attach_async(ptr_addr, async_arg)

type (*) ,dimension(..) :: ptr_addr

integer (acc_handle_kind),value :: async_arg

subroutine acc_detach (ptr_addr)

subroutine acc_detach_async (ptr_addr, async_arg)

subroutine acc_detach_finalize (ptr_addr)

subroutine acc_detach_finalize_async(ptr_addr,
async_arg)

130

4832

4833

4834

4835
4836
4837
4838
4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856
4857

4858

4859
4860
4861
4862

4863

4864

4865

4866

4867

4868

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

type (*) ,dimension(..) :: ptr_addr
integer (acc_handle_kind),value :: async_arg
Description

A call to an acc_attach routine is functionally equivalent to an enter data attach direc-
tive, as described in Section2.7.13] A call to an acc_detach routine is functionally equivalent to
an exit data detach directive, and a call to an ace_detach_finalize routine is function-
ally equivalent to an exit data finalize detach directive, as described in Section
ptr_addr must be the address of a host pointer. async_arg must be an async-argument as
defined in Section

The behavior of these routines is:

* If ptr_addr refers to shared memory and does not refer to a captured variable, no action is
taken.

* If the pointer referred to by ptr_addr is not present in device-accessible memory of the
current device, no action is taken.

e Otherwise:

— The acc_attach routines behave as follows,

1. anlincrement counter] action is performed on the associated attachment counter,

2. if the associated attachment counter is now one, an |attach pointer| action is per-
formed on the pointer referred to by ptr_addr; see Section

— The ace_detach routines behave as follows

1. anldecrement counteraction is performed on the associated attachment counter,

2. if the associated attachment counter is now zero, an |detach pointer| action is per-
formed on the pointer referred to by ptr_addr; see Section

See Section

— The acc_detach_finalize routines behave as follows, perform a
action on the pointer referred to by ptr_addr followed by a action on
the associated attachment counter; see Section 2.7.2

These routines may issue a data transfer from local memory to device-accessible memory. The
_async versions of these routines will perform the data transfers asynchronously on the async
queue associated with async_arg. These routines may return before the data has been transferred;
see Section for more details. The synchronous versions will not return until the data has been
completely transferred.

Errors

* Anacc_error_invalid_null_pointer errorisissued if ptr_addr is a null pointer.

* An acc_error_invalid_async error is issued if asynec_arg is not a valid async-
argument value.

See Section[3.2.2]

131

4869

4870

4871

4872

4873

4874

4875

4876
4877
4878
4879
4880
4881
4882

4883

4884

4885
4886

4887

4888

4889

4890

4891

4892
4893

4894

4895
4896
4897

4898

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

3.2.30 acc_memcpy._d2d

Summary

The acc_memcpy_d2d routines copy the contents of an array on one device to an array on the
same or a different device without updating the value on the host.

Format

Cor C++:

void acc_memcpy d2d(h_voidx data_arg_dest,
h_voidx data_arg_src, size_t bytes,
int dev_num dest, int dev_num_src);

void acc_memcpy d2d_async (h_voidx data_arg dest,
h_voidx data_arg src, size_t bytes,
int dev_num _dest, int dev_num_src,
int async_arg_src);

Fortran:
subroutine acc_memcpy d2d(data_arg_dest, data_arg src, &
bytes, dev_num dest, dev_num_src)
subroutine acc_memcpy_ d2d_async(data_arg dest, data_arg src, &
bytes, dev_num dest, dev_num_src, &
async_arg_src)

type(x), dimension(..) :: data_arg_dest
type(*), dimension(..) :: data_arg src
integer :: Dbytes
integer :: dev_num_dest
integer :: dev_num_src
integer :: async_arg_ src

Description

The ace_memcpy_d2d routines are passed the address of destination and source host data as well
as integer device numbers for the destination and source devices, which must both be of the current
device type.

The behavior of the ace_memecpy_d2d routines is:
* If bytes is zero, no action is taken.

* If both pointers have the same value and either the two device numbers are the same or the
addresses are in shared memory, then no action is taken.

* Otherwise, bytes bytes of data at the device address corresponding to data_arg_src on
device dev_num_src are copied to the device address corresponding to data_arg_dest
on device dev_num_dest.

For acc_memcpy_d2d_async the value of async_arg_src is the number of an async queue

on the source device. This routine will perform the data transfers asynchronously on the async queue
associated with async_arg_src for device dev_num_src; see Section[2.16|Asynchronous Behavior|
for more details.

132

4899

4900

4901

4902

4903

4904

4905

4906
4907

4908

4909

4910

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

Errors

e Anacc_error_device_unavailableerrorisissued if dev_num dest ordev_num src
is not a valid device number.

* An acc_error_invalid_null_pointer error is issued if either data_arg dest
or data_arg_src is a null pointer and bytes is nonzero.

* An acc_error_not_present error is issued if the data at either address is not in shared
memory and is not present in the respective device memory.

* An acc_error_partly_ present error is issued if part of the data is already present in
the current device memory but all of the data is not.

* An acc_error_invalid_async error is issued if async_arg is not a valid async-
argument value.

See Section

133

The OpanCC® API Version 3.4 3.2. Runtime Library Routines

134

4911

4912
4913
4914
4915

4916

4917

4918
4919
4920

4921

4922
4923

4924

4925

4926
4927
4928

4929

4930
4931

4932

4933

4934

4935

4936
4937

4938

The OpanCC® API Version 3.4 4.1. ACC_DEVICE_TYPE

4. Environment Variables

This chapter describes the environment variables that modify the behavior of accelerator regions.
The names of the environment variables must be upper case. The values assigned environment
variables are case-insensitive and may have leading and trailing whitespace. If the values of the
environment variables change after the program has started, even if the program itself modifies the
values, the behavior is implementation-defined.

4.1 ACCDEVICE TYPE

The ACC_DEVICE_TYPE environment variable controls the default device type to use when ex-
ecuting parallel, serial, and kernels regions, if the program has been compiled to use more than
one different type of device. The allowed values of this environment variable are implementation-
defined. See the release notes for currently-supported values of this environment variable.

Example:
setenv ACC_DEVICE_TYPE NVIDIA
export ACC_DEVICE_TYPE=NVIDIA

4.2 ACC_DEVICE_.NUM

The ACC_DEVICE_NUM environment variable controls the default device number to use when
executing accelerator regions. The value of this environment variable must be a nonnegative integer
between zero and the number of devices of the desired type attached to the host. If the value is
greater than or equal to the number of devices attached, the behavior is implementation-defined.

Example:
setenv ACC_DEVICE_NUM 1
export ACC_DEVICE_NUM=1

4.3 ACC_PROFLIB

The ACC_PROFLIB environment variable specifies the profiling library. More details about the
evaluation at runtime is given in section [5.3.3|Runtime Dynamic Library Loading|

Example:
setenv ACC_PROFLIB /path/to/proflib/libaccprof.so
export ACC_PROFLIB=/path/to/proflib/libaccprof.so

135

The OpanCC® API Version 3.4 4.3. ACC_PROFLIB

136

4939

4940
4941
4942
4943
4944
4945
4946
4947
4948

4949

4950

4951

4952
4953
4954

4955

4956
4957

4958

4959
4960
4961

4962

4963

4964
4965
4966
4967
4968
4969

4970

4971
4972
4973
4974
4975

4976

4977

The OpanCC® API Version 3.4 5.1. Events

5. Profiling and Error Callback Interface

This chapter describes the OpenACC interface for runtime callback routines. These routines may be
provided by the programmer or by a tool or library developer. Calls to these routines are triggered
during the application execution at specific OpenACC events. There are two classes of events,
profiling events and error events. Profiling events can be used by tools for profile or trace data
collection. Currently, this interface does not support tools that employ asynchronous sampling.
Error events can be used to release resources or cleanly shut down a large parallel application when
the OpenACC runtime detects an error condition from which it cannot recover. This is specifically
for error handling, not for error recovery. There is no support provided for restarting or retrying
an OpenACC program, construct, or API routine after an error condition has been detected and an
error callback routine has been called.

In this chapter, the term runtime refers to the OpenACC runtime library. The term library refers to
the routines invoked at specified events by the OpenACC runtime.

There are three steps for interfacing a library to the runtime. The first step is to write the library
callback routines. Section describes the supported runtime events and the order in which
callbacks to the callback routines will occur. Section[5.2JCallbacks Signature]describes the signature
of the callback routines for all events.

The second step is to load the library at runtime. The library may be statically linked to the appli-
cation or dynamically loaded by the application, a library, or a tool. This is described in Section[5.3]
[Loading the Library|

The third step is to register the desired callbacks with the events. This may be done explicitly by the
application, if the library is statically linked with the application, implicitly by including a call to a
registration routine in a . init section, or by including an initialization routine in the library if it is
dynamically loaded by the runtime. This is described in Section 5.4[Registering Event Callbacks|

5.1 Events

This section describes the events that are recognized by the runtime. Most profiling events have a
start and end callback routine, that is, a routine that is called just before the runtime code to handle
the event starts and another routine that is called just after the event is handled. The event names
and routine prototypes are available in the header file ace_callback.h, which is delivered with
the OpenACC implementation. For backward compatibility with previous versions of OpenACC,
the implementation also delivers the same information in ace_prof . h. Event names are prefixed
with acc_ev_.

The ordering of events must reflect the order in which the OpenACC runtime actually executes them,
i.e. if a runtime moves the enqueuing of data transfers or kernel launches outside the originating
clauses/constructs, it needs to issue the corresponding launch callbacks when they really occur. A
callback for a start event must always precede the matching end callback. No callbacks will be
issued after a runtime shutdown event.

The events that the runtime supports can be registered with a callback and are defined in the enu-
meration type acc_event_t.

137

4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

The OpanCC® API Version 3.4 5.1. Events

typedef enum acc_event_t{
acc_ev_none = 0,
acc_ev_device_init_start = 1,
acc_ev_device_init_end = 2,
acc_ev_device shutdown_start =
acc_ev_device_shutdown_end = 4,
acc_ev_runtime_shutdown = 5,
acc_ev_create = 6,
acc_ev_delete = 7,
acc_ev_alloc = 8,
acc_ev_free = 9,
acc_ev_enter data_start = 10,
acc_ev_enter_data end = 11,
acc_ev_exit_data_start = 12,
acc_ev_exit_data end = 13,
acc_ev_update_start = 14,
acc_ev_update_end = 15,
acc_ev_compute_construct_start = 16,
acc_ev_compute_construct_end = 17,
acc_ev_enqueue_launch_start = 18,
acc_ev_enqueue_launch_end = 19,
acc_ev_enqueue_upload_start = 20,
acc_ev_enqueue_upload _end = 21,
acc_ev_enqueue_download_start = 22,
acc_ev_enqueue_download_end = 23,
acc_ev_wait_start = 24,
acc_ev_wait_end = 25,

100,

101

3,

acc_ev_error =
acc_ev_last =
}acc_event_t;

The value of acc_ev_1last will change if new events are added to the enumeration, so a library
must not depend on that value.

5.1.1 Runtime Initialization and Shutdown

No callbacks can be registered for the runtime initialization. Instead the initialization of the tool is
handled as described in Section [5.3|[Loading the Library|

The runtime shutdown profiling event name is
acc_ev_runtime shutdown

This event is triggered before the OpenACC runtime shuts down, either because all devices have
been shutdown by calls to the ace__shutdown API routine, or at the end of the program.

5.1.2 Device Initialization and Shutdown

The device initialization profiling event names are

138

5019

5020

5021
5022
5023

5024

5025

5026

5027

5028
5029
5030

5031

5032

5033

5034
5035

5036
5037
5038
5039

5040

5041

5042

5043
5044
5045

5046

5047
5048
5049

5050

5051

5052

5053
5054
5055
5056

The OpanCC® API Version 3.4 5.1. Events

acc_ev_device_init_start
acc_ev_device init_end

These events are triggered when a device is being initialized by the OpenACC runtime. This may be
when the program starts, or may be later during execution when the program reaches an acc_init
call or an OpenACC construct. The acc_ev_device_init_start is triggered before device
initialization starts and acc_ev_device_init_end after initialization is complete.

The device shutdown profiling event names are

acc_ev_device shutdown start
acc_ev_device_shutdown_end

These events are triggered when a device is shut down, most likely by a call to the OpenACC
acc_shutdown API routine. The acc_ev_device_shutdown_start is triggered before
the device shutdown process starts and acc_ev_device_shutdown_end after the device shut-
down is complete.

5.1.3 Enter Data and Exit Data

The enter data profiling event names are

acc_ev_enter_data_start
acc_ev_enter data_end

These events are triggered at enter data directives, entry to data constructs, and entry to implicit
data regions such as those generated by compute constructs. The acc_ev_enter_data_start
event is triggered before any data allocation, data update, or wait events that are associated with
that directive or region entry, and the acc_ev_enter_data_end is triggered after those events.

The exit data profiling event names are

acc_ev_exit data_start
acc_ev_exit data_end

These events are triggered at exit data directives, exit from data constructs, and exit from
implicit data regions. The acc_ev_exit_data_start event is triggered before any data
deallocation, data update, or wait events associated with that directive or region exit, and the
acc_ev_exit_data_end event is triggered after those events.

When the construct that triggers an enter data or exit data event was generated implicitly by the
compiler the implicit field in the event structure will be set to 1. When the construct that
triggers these events was specified explicitly by the application code the implicit field in the
event structure will be set to 0.

5.1.4 Data Allocation

The data allocation profiling event names are

acc_ev_create
acc_ev_delete
acc_ev_alloc
acc_ev_free

139

5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068

5069

5070
5071
5072

5073

5074

5075

5076

5077

5078

5079

5080

5081
5082
5083

5084

5085

5086
5087

5088
5089
5090
5091
5092
5093

5094

The OpanCC® API Version 3.4 5.1. Events

Anacc_ev_alloceventis triggered when the OpenACC runtime allocates memory from the de-
vice memory pool, and an acc_ev_free event is triggered when the runtime frees that memory.
An acc_ev_create event is triggered when the OpenACC runtime associates device memory
with local memory, such as for a data clause (create, copyin, copy, copyout) at entry to
a data construct, compute construct, at an enter data directive, or in a call to a data API rou-
tine (acc_copyin, acc_create, ...). An acc_ev_create event may be preceded by an
acc_ev_alloc event, if newly allocated memory is used for this device data, or it may not, if
the runtime manages its own memory pool. An acc_ev_delete event is triggered when the
OpenACC runtime disassociates device memory from local memory, such as for a data clause at
exit from a data construct, compute construct, at an exit data directive, or in a call to a data API
routine (acc_copyout, acc_delete, ...). An acc_ev_delete event may be followed by
an acc_ev_free event, if the disassociated device memory is freed, or it may not, if the runtime
manages its own memory pool.

When the action that generates a data allocation event was generated explicitly by the application
code the implicit field in the event structure will be set to 0. When the data allocation event
is triggered because of a variable or array with implicitly-determined data attributes or otherwise
implicitly by the compiler the implicit field in the event structure will be set to 1.

5.1.5 Data Construct

The profiling events for entering and leaving data constructs are mapped to enter data and exit data

events as described in Section 3.1 3|[Enter Data and Exit Datal

5.1.6 Update Directive

The update directive profiling event names are

acc_ev_update_start
acc_ev_update_end

The acc_ev_update_start event will be triggered at an update directive, before any data
update or wait events that are associated with the update directive are carried out, and the corre-
sponding acc_ev_update_end event will be triggered after any of the associated events.

5.1.7 Compute Construct

The compute construct profiling event names are

acc_ev_compute_construct_start
acc_ev_compute_construct_end

The acc_ev_compute_construct_start eventis triggered at entry to a compute construct,
before any launch events that are associated with entry to the compute construct. The
acc_ev_compute_construct_end event is triggered at the exit of the compute construct,
after any launch events associated with exit from the compute construct. If there are data clauses
on the compute construct, those data clauses may be treated as part of the compute construct, or as
part of a data construct containing the compute construct. The callbacks for data clauses must use
the same line numbers as for the compute construct events.

140

5095

5096

5097

5098

5099
5100
5101
5102
5103
5104
5105

5106

5107
5108

5109

5110

5111

5112
5113
5114

5115

5116
5117
5118

5119

5120
5121

5122

5123
5124
5125

5126

5127

5128

5129
5130

5131

5132

5133

The OpanCC® API Version 3.4 5.1. Events

5.1.8 Enqueue Kernel Launch

The launch profiling event names are

acc_ev_enqueue_launch_start
acc_ev_enqueue_launch_end

The acc_ev_enqueue_launch_start event is triggered just before an accelerator compu-
tation is enqueued for execution on a device, and acc_ev_enqueue_launch_end is trig-
gered just after the computation is enqueued. Note that these events are synchronous with the
local thread enqueueing the computation to a device, not with the device executing the compu-
tation. The acc_ev_enqueue_launch_start event callback routine is invoked just before
the computation is enqueued, not just before the computation starts execution. More importantly,
the acc_ev_enqueue_launch_end event callback routine is invoked after the computation is
enqueued, not after the computation finished executing.

Note: Measuring the time between the start and end launch callbacks is often unlikely to be useful,
since it will only measure the time to manage the launch queue, not the time to execute the code on
the device.

5.1.9 Enqueue Data Update (Upload and Download)

The data update profiling event names are

acc_ev_enqueue_upload_start
acc_ev_enqueue_upload_end
acc_ev_enqueue_download start
acc_ev_enqueue_download_end

The _start events are triggered just before each upload (data copy from local memory to device
memory) operation is or download (data copy from device memory to local memory) operation is
enqueued for execution on a device. The corresponding _end events are triggered just after each
upload or download operation is enqueued.

Note: Measuring the time between the start and end update callbacks is often unlikely to be useful,
since it will only measure the time to manage the enqueue operation, not the time to perform the
actual upload or download.

When the action that generates a data update event was generated explicitly by the application
code the implicit field in the event structure will be set to 0. When the data allocation event
is triggered because of a variable or array with implicitly-determined data attributes or otherwise
implicitly by the compiler the implicit field in the event structure will be set to 1.

5.1.10 Wait

The wait profiling event names are

acc_ev_wait_start
acc_ev_wait end

An acc_ev_wait_start event will be triggered for each relevant queue before the local thread
waits for that queue to be empty. A acc_ev_wait_end event will be triggered for each relevant

141

5134

5135
5136
5137
5138

5139

5140
5141
5142
5143
5144
5145
5146

5147

5148

5149

5150

5151
5152
5153
5154

5155

5156
5157
5158
5159
5160
5161

5162

5163
5164

5165

5166
5167
5168
5169
5170
5171
5172
5173

5174

The OpanCC® API Version 3.4 5.2. Callbacks Signature

queue after the local thread has determined that the queue is empty.

Wait events occur when the local thread and a device synchronize, either due to a wait directive
or by a wait clause on a synchronous data construct, compute construct, or enter data, exit
data, or update directive. For wait events triggered by an explicit synchronous wait directive
or wait clause, the implicit field in the event structure will be 0. For all other wait events, the
implicit field in the event structure will be 1.

The OpenACC runtime need not trigger wait events for queues that have not been used in the
program, and need not trigger wait events for queues that have not been used by this thread since
the last wait operation. For instance, an acc wait directive with no arguments is defined to wait on
all queues. If the program only uses the default (synchronous) queue and the queue associated with
async (1) and async (2) then an acc wait directive may trigger wait events only for those
three queues. If the implementation knows that no activities have been enqueued on the async (2)
queue since the last wait operation, then the acc wait directive may trigger wait events only for
the default queue and the async (1) queue.

5.1.11 Error Event

The only error event is
acc_ev_error

An acc_ev_error event is triggered when the OpenACC program detects a runtime error con-
dition. The default runtime error callback routine may print an error message and halt program
execution. An application can register additional error event callback routines, to allow a failing
application to release resources or to cleanly shut down a large parallel runtime with many threads
and processes, for instance.

The application can register multiple alternate error callbacks. As described in Section
[5.4.1|[Multiple Callbacks| the callbacks will be invoked in the order in which they are registered.
If all the error callbacks return, the default error callback will be invoked. The error callback
routine must not execute any OpenACC compute or data constructs. The only OpenACC API
routines that can be safely invoked from an error callback routine are acc_get_property,
acc_get_property_ string, and acc_shutdown.

5.2 Callbacks Signature

This section describes the signature of event callbacks. All event callbacks have the same signature.
The routine prototypes are available in the header file ace_callback.h, which is delivered with
the OpenACC implementation.

All callback routines have three arguments. The first argument is a pointer to a struct containing
general information; the same struct type is used for all callback events. The second argument is
a pointer to a struct containing information specific to that callback event; there is one struct type
containing information for data events, another struct type containing information for kernel launch
events, and a third struct type for other events, containing essentially no information. The third
argument is a pointer to a struct containing information about the application programming interface
(API) being used for the specific device. For NVIDIA CUDA devices, this contains CUDA-specific
information; for OpenCL devices, this contains OpenCL-specific information. Other interfaces can
be supported as they are added by implementations. The prototype for a callback routine is:

142

5175
5176

5177

5178
5179
5180

5181

5182

5183

5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197

5198

5199

5200

5201
5202
5203

5204
5205
5206
5207

5208

5209
5210

5211

5212

5213

5214

5215

The OpanCC® API Version 3.4 5.2. Callbacks Signature

typedef void (xacc_callback)
(acc_callback_infox*x, acc_event_infox, acc_api_infox);
typedef acc_callback acc_prof_callback;

In the descriptions, the datatype ssize_t means a signed 32-bit integer for a 32-bit binary and
a 64-bit integer for a 64-bit binary, the datatype size_t means an unsigned 32-bit integer for a
32-bit binary and a 64-bit integer for a 64-bit binary, and the datatype int means a 32-bit integer
for both 32-bit and 64-bit binaries.

5.2.1 First Argument: General Information

The first argument is a pointer to the ace_callback_info struct type:

typedef struct acc_prof info{
acc_event_t event_type;
int wvalid_bytes;
int version;
acc_device_t device_type;
int device_number;
int thread id;
ssize_t async;
ssize_t async_queue;
const char* src_file;
const charx func_name;
int line_no, end_line_no;
int func_line_no, func_end_line_no;
}acc_callback_info;
typedef struct acc_prof_info acc_prof_info;

The name acc_prof_info is preserved for backward compatibility with previous versions of
OpenACC. The fields are described below.

* acc_event_t event_type - The event type that triggered this callback. The datatype
is the enumeration type acc_event_t, described in the previous section. This allows the
same callback routine to be used for different events.

e int valid_bytes - The number of valid bytes in this struct. This allows a library to inter-
face with newer runtimes that may add new fields to the struct at the end while retaining com-
patibility with older runtimes. A runtime must fill in the event_type and valid_bytes
fields, and must fill in values for all fields with offset less than valid_bytes. The value of
valid_bytes for a struct is recursively defined as:

valid bytes (struct) = offset (lastfield) + wvalid_ bytes (lastfield)
valid bytes (type[n]) = (n-1)+*sizeof(type) + valid_ bytes (type)
valid bytes (basictype) = sizeof (basictype)

e int version - A version number; the value of _OPENACC.

* acc_device_t device_type - The device type corresponding to this event. The datatype
isacc_device_t, an enumeration type of all the supported device types, defined in openacc. h.

* int device_number - The device number. Each device is numbered, typically starting at

143

The OpanCC® API Version 3.4 5.2. Callbacks Signature

5216 device zero. For applications that use more than one device type, the device numbers may be
5217 unique across all devices or may be unique only across all devices of the same device type.
5218 * int thread_id - The host thread ID making the callback. Host threads are given unique
5219 thread ID numbers typically starting at zero. This is not necessarily the same as the OpenMP
5220 thread number.

5221 * ssize_t async - The async-value used for operations associated with this event; see Sec-
5222 tion [2.16][Asynchronous Behavior]

5223 * ssize_t async_queue - The actual activity queue onto which the asynec field gets
5224 mapped; see Section [2.16l[Asynchronous Behavior]

5225 * const char* src_file - A pointer to null-terminated string containing the name of or
5226 path to the source file, if known, or a null pointer if not. If the library wants to save the source
5227 file name, it must allocate memory and copy the string.

5228 * const char* func_name - A pointer to a null-terminated string containing the name of
5229 the function in which the event occurred, if known, or a null pointer if not. If the library wants
5230 to save the function name, it must allocate memory and copy the string.

5231 * int line_no - The line number of the directive or program construct or the starting line
5232 number of the OpenACC construct corresponding to the event. A negative or zero value
5233 means the line number is not known.

5234 * int end_line_no - For an OpenACC construct, this contains the line number of the end
5235 of the construct. A negative or zero value means the line number is not known.

5236 e int func_line_no - The line number of the first line of the function named in func_name.
5237 A negative or zero value means the line number is not known.

5238 e int func_end_1line_ no - The last line number of the function named in func_name.
5239 A negative or zero value means the line number is not known.

s200 5.2.2 Second Argument: Event-Specific Information

s241 The second argument is a pointer to the acc_event_info union type.

5242 typedef union acc_event_info{

5243 acc_event_t event_type;

5244 acc_data_event_info data_event;

5245 acc_launch _event_info launch_event;
5246 acc_other_event_info other_event;
5247 }acc_event_info;

saa8 The event_type field selects which union member to use. The first five members of each union
s24s member are identical. The second through fifth members of each union member (valid_bytes,
5250 parent_construct, implicit, and tool_info) have the same semantics for all event
5251 types:

5252 * int valid_bytes - The number of valid bytes in the respective struct. (This field is similar
5253 used as discussed in Section [5.2. [l|[First Argument: General Information|)

144

The OpanCC® API Version 3.4 5.2. Callbacks Signature

5254 * acc_construct_t parent_construct - This field describes the type of construct
5255 that caused the event to be emitted. The possible values for this field are defined by the
5256 acc_construct_t enum, described at the end of this section.

5257 * int implicit - This field is set to 1 for any implicit event, such as an implicit wait at
5258 a synchronous data construct or synchronous enter data, exit data or update directive. This
5259 field is set to zero when the event is triggered by an explicit directive or call to a runtime API
5260 routine.

5261 * voidx tool_info - This field is used to pass tool-specific information from a _start
5262 event to the matching _end event. For a _start event callback, this field will be initialized
5263 to a null pointer. The value of this field for a _end event will be the value returned by the
5264 library in this field from the matching _start event callback, if there was one, or a null
5265 pointer otherwise. For events that are neither _start or _end events, this field will be a
5266 null pointer.

s267 Data Events

s26s For a data event, as noted in the event descriptions, the second argument will be a pointer to the
5260 acc_data event_ info struct.

5270 typedef struct acc_data_event_info{
5271 acc_event_t event_type;

5272 int wvalid bytes;

5273 acc_construct_t parent_construct;
5274 int implicit;

5275 voidx tool_info;

5276 const charx var_name;

5277 size_t bytes;

5278 const voidx host_ptr;

5279 const voidx device_ptr;

5280 }acc_data_event_info;

s2s1 The fields specific for a data event are:

5282 * acc_event_t event_type - The event type that triggered this callback. The events that
5283 use the acc_data_event_info struct are:

5284 acc_ev_enqueue_upload_start

5285 acc_ev_enqueue_upload _end

5286 acc_ev_enqueue_download_start

5287 acc_ev_enqueue_download_end

5288 acc_ev_create

5289 acc_ev_delete

5290 acc_ev_alloc

5291 acc_ev_free

5292 * const char* var_name - A pointer to null-terminated string containing the name of the
5293 variable for which this event is triggered, if known, or a null pointer if not. If the library wants
5294 to save the variable name, it must allocate memory and copy the string.

5295 * size_t bytes - The number of bytes for the data event.

145

The OpanCC® API Version 3.4 5.2. Callbacks Signature

5296 * const voidx host_ptr - If available and appropriate for this event, this is a pointer to
5297 the host data.

5298 * const voidx device_ptr - If available and appropriate for this event, this is a pointer
5299 to the corresponding device data.

ss00 Launch Events

ss01 For a launch event, as noted in the event descriptions, the second argument will be a pointer to the
5302 acc_launch_event_info struct.

5303 typedef struct acc_launch_event_info{

5304 acc_event_t event_type;

5305 int wvalid_bytes;

5306 acc_construct_t parent_construct;

5307 int implicit;

5308 voidx tool_info;

5309 const char* kernel name;

5310 size_t num_gangs, num workers, vector_length;
5311 size_t* num_gangs_per_ dim;

5312 }acc_launch_event_info;

ss13 The fields specific for a launch event are:

5314 * acc_event_t event_type - The event type that triggered this callback. The events that
5315 use the ace__launch_event_ info struct are:

5316 acc_ev_enqueue_launch_start

5317 acc_ev_enqueue_launch_end

5318 * const charx kernel_name - A pointer to null-terminated string containing the name of
5319 the kernel being launched, if known, or a null pointer if not. If the library wants to save the
5320 kernel name, it must allocate memory and copy the string.

5321 * size_t num_gangs, num_workers, vector_length - The number of gangs, work-
5322 ers, and vector lanes created for this kernel launch.

5323 * size_t* num_gangs_per_dim- An array of size_t whose first element indicates the
5324 number of dimensions of gang parallelism and each subsequent element gives the number of
5325 gangs along each dimension starting with dimension 1. The product of the values of elements
5326 1 through num_gangs_per_dim[0] is num_gangs.

sz Error Events

ss28 For an error event, as noted in the event descriptions, the second argument will be a pointer to the
5329 acc_error_event_info struct.

5330 typedef struct acc_error_event_info{
5331 acc_event_t event_type;

5332 int wvalid_bytes;

5333 acc_construct_t parent_construct;
5334 int implicit;

5335 voidx tool_info;

146

5336
5337
5338

5339

5340

5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359

5360

5361

5362
5363

5364

5365

5366

5367

5368

5369
5370

5371

5372

5373

5374

5375

5376

The OpanCC® API Version 3.4 5.2. Callbacks Signature

acc_error_t error_code;

const charx error_message;

size_t runtime_info;
}acc_error_event_info;

The enumeration type for the error code is

typedef enum acc_error_t{
acc_error_none = 0,
acc_error_other = 1,
acc_error_system = 2,
acc_error_execution = 3,
acc_error_device_ init = 4,
acc_error_device_shutdown = 5,
acc_error_device_unavailable = 6,
acc_error_device_type_unavailable = 7,
acc_error_wrong_device_type = 8,
acc_error_out_of_memory = 9,
acc_error_not_present = 10,
acc_error_partly present = 11,
acc_error_present = 12,
acc_error_invalid argument = 13,
acc_error_invalid_async = 14,
acc_error_invalid null_pointer
acc_error invalid data_section
acc_error_implementation_defined = 100

}acc_error_t;

n i
[y
o U

The fields specific for an error event are:

* acc_event_t event_type - The event type that triggered this callback. The only event
that uses the acc_error_event_info struct is:

acc_ev_error
* int implicit - This will be set to 1.
* acc_error_t error_code - The error codes used are:
— acc_error_other is used for error conditions other than those described below.
— acc_error_systemis used when there is a system error condition.

— acc_error_execution is used when there is an error condition issued from code
executing on the device.

— acc_error_device_init is used for any error initializing a device.
— acc_error_device_shutdown is used for any error shutting down a device.

— acc_error_device unavailable is used when there is an error where the se-
lected device is unavailable.

— acc_error_device_type_unavailable is used when there is an error where
no device of the selected device type is available or is supported.

147

The OpanCC® API Version 3.4 5.2. Callbacks Signature

5377 — acc_error_wrong device_type is used when there is an error related to the
5378 device type, such as a mismatch between the device type for which a compute construct
5379 was compiled and the device available at runtime.

5380 — acc_error_out_of_memory is used when the program tries to allocate more mem-
5381 ory on the device than is available.

5382 — acc_error_not_present is used for an error related to data not being present at
5383 runtime.

5384 — acc_error_partly_ present is used for an error related to part of the data being
5385 present but not being completely present at runtime.

5386 — acc_error_present is used for an error related to data being unexpectedly present
5387 at runtime.

5388 — acc_error_invalid_argument is used when an API routine is called with a
5389 invalid argument value, other than those described above.

5390 — acc_error_invalid_async is used when an API routine is called with an invalid
5391 async-argument, or when a directive is used with an invalid async-argument.

5392 — acc_error_invalid null_pointer is used when an API routine is called with
5393 a null pointer argument where it is invalid, or when a directive is used with a null pointer
5394 in a context where it is invalid.

5395 — acc_error_invalid_data_section is used when an invalid array section ap-
5396 pears in a directive data clause, or an invalid array section appears as a runtime API call
5397 argument.

5398 — acc_error_implementation_defined: any value greater or equal to this value
5399 may be used for an implementation-defined error code.

5400 * const char* error_message - A pointer to null-terminated string containing an error
5401 message from the OpenACC runtime describing the error, or a null pointer.

5402 * size_t runtime_info - A value, such as an error code, from the underlying device
5403 runtime or driver, if one is available and appropriate.

se0 Other Events

s405 For any event that does not use the ace_data_event_info, acc_launch_event_info, or
s406 acc_error_event_info struct, the second argument to the callback routine will be a pointer
5407 to acc_other_ event_ info struct.

5408 typedef struct acc_other_ event_info{
5409 acc_event_t event_type;

5410 int wvalid_bytes;

5411 acc_construct_t parent_construct;
5412 int implicit;

5413 void*x tool_info;

5414 }acc_other_ event_info;

148

5415

5416
5417
5418
5419
5420
5421
5422

5423

5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441

5442

5443

5444

5445
5446
5447
5448
5449
5450
5451
5452

5453

5454

5455

5456

5457

The OpanCC® API Version 3.4 5.2. Callbacks Signature

Parent Construct Enumeration

All event structures contain a parent_construct member that describes the type of construct
that caused the event to be emitted. The purpose of this field is to provide a means to identify
the type of construct emitting the event in the cases where an event may be emitted by multi-
ple contruct types, such as is the case with data and wait events. The possible values for the
parent_construct field are defined in the enumeration type acc_construct_t. In the
case of combined directives, the outermost construct of the combined construct is specified as the
parent_construct. If the event was emitted as the result of the application making a call to
the runtime api, the value will be acc_construct_runtime_api.

typedef enum acc_construct_t{

acc_construct_parallel = O,
acc_construct_serial = 16
acc_construct_kernels = 1,

acc_construct_loop = 2,
acc_construct_data = 3,
acc_construct_enter_data = 4,
acc_construct_exit_data = 5,
acc_construct_host_data = 6,

acc_construct_atomic = 7,
acc_construct_declare = 8,
acc_construct_init = 9,
acc_construct_shutdown = 10,
acc_construct_set = 11,
acc_construct_update = 12,
acc_construct_routine = 13,

acc_construct_wait = 14,
acc_construct_runtime_api =
}acc_construct_t;

15,

5.2.3 Third Argument: API-Specific Information

The third argument is a pointer to the acc_api_info struct type, shown here.

typedef struct acc_api_info{
acc_device_api device_api;
int wvalid_bytes;
acc_device_t device_type;
int wvendor;
const voidx
const voidx
const voidx

}acc_api_info;

device_handle;
context_handle;
async_handle;

The fields are described below:

* acc_device_api device_api - The API in use for this device. The data type is the
enumeration acc_device_api, which is described later in this section.

* int valid_bytes - The number of valid bytes in this struct. See the discussion above in

149

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469
5470
5471

5472

5473

5474

5475

5476

5477

5478
5479

5480

5481
5482

5483

5484

5485

5486
5487

5488

5489
5490

5491

The OpanCC® API Version 3.4 5.3. Loading the Library

Section [5.2.1l[First Argument: General Information|

* acc_device_t device_type - The device type; the datatype is acc_device_t, de-
fined in openacc.h.

* int vendor - An identifier to identify the OpenACC vendor; contact your vendor to deter-
mine the value used by that vendor’s runtime.

* const voidx device_handle - If applicable, this will be a pointer to the API-specific
device information.

* const void* context_handle - If applicable, this will be a pointer to the API-specific
context information.

* const voidx async_handle - If applicable, this will be a pointer to the API-specific
async queue information.

According to the value of device_api alibrary can cast the pointers of the fields device_handle,
context_handle and async_handle to the respective device API type. The following device
APIs are defined in the interface below. Any implementation-defined device API type must have a
value greater than acc_device_api_implementation_defined.

typedef enum acc_device_api{

acc_device_api_none = 0, /* no device API */

acc_device_api_cuda = 1, /* CUDA driver API */
acc_device_api_opencl = 2, /* OpenCL API */
acc_device_api_other = 4, /* other device API */

acc_device_api_implementation_defined = 1000 /* other device API */
}acc_device_api;

5.3 Loading the Library

This section describes how a tools library is loaded when the program is run. Four methods are
described.

* A tools library may be linked with the program, as any other library is linked, either as a
static library or a dynamic library, and the runtime will call a predefined library initialization
routine that will register the event callbacks.

* The OpenACC runtime implementation may support a dynamic tools library, such as a shared
object for Linux or OS/X, or a DLL for Windows, which is then dynamically loaded at runtime
under control of the environment variable ACC_ PROFLIB.

* Some implementations where the OpenACC runtime is itself implemented as a dynamic li-
brary may support adding a tools library using the LD_ PRELOAD feature in Linux.

* A tools library may be linked with the program, as in the first option, and the application itself
may directly register event callback routines, or may invoke a library initialization routine that
will register the event callbacks.

Callbacks are registered with the runtime by calling ace_callback_register for each event
as described in Section[5.4|Registering Event Callbacks| The prototype forace_callback_ register
is:

150

5492
5493

5494

5495

5496

5497

5498

5499

5500
5501
5502
5503

5504

5505
5506

5507

5508
5509
5510
5511
5512

5513

5514
5515

5516

5517

5518

5519

5520
5521
5522
5523
5524

5525

5526
5527
5528

5529

5530
5531

The OpanCC® API Version 3.4 5.3. Loading the Library

extern void acc_callback_register
(acc_event_t event_type, acc_callback cb,
acc_register_t info);

The first argument to ace_callback_register is the event for which a callback is being
registered (compare Section 5. I|[Events). The second argument is a pointer to the callback routine:

typedef void (*acc_callback)
(acc_callback_infox*,acc_event_infox,acc_api_infox);

The third argument is an enum type:

typedef enum acc_register t{
acc_reg = 0,
acc_toggle =1,
acc_toggle_per_thread = 2
}acc_register_t;

This is usually acc_reg, but see Section [5.4.2][Disabling and Enabling Callbacks|for cases where
different values are used.

An example of registering callbacks for launch, upload, and download events is:

acc_callback_register (acc_ev_enqueue_launch_start,
prof_launch, acc_reg);

acc_callback_register (acc_ev_enqueue_upload_start,
prof_data, acc_regqg);

acc_callback_register (acc_ev_enqueue_download_start,
prof_data, acc_regqg);

As shown in this example, the same routine (prof_data) can be registered for multiple events.
The routine can use the event_type field in the ace_callback_info structure to determine
for what event it was invoked.

The names acc_prof_register and acc_prof_unregister are preserved for backward
compatibility with previous versions of OpenACC.

5.3.1 Library Registration

The OpenACC runtime will invoke ace_register_library, passing the addresses of the reg-
istration routines ace_callback_register and acc_callback unregister, in case
that routine comes from a dynamic library. In the third argument it passes the address of the lookup
routine acc_prof_lookup to obtain the addresses of inquiry functions. No inquiry functions
are defined in this profiling interface, but we preserve this argument for future support of sampling-
based tools.

Typically, the OpenACC runtime will include a weak definition of acc_register_library,
which does nothing and which will be called when there is no tools library. In this case, the library
can save the addresses of these routines and/or make registration calls to register any appropriate
callbacks. The prototype for acc_register library is:

extern void acc_register_library
(acc_prof_reg reg, acc_prof_ reg unregq,

151

5532

5533

5534
5535
5536

5537

5538

5539
5540

5541

5542

5543

5544

5545
5546

5547

5548

5549

5550
5551

55652

5553

5554

5555

5556
5557
5558
5559
5560

5561

5562

5563
5564
5565
5566
5567

The OpanCC® API Version 3.4 5.3. Loading the Library

acc_prof_lookup_func lookup);
The first two arguments of this routine are of type:

typedef void (*acc_prof_ req)
(acc_event_t event_type, acc_callback cb,
acc_register_t info);

The third argument passes the address to the lookup function ace_prof_lookup to obtain the
address of interface functions. It is of type:

typedef void (xacc_query_ f£fn) ();
typedef acc_query fn (xacc_prof_ lookup_func)
(const char* acc_query_ fn_ name);

The argument of the lookup function is a string with the name of the inquiry function. There are no
inquiry functions defined for this interface.

5.3.2 Statically-Linked Library Initialization

A tools library can be compiled and linked directly into the application. If the library provides an
external routine acc_register_library as specified in Section[5.3. 1l ibrary Registration| the
runtime will invoke that routine to initialize the library.

The sequence of events is:
1. The runtime invokes the acc_register_library routine from the library.

2. The acc_register_library routine callsacc_callback_register foreach event
to be monitored.

3. acc_callback_register records the callback routines.
4. The program runs, and your callback routines are invoked at the appropriate events.

In this mode, only one tool library is supported.

5.3.3 Runtime Dynamic Library Loading

A common case is to build the tools library as a dynamic library (shared object for Linux or OS/X,
DLL for Windows). In that case, you can have the OpenACC runtime load the library during initial-
ization. This allows you to enable runtime profiling without rebuilding or even relinking your ap-
plication. The dynamic library must implement a registration routine acc_register_library
as specified in Section [3.3.1|[Library Registration|

The user may set the environment variable ACC_PROFLIB to the path to the library will tell the
OpenACC runtime to load your dynamic library at initialization time:

Bash:
export ACC_PROFLIB=/home/user/lib/myprof.so
. /myapp
or
ACC_PROFLIB=/home/user/lib/myprof.so ./myapp

152

5568
5569
5570

5571
5572
5573
5574
5575
5576
5577
5578
5579
5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591
5592

5593

5594

5595
5596
5597
5598
5599
5600
5601

5602

5603
5604
5605
5606
5607

The OpanCC® API Version 3.4 5.3. Loading the Library

C-shell:
setenv ACC_PROFLIB /home/user/lib/myprof.so

. /myapp

When the OpenACC runtime initializes, it will read the ACC_PROFLIB environment variable (with
getenv). The runtime will open the dynamic library (using dlopen or LoadLibrary3); if
the library cannot be opened, the runtime may cause the program to halt execution and return an
error status, or may continue execution with or without an error message. If the library is success-
fully opened, the runtime will get the address of the acc_register_ library routine (using
dlsym or GetProcAddress). If this routine is resolved in the library, it will be invoked pass-
ing in the addresses of the registration routine acec_callback_register, the deregistration
routine acc_callback_unregister, and the lookup routine acc_prof_lookup. The reg-
istration routine in your library, acc_register_library, registers the callbacks by calling the
register argument, and must save the addresses of the arguments (register, unregister,
and lookup) for later use, if needed.

The sequence of events is:
1. Initialization of the OpenACC runtime.
2. OpenACC runtime reads ACC_PROFLIB.
3. OpenACC runtime loads the library.
4. OpenACC runtime calls the ace_register_library routine in that library.
5

. Your acc_register_ libraryroutine callsace_callback_register foreach event
to be monitored.

6. acc_callback_register records the callback routines.
7. The program runs, and your callback routines are invoked at the appropriate events.

If supported, paths to multiple dynamic libraries may be specified in the ACC_PROFLIB environ-
ment variable, separated by semicolons (;). The OpenACC runtime will open these libraries and in-
voke the acc_register_library routine for each, in the order they appear in ACC_ PROFLIB.

5.3.4 Preloading with LD PRELOAD

The implementation may also support dynamic loading of a tools library using the LD_PRELOAD
feature available in some systems. In such an implementation, you need only specify your tools
library path in the LD_PRELOAD environment variable before executing your program. The Open-
ACC runtime will invoke the acc_register_library routine in your tools library at initial-
ization time. This requires that the OpenACC runtime include a dynamic library with a default
(empty) implementation of acc_register_library that will be invoked in the normal case
where there is no LD_PRELOAD setting. If an implementation only supports static linking, or if the
application is linked without dynamic library support, this feature will not be available.

Bash:
export LD_PRELOAD=/home/user/lib/myprof.so
. /myapp
or
LD_PRELOAD=/home/user/lib/myprof.so ./myapp

153

The OpanCC® API Version 3.4 5.4. Registering Event Callbacks

5608 C-shell:
5609 setenv LD_PRELOAD /home/user/lib/myprof.so
5610 . /myapp

set1 The sequence of events is:

5612 1. The operating system loader loads the library specified in LD_ PRELOAD.

5613 2. The call to acc_register_ library in the OpenACC runtime is resolved to the routine
5614 in the loaded tools library.

5615 3. OpenACC runtime calls the acc_register_library routine in that library.

5616 4. Youracc_register_libraryroutine callsacc_callback_register for each event
5617 to be monitored.

5618 5. acc_callback_register records the callback routines.

5619 6. The program runs, and your callback routines are invoked at the appropriate events.

se20 In this mode, only a single tools library is supported, since only one acc_register_ library
se21 initialization routine will get resolved by the dynamic loader.

ss2 5.3.5 Application-Controlled Initialization

se23 An alternative to default initialization is to have the application itself call the library initialization
se24 routine, which then calls ace_callback_register for each appropriate event. The library
se25 may be statically linked to the application or your application may dynamically load the library.

se26 ' The sequence of events is:

5627 1. Your application calls the library initialization routine.

5628 2. The library initialization routine calls acc_callback_register for each event to be
5629 monitored.

5630 3. acc_callback_register records the callback routines.

5631 4. The program runs, and your callback routines are invoked at the appropriate events.

ses2 In this mode, multiple tools libraries can be supported, with each library initialization routine in-
s633 voked by the application.

s« 5.4 Registering Event Callbacks

se3s This section describes how to register and unregister callbacks, temporarily disabling and enabling
sess callbacks, the behavior of dynamic registration and unregistration, and requirements on an Open-
ses7 ACC implementation to correctly support the interface.

sss 9.4.1 Event Registration and Unregistration

sess T'he library must call the registration routine ace_callback_register to register each call-
ses0 back with the runtime. A simple example:

5641 extern void prof_data(acc_callback_info* profinfo,
5642 acc_event_infox eventinfo, acc_api_infox* apiinfo);

154

5643
5644
5645
5646
5647
5648
5649
5650
5651

5652
5653

5654

5655
5656
5657
5658
5659
5660
5661
5662

5663

5664

5665

5666
5667
5668
5669

5670
5671
5672
5673

5674

5675
5676
5677

5678

5679

5680

5681
5682

5683

The OpanCC® API Version 3.4 5.4. Registering Event Callbacks

extern void prof_ launch(acc_callback_infox profinfo,
acc_event_info* eventinfo, acc_api_info* apiinfo);

void acc_register_ library(acc_prof reg reg,
acc_prof_reg unreg, acc_prof lookup_func lookup){
reg (acc_ev_enqueue_upload_start, prof_data, acc_reqg);
reg (acc_ev_enqueue_download_start, prof_data, acc_reqg);
reg (acc_ev_enqueue_launch_start, prof launch, acc_reqg);

}

In this example the prof_data routine will be invoked for each data upload and download event,
and the prof_launch routine will be invoked for each launch event. The prof_data routine
might start out with:

void prof_data(acc_callback_infox profinfo,
acc_event_info* eventinfo, acc_api_infox apiinfo){
acc_data_event_infox datainfo;
datainfo = (acc_data_event_infox)eventinfo;
switch(datainfo->event_type){
case acc_ev_enqueue_upload_start

}
Multiple Callbacks

Multiple callback routines can be registered on the same event:

acc_callback_register (acc_ev_enqueue_upload_start,
prof_data, acc_regqg);

acc_callback_register (acc_ev_enqueue_upload_start,
prof_up, acc_req);

For most events, the callbacks will be invoked in the order in which they are registered. However,
end events, named acc_ev_. . ._end, invoke callbacks in the reverse order. Essentially, each
event has an ordered list of callback routines. A new callback routine is appended to the tail of the
list for that event. For most events, that list is traversed from the head to the tail, but for end events,
the list is traversed from the tail to the head.

If a callback is registered, then later unregistered, then later still registered again, the second regis-
tration is considered to be a new callback, and the callback routine will then be appended to the tail
of the callback list for that event.

Unregistering

A matching call to ace_callback_unregister will remove that routine from the list of call-
back routines for that event.

acc_callback_register (acc_ev_enqueue_upload_start,
prof_data, acc_reg);
// prof_data is on the callback list for acc_ev_enqueue_upload_start

155

5684
5685
5686
5687
5688

5689
5690
5691
5692

5693

5694

5695
5696
5697
5698
5699
5700
5701
5702
5703

5704

5705
5706

5707

5708
5709
5710
5711
5712
5713

5714

5715
5716

5717

5718
5719
5720
5721
5722
5723

5724

5725

5726

The OpenACC® API Version 3.4 5.4. Registering Event Callbacks

acc_callback_unregister (acc_ev_enqueue_upload_ start,
prof_data, acc_regqg);

// prof_data is removed from the callback list

// foracc_ev_enqueue_upload_start

Each entry on the callback list must also have a ref count. This keeps track of how many times
this routine was added to this event’s callback list. If a routine is registered n times, it must be
unregistered n times before it is removed from the list. Note that if a routine is registered multiple
times for the same event, its ref count will be incremented with each registration, but it will only be
invoked once for each event instance.

5.4.2 Disabling and Enabling Callbacks

A callback routine may be temporarily disabled on the callback list for an event, then later re-
enabled. The behavior is slightly different than unregistering and later re-registering that event.
When a routine is disabled and later re-enabled, the routine’s position on the callback list for that
event is preserved. When a routine is unregistered and later re-registered, the routine’s position on
the callback list for that event will move to the tail of the list. Also, unregistering a callback must be
done n times if the callback routine was registered n times. In contrast, disabling, and enabling an
event sets a toggle. Disabling a callback will immediately reset the toggle and disable calls to that
routine for that event, even if it was enabled multiple times. Enabling a callback will immediately
set the toggle and enable calls to that routine for that event, even if it was disabled multiple times.
Registering a new callback initially sets the toggle.

A call to ace_callback_unregister with a value of acc_toggle as the third argument
will disable callbacks to the given routine. A call to acc_callback_register with a value of
acc_toggle as the third argument will enable those callbacks.

acc_callback_unregister (acc_ev_enqueue_upload_start,
prof_data, acc_toggle);
// prof_data is disabled

acc_callback_register (acc_ev_enqueue_upload_start,
prof_data, acc_toggle);
// prof_data isre-enabled

A call to either ace_callback_unregister or acc_callback_register to disable or
enable a callback when that callback is not currently registered for that event will be ignored with
No error.

All callbacks for an event may be disabled (and re-enabled) by passing NULL to the second argument
and acc_toggle to the third argument of ace_callback_unregister (and
acc_callback_register). This sets a toggle for that event, which is distinct from the toggle
for each callback for that event. While the event is disabled, no callbacks for that event will be
invoked. Callbacks for that event can be registered, unregistered, enabled, and disabled while that
event is disabled, but no callbacks will be invoked for that event until the event itself is enabled.
Initially, all events are enabled.

acc_callback_unregister (acc_ev_enqueue_upload_ start,
prof_data, acc_toggle);

156

5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745

5746

5747
5748
5749

5750

5751
5752

5753

5754
5755
5756
5757

5758

5759

5760

5761

5762

5763
5764
5765

5766

The OpanCC® API Version 3.4 5.5. Advanced Topics

// prof_data is disabled

acc_callback_unregister (acc_ev_enqueue_upload_start,
NULL, acc_toggle);
// acc_ev_enqueue_upload_start callbacks are disabled

acc_callback_register (acc_ev_enqueue_upload_start,
prof_data, acc_toggle);

// prof_data isre-enabled, but

// acc_ev_enqueue_upload_start callbacks still disabled

acc_callback_register (acc_ev_enqueue_upload_start,
prof_up, acc_req);

// prof_up is registered and initially enabled, but

// acc_ev_enqueue_upload_start callbacks still disabled

acc_callback_register (acc_ev_enqueue_upload_start,
NULL, acc_toggle);
// acc_ev_enqueue_upload_start callbacks are enabled

Finally, all callbacks can be disabled (and enabled) by passing the argument list (acc_ev_none,
NULL, acc_toggle) toacc_callback_unregister (and acc_callback_register).
This sets a global toggle disabling all callbacks, which is distinct from the toggle enabling callbacks
for each event and the toggle enabling each callback routine.

The behavior of passing acc_ev_none as the first argument and a non-NULL value as the second
argument to acc_callback_unregister or acc_callback_register is not defined,
and may be ignored by the runtime without error.

All callbacks can be disabled (or enabled) for just the current thread by passing the argument list
(acc_ev_none, NULL, acc_toggle_per_ thread) to acc_callback_unregister
(and acc_callback_register). This is the only thread-specific interface to
acc_callback_register and acc_callback_unregister, all other calls to register,
unregister, enable, or disable callbacks affect all threads in the application.

5.5 Advanced Topics
This section describes advanced topics such as dynamic registration and changes of the execution

state for callback routines as well as the runtime and tool behavior for multiple host threads.

5.5.1 Dynamic Behavior

Callback routines may be registered or unregistered, enabled or disabled at any point in the execution
of the program. Calls may appear in the library itself, during the processing of an event. The
OpenACC runtime must allow for this case, where the callback list for an event is modified while
that event is being processed.

157

5767

5768
5769
5770
5771
5772
5773
5774
5775
5776
5777

5778

5779
5780

5781

5782

5783

5784

5785
5786
5787
5788
5789
5790
5791
5792

5793

5794
5795
5796
5797
5798

5799

5800
5801

5802

5803
5804
5805

5806

The OpanCC® API Version 3.4 5.5. Advanced Topics

Dynamic Registration and Unregistration

Calls to acc_register and acc_unregister may occur at any point in the application. A
callback routine can be registered or unregistered from a callback routine, either the same routine
or another routine, for a different event or the same event for which the callback was invoked. If a
callback routine is registered for an event while that event is being processed, then the new callback
routine will be added to the tail of the list of callback routines for this event. Some events (the
_end) events process the callback routines in reverse order, from the tail to the head. For those
events, adding a new callback routine will not cause the new routine to be invoked for this instance
of the event. The other events process the callback routines in registration order, from the head
to the tail. Adding a new callback routine for such an event will cause the runtime to invoke that
newly registered callback routine for this instance of the event. Both the runtime and the library
must implement and expect this behavior.

If an existing callback routine is unregistered for an event while that event is being processed, that
callback routine is removed from the list of callbacks for this event. For any event, if that callback
routine had not yet been invoked for this instance of the event, it will not be invoked.

Registering and unregistering a callback routine is a global operation and affects all threads, in a
multithreaded application. See Section [3.4.1I|[Multiple Callbacks|

Dynamic Enabling and Disabling

Calls to acc_register and acc_unregister to enable and disable a specific callback for
an event, enable or disable all callbacks for an event, or enable or disable all callbacks may occur
at any point in the application. A callback routine can be enabled or disabled from a callback
routine, either the same routine or another routine, for a different event or the same event for which
the callback was invoked. If a callback routine is enabled for an event while that event is being
processed, then the new callback routine will be immediately enabled. If it appears on the list of
callback routines closer to the head (for _end events) or closer to the tail (for other events), that
newly-enabled callback routine will be invoked for this instance of this event, unless it is disabled
or unregistered before that callback is reached.

If a callback routine is disabled for an event while that event is being processed, that callback routine
is immediately disabled. For any event, if that callback routine had not yet been invoked for this in-
stance of the event, it will not be invoked, unless it is enabled before that callback routine is reached
in the list of callbacks for this event. If all callbacks for an event are disabled while that event is
being processed, or all callbacks are disabled for all events while an event is being processed, then
when this callback routine returns, no more callbacks will be invoked for this instance of the event.

Registering and unregistering a callback routine is a global operation and affects all threads, in a
multithreaded application. See Section [5.4.1I|[Multiple Callbacks|

5.5.2 OpenACC Events During Event Processing

OpenACC events may occur during event processing. This may be because of OpenACC API rou-
tine calls or OpenACC constructs being reached during event processing, or because of multiple host
threads executing asynchronously. Both the OpenACC runtime and the tool library must implement
the proper behavior.

158

5807

5808
5809

5810

5811

5812
5813
5814
5815
5816
5817

5818

5819
5820
5821
5822
5823
5824
5825

5826
5827

5828

5829
5830
5831

5832
5833
5834

5835

5836
5837
5838

5839

5840
5841

5842

5843
5844

5845

5846

5847

The OpanCC® API Version 3.4 5.5. Advanced Topics

5.5.3 Multiple Host Threads

Many programs that use OpenACC also use multiple host threads, such as programs using the
OpenMP API. The appearance of multiple host threads affects both the OpenACC runtime and the
tools library.

Runtime Support for Multiple Threads

The OpenACC runtime must be thread-safe, and the OpenACC runtime implementation of this
tools interface must also be thread-safe. All threads use the same set of callbacks for all events, so
registering a callback from one thread will cause all threads to execute that callback. This means that
managing the callback lists for each event must be protected from multiple simultaneous updates.
This includes adding a callback to the tail of the callback list for an event, removing a callback from
the list for an event, and incrementing or decrementing the ref count for a callback routine for an
event.

In addition, one thread may register, unregister, enable, or disable a callback for an event while
another thread is processing the callback list for that event asynchronously. The exact behavior may
be dependent on the implementation, but some behaviors are expected and others are disallowed.
In the following examples, there are three callbacks, A, B, and C, registered for event E in that
order, where callbacks A and B are enabled and callback C is temporarily disabled. Thread T1 is
dynamically modifying the callbacks for event E while thread T2 is processing an instance of event
E.

* Suppose thread T1 unregisters or disables callback A for event E. Thread T2 may or may not
invoke callback A for this event instance, but it must invoke callback B; if it invokes callback
A, that must precede the invocation of callback B.

» Suppose thread T1 unregisters or disables callback B for event E. Thread T2 may or may not
invoke callback B for this event instance, but it must invoke callback A; if it invokes callback
B, that must follow the invocation of callback A.

* Suppose thread T1 unregisters or disables callback A and then unregisters or disables callback
B for event E. Thread T2 may or may not invoke callback A and may or may not invoke
callback B for this event instance, but if it invokes both callbacks, it must invoke callback A
before it invokes callback B.

* Suppose thread T1 unregisters or disables callback B and then unregisters or disables callback
A for event E. Thread T2 may or may not invoke callback A and may or may not invoke
callback B for this event instance, but if it invokes callback B, it must have invoked callback
A for this event instance.

» Suppose thread T1 is registering a new callback D for event E. Thread T2 may or may not
invoke callback D for this event instance, but it must invoke both callbacks A and B. If it
invokes callback D, that must follow the invocations of A and B.

* Suppose thread T1 is enabling callback C for event E. Thread T2 may or may not invoke
callback C for this event instance, but it must invoke both callbacks A and B. If it invokes
callback C, that must follow the invocations of A and B.

The ace_callback_info struct has a thread_ id field, which the runtime must set to a
unique value for each host thread, though it need not be the same as the OpenMP threadnum value.

159

5848

5849
5850
5851
5852

5853

5854
5855
5856
5857
5858
5859
5860
5861
5862
5863

The OpanCC® API Version 3.4 5.5. Advanced Topics

Library Support for Multiple Threads

The tool library must also be thread-safe. The callback routine will be invoked in the context of the
thread that reaches the event. The library may receive a callback from a thread T2 while it’s still
processing a callback, from the same event type or from a different event type, from another thread
T1. The ace_callback_info struct has a thread_id field, which the runtime must set to a
unique value for each host thread.

If the tool library uses dynamic callback registration and unregistration, or callback disabling and
enabling, recall that unregistering or disabling an event callback from one thread will unregister or
disable that callback for all threads, and registering or enabling an event callback from any thread
will register or enable it for all threads. If two or more threads register the same callback for the
same event, the behavior is the same as if one thread registered that callback multiple times; see
Section 5.4.1][Multiple Callbacks| The acc_unregister routine must be called as many times
as acc_register for that callback/event pair in order to totally unregister it. If two threads
register two different callback routines for the same event, unless the order of the registration calls
is guaranteed by some sychronization method, the order in which the runtime sees the registration
may differ for multiple runs, meaning the order in which the callbacks occur will differ as well.

160

5864

5865
5866
5867
5868
5869

5870

5871

5872

5873

5874

5875
5876
5877

5878

5879

5880

5881

5882

5883
5884
5885

5886

5887
5888

5889

5890
5891

5892

5893

5894

5895

5896
5897

5898

5899

The OpanCC® API Version 3.4 6. Glossary

6. Glossary

Clear and consistent terminology is important in describing any programming model. We define
here the terms you must understand in order to make effective use of this document and the asso-
ciated programming model. In particular, some terms used in this specification conflict with their
usage in the base language specifications. When there is potential confusion, the term will appear
here.

Accelerator — a device attached to a CPU and to which the CPU can offload data and compute
kernels to perform compute-intensive calculations.

Accelerator routine — a procedure compiled for the accelerator with the rout ine directive.

Accelerator thread — a thread of execution that executes on the accelerator; a single vector lane of
a single worker of a single gang.

Aggregate datatype — any non-scalar datatype such as array and composite datatypes. In Fortran,
aggregate datatypes include arrays, derived types, character types. In C, aggregate datatypes include
arrays, targets of pointers, structs, and unions. In C++, aggregate datatypes include arrays, targets
of pointers, classes, structs, and unions.

Aggregate variables — a variable of any non-scalar datatype, including array or composite variables.
In Fortran, this includes any variable with allocatable or pointer attribute and character variables.

Async-argument — an async-argument is a nonnegative scalar integer expression (int for C or C++,
integer for Fortran), or one of the special values ace_async_noval or acc_async_sync.

Barrier — a type of synchronization where all parallel execution units or threads must reach the
barrier before any execution unit or thread is allowed to proceed beyond the barrier; modeled after
the starting barrier on a horse race track.

Block construct — a block-construct, as specified by the Fortran language.

Captured variable — a variable for which a discrete copy from its original variable exists in the
device-accessible memory. Such variable is only captured from the time its copy is created and
until such a copy is deleted.

Composite datatype — a derived type in Fortran, or a struct or union type in C, or a class,
struct, or union type in C++. (This is different from the use of the term composite data type in
the C and C++ languages.)

Composite variable — a variable of composite datatype. In Fortran, a composite variable must not
have allocatable or pointer attributes.

Compute construct — a parallel construct, serial construct, or kernels construct.

Compute intensity — for a given loop, region, or program unit, the ratio of the number of arithmetic
operations performed on computed data divided by the number of memory transfers required to
move that data between two levels of a memory hierarchy.

Compute region — a parallel region, serial region, or kernels region.

161

5900
5901

5902

5903

5904

5905

5906
5907

5908

5909
5910
5911
5912

5913

5914
5915
5916
5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930
5931

5932

5933
5934

5935

5936

5937

5938

The OpanCC® API Version 3.4 6. Glossary

Condition — a condition is an expression that evalautes to true or false according to the rules of the
respective language. In Fortran, this is a scalar logical expression. In C, a condition is an expression
of scalar type. In C++, a condition is an expression that is contextually convertible to bool.

Construct — a directive and the associated statement, loop, or structured block, if any.

CUDA - the CUDA environment from NVIDIA, a C-like programming environment used to ex-
plicitly control and program an NVIDIA GPU.

Current device — the device represented by the acc-current-device-type-var and acc-current-device-
num-var ICVs

Current device type — the device type represented by the acc-current-device-type-var ICV

Data lifetime — the lifetime of a data object in device memory, which may begin at the entry to
a data region, or at an enter data directive, or at a data API call such as ace_copyin or
acc_create, and which may end at the exit from a data region, or at an exit data directive,
or at a data API call such as acc_delete, acc_copyout, or ace_shutdown, or at the end of
the program execution.

Data region — a region defined by a data construct, or an implicit data region for a function or
subroutine containing OpenACC directives. Data constructs typically allocate device memory and
copy data from host to device memory upon entry, and copy data from device to local memory and
deallocate device memory upon exit. Data regions may contain other data regions and compute
regions.

Default asynchronous queue — the asynchronous activity queue represented in the acc-default-
async-var ICV

Device — a general reference to an accelerator or a multicore CPU.
Device-accessible memory — any memory which can be accessed from the device.

Device memory — memory attached to a device, logically and physically separate from the host
memory.

Device thread — a thread of execution that executes on any device.

Directive — in C or C++, a #pragma, or in Fortran, a specially formatted comment statement, that
is interpreted by a compiler to augment information about or specify the behavior of the program.

Discrete memory — memory accessible from the local thread that is not accessible from the current
device, or memory accessible from the current device that is not accessible from the local thread.

DMA - Direct Memory Access, a method to move data between physically separate memories;
this is typically performed by a DMA engine, separate from the host CPU, that can access the host
physical memory as well as an IO device or other physical memory.

Exposed variable access — with respect to a compute construct, any access to the data or address
of a variable at a point within the compute construct where the variable is not private to a scope
lexically enclosed within the compute construct. See[Section 2.6.2)

Jalse — a condition that evaluates to zero in C or C++, or . false. in Fortran.
GPU - a Graphics Processing Unit; one type of accelerator.

GPGPU - General Purpose computation on Graphics Processing Units.

162

5939

5940

5941

5942
5943

5944

5945
5946

5947

5948

5949

5950
5951
5952
5953
5954

5955

5956
5957
5958
5959
5960

5961

5962

5963

5964

5965

5966

5967

5968
5969
5970

5971

5972

5973

5974
5975
5976
5977

5978

The OpanCC® API Version 3.4 6. Glossary

Host — the main CPU that in this context may have one or more attached accelerators. The host
CPU controls the program regions and data loaded into and executed on one or more devices.

Host thread — a thread of execution that executes on the host.

Implicit data region — the data region that is implicitly defined for a Fortran subprogram or C
function. A call to a subprogram or function enters the implicit data region, and a return from the
subprogram or function exits the implicit data region.

integral-constant-expression — a compile time constant expression of integral or integer type,
equivalent to integral constant expression in C and C++, and equivalent to constant expression
of integer type in Fortran.

Kernel - a nested loop executed in parallel by the accelerator. Typically the loops are divided into
a parallel domain, and the body of the loop becomes the body of the kernel.

Kernels region — a region defined by a kernels construct. A kernels region is a structured block
which is compiled for the accelerator. The code in the kernels region will be divided by the compiler
into a sequence of kernels; typically each loop nest will become a single kernel. A kernels region
may require space in device memory to be allocated and data to be copied from local memory to
device memory upon region entry, and data to be copied from device memory to local memory and
space in device memory to be deallocated upon exit.

Level of parallelism — one of the following, which are arranged from the highest to the lowest level:
gang dimension three, gang dimension two, gang dimension one, worker, vector, or sequential.
One or more of gang, worker, and vector parallelism may appear on a loop construct. Sequential
execution corresponds to no parallelism. The gang, worker, vector, and seq clauses specify
the level of parallelism for a loop.

Local device — the device where the local thread executes.
Local memory — the memory associated with the local thread.

Local thread — the host thread or the accelerator thread that executes an OpenACC directive or
construct.

Loop trip count — the number of times a particular loop executes.

MIMD - a method of parallel execution (Multiple Instruction, Multiple Data) where different exe-
cution units or threads execute different instruction streams asynchronously with each other.

null pointer — a C or C++ pointer variable with the value zero, NULL, or (in C++) nullptr, or a
Fortran pointer variable that is not associated, or a Fortran allocatable variable that is not
allocated.

OpenCL - short for Open Compute Language, a developing, portable standard C-like programming
environment that enables low-level general-purpose programming on GPUs and other accelerators.

Orphaned loop construct — a 1oop construct that has no parent compute construct.

Parallel region — a region defined by a parallel construct. A parallel region is a structured block
which is compiled for the accelerator. A parallel region typically contains one or more work-sharing
loops. A parallel region may require space in device memory to be allocated and data to be copied
from local memory to device memory upon region entry, and data to be copied from device memory
to local memory and space in device memory to be deallocated upon exit.

163

5979

5980

5981

5982

5983
5984

5985
5986

5987

5988
5989
5990

5991
5992

5993

5994

5995
5996
5997

5998
5999

6000
6001
6002
6003
6004
6005

6006

6007
6008
6009
6010
6011

6012

6013

6014

6015

6016

6017
6018

6019

The OpanCC® API Version 3.4 6. Glossary

Parent compute construct — for any point in the program, the nearest lexically enclosing compute
construct that has the same parent procedure.

Parent compute scope — for any point in the program, the parent compute construct or, if none, the
parent procedure.

Parent procedure — for any point in the program, the nearest lexically enclosing procedure such
that expressions at this point are not evaluated until the procedure is called.

Partly present data — a section of data for which some of the data is present in a single device
memory section, but part of the data is either not present or is present in a different device memory
section. For instance, if a subarray of an array is present, the array is partly present.

Present data — data for which the sum of the structured and dynamic reference counters is greater
than zero in a single device memory section; see Section A null pointer is defined as always
present with a length of zero bytes.

Private data — with respect to an iterative loop, data which is used only during a particular loop
iteration. With respect to a more general region of code, data which is used within the region but is
not initialized prior to the region and is re-initialized prior to any use after the region.

Procedure — in C or C++, a function or C++ lambda; in Fortran, a subroutine or function.

Region — all the code encountered during an instance of execution of a construct. A region includes
any code in called routines, and may be thought of as the dynamic extent of a construct. This may
be a parallel region, serial region, kernels region, data region, or implicit data region.

Scalar — a variable of scalar datatype. In Fortran, scalars must not have allocatable or pointer
attributes.

Scalar datatype — an intrinsic or built-in datatype that is not an array or aggregate datatype. In For-
tran, scalar datatypes are integer, real, double precision, complex, or logical. In C, scalar datatypes
are char (signed or unsigned), int (signed or unsigned, with optional short, long or long long at-
tribute), enum, float, double, long double, _Complex (with optional float or long attribute), or any
pointer datatype. In C++, scalar datatypes are char (signed or unsigned), wchar_t, int (signed or
unsigned, with optional short, long or long long attribute), enum, bool, float, double, long double,
or any pointer datatype. Not all implementations or targets will support all of these datatypes.

Serial region — a region defined by a serial construct. A serial region is a structured block which
is compiled for the accelerator. A serial region contains code that is executed by a single gang of a
single worker with a vector length of one. A serial region may require space in device memory to be
allocated and data to be copied from local memory to device memory upon region entry, and data
to be copied from device memory to local memory and space in device memory to be deallocated
upon exit.

Shared memory — memory that is accessible from both the local thread and the current device.

SIMD - a method of parallel execution (single-instruction, multiple-data) where the same instruc-
tion is applied to multiple data elements simultaneously.

SIMD operation — a vector operation implemented with SIMD instructions.

Structured block — in C or C++, an executable statement, possibly compound, with a single entry
at the top and a single exit at the bottom. In Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom.

164

6020
6021

6022

6023
6024

6025

6026

6027
6028
6029

6030
6031

6032
6033

6034

6035
6036

6037

6038
6039

The OpanCC® API Version 3.4 6. Glossary

Thread — a host CPU thread or an accelerator thread. On a host CPU, a thread is defined by a
program counter and stack location; several host threads may comprise a process and share host
memory. On an accelerator, a thread is any one vector lane of one worker of one gang.

Tightly nested loops — two or more nested loops such that only the innermost loop contains state-
ments or directives other than a single loop statement. In other words, between any two loops in the
loop nest there is no intervening code.

true — a condition that evaluates to nonzero in C or C++, or .true. in Fortran.

var — the name of a variable (scalar, array, or composite variable), or a subarray specification, or an
array element, or a composite variable member, or the name of a Fortran common block between
slashes.

Vector operation — a single operation or sequence of operations applied uniformly to each element
of an array.

Visible data clause — with respect to a compute construct, any data clause on the compute con-
struct, on a lexically enclosing data construct that has the same parent procedure, or on a visible

declare directive. See[Section 2.6.21

Visible default clause — with respect to a compute construct, the nearest default clause ap-
pearing on the compute construct or on a lexically enclosing data construct that has the same

parent procedure. See

Visible device copy — a copy of a variable, array, or subarray allocated in device memory that is
visible to the program unit being compiled.

165

The OpanCC® API Version 3.4 6. Glossary

166

6040

6041
6042
6043
6044
6045
6046

6047

6048

6049

6050

6051

6052

6053

6054

6055
6056

6057

6058
6059

6060

6061

6062

6063
6064

6065

6066

6067

6068

6069
6070

The OpanCC® API Version 3.4 A.l. Target Devices

A. Recommendations for Implementers

This section gives recommendations for standard names and extensions to use for implementations
for specific targets and target platforms, to promote portability across such implementations, and
recommended options that programmers find useful. While this appendix is not part of the Open-
ACC specification, implementations that provide the functionality specified herein are strongly rec-
ommended to use the names in this section. The first subsection describes devices, such as NVIDIA
GPUs. The second subsection describes additional API routines for target platforms, such as CUDA
and OpenCL. The third subsection lists several recommended options for implementations.

A.1 Target Devices
A.1.1 NVIDIA GPU Targets

This section gives recommendations for implementations that target NVIDIA GPU devices.

Accelerator Device Type

These implementations should use the name acc_device_nvidia for the acc_device_t
type or return values from OpenACC Runtime API routines.

ACC_DEVICE_TYPE

An implementation should use the case-insensitive name nvidia for the environment variable
ACC_DEVICE_TYPE.

device _type clause argument

An implementation should use the case-insensitive name nvidia as the argument to the device_type
clause.

A.1.2 AMD GPU Targets

This section gives recommendations for implementations that target AMD GPUs.

Accelerator Device Type

These implementations should use the name acc_device_radeon for the acc_device_t
type or return values from OpenACC Runtime API routines.

ACC_DEVICE_TYPE

These implementations should use the case-insensitive name radeon for the environment variable
ACC_DEVICE_TYPE.

device _type clause argument

An implementation should use the case-insensitive name radeon as the argument to the device_type
clause.

167

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088
6089
6090

6091

6092

6093

6094

6095

6096
6097

6098

6099

6100

The OpanCC® API Version 3.4 A.2. API Routines for Target Platforms

A.1.3 Multicore Host CPU Target

This section gives recommendations for implementations that target the multicore host CPU.

Accelerator Device Type

These implementations should use the name acc_device_host for the acc_device_t type
or return values from OpenACC Runtime API routines.

ACC_DEVICE_TYPE

These implementations should use the case-insensitive name host for the environment variable
ACC_DEVICE_TYPE.

device_type clause argument

An implementation should use the case-insensitive name host as the argument to the device_type
clause.

routine directive

Given a routine directive for a procedure, an implementation should:
* Suppress the procedure’s compilation for the multicore host CPU if a nohost clause appears.
* Ignore any bind clause when compiling the procedure for the multicore host CPU.

* Disallow a bind clause to appear after a device_type (host) clause.

A.2 API Routines for Target Platforms

These runtime routines allow access to the interface between the OpenACC runtime API and the
underlying target platform. An implementation may not implement all these routines, but if it
provides this functionality, it should use these function names.

A.2.1 NVIDIA CUDA Platform

This section gives runtime API routines for implementations that target the NVIDIA CUDA Run-
time or Driver API.

acc _get _current_cuda device

Summary

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device handle for
the current device.

Format

C or C++:
voidx acc_get_current_cuda_device ();

168

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110
6111

6112

6113

6114

6115

6116

6117

6118
6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

The OpanCC® API Version 3.4 A.2. API Routines for Target Platforms

acc_get_current_cuda_context

Summary

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context handle
in use for the current device.

Format

C or C++:
void* acc_get_current_cuda_context ();

acc_get_cuda_stream

Summary

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for the
current device for the asynchronous activity queue associated with the async argument. This
argument must be an async-argument as defined in Section [2.16]|Asynchronous Behavior]

Format

C or C++:
void* acc_get_cuda_stream (int async);

acc_set_cuda_stream

Summary

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current device
for the asynchronous activity queue associated with the asyne argument. This argument must be
an async-argument as defined in Section [2.16|Asynchronous Behavior}

Format

C or C++:
void acc_set_cuda_stream (int async, voidx stream);

A.2.2 OpenCL Target Platform

This section gives runtime API routines for implementations that target the OpenCL API on any
device.

acc _get_current_opencl_device

Summary

The acc_get_current_opencl_device routine returns the OpenCL device handle for the
current device.

Format

C or C++:
void* acc_get_current_opencl_device ();

acc_get_current_opencl_context

Summary

The acc_get_current_opencl_context routine returns the OpenCL context handle in use
for the current device.

169

6138

6139

6140

6141

6142

6143
6144

6145

6146

6147
6148

6149

6150

6151
6152

6153

6154

6155
6156

6157

6158

6159

6160

6161

6162

6163
6164
6165
6166
6167
6168

6169

6170
6171
6172
6173
6174

The OpenACC® API Version 3.4 A.3. Recommended Options and Diagnostics

Format

C or C++:
void* acc_get_current_opencl_context ();

acc_get_opencl_queue

Summary

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use for
the current device for the asynchronous activity queue associated with the async argument. This
argument must be an async-argument as defined in Section [2.16]|Asynchronous Behavior]

Format

C or C++:
cl_command_queue acc_get_opencl_queue (int async);

acc_set _opencl_queue

Summary

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use for
the current device for the asynchronous activity queue associated with the asynec argument. This
argument must be an async-argument as defined in Section [2.16]|Asynchronous Behavior]

Format

C or C++:
void acc_set_opencl_queue (int async, cl_command_ queue cmdqueue

)

A.3 Recommended Options and Diagnostics

This section recommends options and diagnostics for implementations. Possible ways to implement
the options include command-line options to a compiler or settings in an IDE.

A.3.1 C Pointer in Present clause

This revision of OpenACC clarifies the construct:

void test (int n){
floatx p;

#fpragma acc data present (p)

{
}

This example tests whether the pointer p itself is present in the current device memory. Implemen-
tations before this revision commonly implemented this by testing whether the pointer target p [0]
was present in the current device memory, and this appears in many programs assuming such. Until
such programs are modified to comply with this revision, an option to implement present (p) as
present (p[0]) for C pointers may be helpful to users.

// code here...

170

6175

6176
6177

6178

6179
6180
6181
6182

6183

6184
6185
6186
6187
6188

6189

6190

6191
6192
6193
6194

6195

6196

6197
6198
6199

6200

6201
6202

6203

6204
6205

6206
6207
6208
6209

6210
6211
6212
6213
6214

The OpenACC® API Version 3.4 A.3. Recommended Options and Diagnostics

A.3.2 Nonconforming Applications and Implementations

Where feasible, implementations should diagnose OpenACC applications that do not conform with
this specification’s syntactic or semantic restrictions. Many but not all of these restrictions appear
in lists entitled “Restrictions.”

While compile-time diagnostics are preferable (e.g., invalid clauses on a directive), some cases of
nonconformity are more feasible to diagnose at run time (e.g., see [Section 1.3). Where implemen-
tations are not able to diagnose nonconformity reliably (e.g., an independent clause on a loop
with data-dependent loop iterations), they might offer no diagnostics, or they might diagnose only
subcases.

In order to support OpenACC extensions, some implementations intentionally accept nonconform-
ing OpenACC applications without issuing diagnostics by default, and some implementations accept
conforming OpenACC applications but interpret their semantics differently than as detailed in this
specification. To promote program portability across implementations, implementations should pro-
vide an option to disable or report uses of these extensions. Some such extensions and diagnostics
are described in detail in the remainder of this section.

A.3.3 Automatic Data Attributes

Some implementations provide autoscoping or other analysis to automatically determine a variable’s
data attributes, including the addition of reduction, private, and firstprivate clauses. To promote
program portability across implementations, it would be helpful to provide an option to disable
the automatic determination of data attributes or report which variables’ data attributes are not as
defined in Section[2.6

A.3.4 Routine Directive with a Name

In C and C++, if a routine directive with a name appears immediately before a procedure dec-
laration or definition with that name, it does not necessarily apply to that procedure according to
and C and C++ name resolution. Implementations should issue diagnostics in the
following two cases:

1. When no procedure with that name is already in scope, the directive is nonconforming, so
implementations should issue a compile-time error diagnostic regardless of the following
procedure. For example:

#pragma acc routine(f) seq // compile-time error
void £();

2. When a procedure with that name is in scope and it is not the same procedure as the immedi-
ately following procedure declaration or definition, the resolution of the name can be confus-
ing. Implementations should then issue a compile-time warning diagnostic even though the
application is conforming. For example:

void g(); // routine directive applies

namespace NS {
#pragma acc routine(g) seq // compile-time warning
void g(); // routine directive does not apply

}

171

6215
6216

6217

6218

6219
6220
6221
6222

6223

6224

6225

6226

6227

The OpenACC® API Version 3.4 A.4. Implementation-Defined Clauses

The diagnostic in this case should suggest the programmer either (1) relocate the routine
directive so that it more clearly applies to the procedure that is in scope or (2) remove the
name from the routine directive so that it applies to the following procedure.

A.4 Implementation-Defined Clauses

Implementations may choose to support additional clauses that are not listed in this specification.
These clauses are useful for providing additional information to the implementation that can be used
to optimize the execution of the application for a specific target accelerator or expose functional-
ity that is unique to the implementation. The specification recommends that these extensions be
prefixed with two consecutive underscores (__).

Additionally, implementations are strongly encouraged to namespace their extensions using a ven-
dor prefix. For example, the Foo compiler might use __foo__ as a prefix.

Implementations should document these additional clauses sufficiently that other implementations
may choose to support them or that they may eventually be added to the specification.

172

6228

6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260

6261

6262
6263
6264

6265
6266
6267
6268
6269

6270

Index
_OPENACC, 3] [[43]

acc-current-device-num-var, 31]
acc-current-device-type-var, 31
acc-default-async-var, 31}
acc_async_default,
acc_async_noval,
acc_async_sync,
acc_device_host,
ACC_DEVICE_NUM,[31]
acc_device_nvidia,[167]
acc_device_ radeon,[167]
ACC_DEVICE_TYPE,[31] 167,
ACC_PROFLIB,
accelerator routine,
action

allocate memory, 311

attach, 47

attach pointer, [31]

detach, 471

detach pointer, [52]
allocate memory action, 31]
AMD GPU target, [[67]
async clause, [44] [46] [89] [T0]]
async queue, [[1]
async-argument,[101]
asynchronous execution, [T1]
atomic construct, [7]
attach action, 47]
attach clause, 59
attach pointer action, [31]
attachment counter, 47]
auto clause,

portability,
autoscoping, [I71]

barrier synchronization, 11 34} 36} [161]
bind clause,
block construct, [T61]

cache directive, [/5]
capture clause,
collapse clause,
common block, 48]
compiler options,
compute construct, [[61]

6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287

6288

6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314

6315

parent, 33]
compute region, [16]]
construct,
atomic,[77]]
compute, 161
data, 43 43
host_data,
kernels,[33] 4§
kernels loop,[73
parallel,[33] (3]
parallel loop,[73
serial,[33 48
serial loop, 3
copy clause, 411
copyin clause,
copyout clause,
create clause,[57] 83
CUDA, 121 1621 167

data attribute
explicitly determined,
implicitly determined,
predetermined,
data clause, 4§
visible, 4]
data construct, 43| 4§
data lifetime,
data region,
implicit,
data-independent 1oop construct,
declare directive, [81]
default clause, 40,
visible, 1]
default (none) clause, 4]
default(present), 41l
delete clause,
detach action, 7]
detach clause,
detach pointer action,
device clause,
device_resident clause,
device_type clause, 311 48] 167
deviceptr clause, 48]
diagnostics,
direct memory access, 11} [162]
DMA, 11l

173

6316
6317
6318
6319
6320
6321
6322
6323
6324

6325

6326

6327
6328
6329
6330
6331
6332
6333
6334
6335
6336

6337
6338
6339

6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358

6359

The OpenACC® API Version 3.4

Index

enter data directive, 43| 48]
environment variable
_OPENACC,[3T]

ACC_DEVICE NUM,[31]
ACC_DEVICE_ TYPE,B31I[133[167]

ACC_PROFLIB,|[135
exit data directive, 43 48

explicitly determined data attribute,

exposed variable access, 411, [162)
extensions, [171]

firstprivate clause,[38 41l

gang,[34]
gang clause,
implicit, 67]
portability,
gang parallelism,
gang-arg,
gang-partitioned mode,
optimizations,
gang-redundant mode, [10} 34!
GR mode, [10)

host, [16§]
host clause,
host_data construct,

ICV, 1]
if clause
compute construct, 37]
data construct, 44
enter data directive,
exit data directive,
host_data construct,
init directive,
set directive, [§7]
shutdown directive,
update directive,
wait directive, [102]
implicit data region,
implicit gang clause,

implicit routine directive,
implicitly determined data attribute,

independent clause,
init directive, 84
internal control variable, 31]

kernels construct, 35 4§

6360

6361
6362
6363
6364
6365
6366
6367
6368
6369

6370
6371
6372
6373
6374
6375

6376

6377
6378
6379
6380

6381

6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397

6398
6399
6400
6401
6402

6403

174

kernels loop construct,

level of parallelism, [10] 163

link clause, 48 [84]

local device, [T1]

local memory, 1]

local thread, [T1]

loop construct,
data-independent,
orphaned,
sequential,

no_create clause,[57
nohost clause,
nonconformity, {71
num_gangs clause, 3§
num_workers clause, 38
nvidia,[167]

NVIDIA GPU target, [[67]

OpenCL, 12 1631 167
optimizations
gang-partitioned mode,
routine directive,
orphaned loop construct,

parallel construct,[33] 48]
parallel loop construct,
parallelism

level, 10 63
parent compute construct, 33]
parent compute scope, 33]
parent procedure, 33]
pointer in present clause, [170)
portability

auto and gang clauses,
predetermined data attribute,
present clause, 411 48] [33]

pointer,
private clause, 38
procedure

parent, 33]

radeon,[167]
read clause,
reduction clause,[39 [71]
reference counter, 47
region

compute, 161

6404
6405
6406
6407
6408

6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420

6421
6422

6423

6424
6425

6426

6427
6428
6429
6430
6431
6432
6433
6434
6435
6436

6437

6438
6439
6440
6441
6442
6443
6444
6445

6446

The OpenACC® API Version 3.4

Index

data, 42]

implicit data,
routine directive, Q1] [T71]

implicit,

optimizations,

self clause, 89
compute construct, 37]
update directive,
sentinel,
seq clause,
sequential 1oop construct,
serial construct, 33 4§
serial loop construct,
set directive, [§7]
shutdown directive,
size-expr,
structured-block,

thread,
tightly nested loops,
tile clause,

update clause,
update directive, [88]
use_device clause,

vector clause, [68]
vector lane, 34]

vector parallelism,
vector-partitioned mode,
vector-single mode,
vector_length clause, 3§
visible data clause, 41
visible default clause, &1
visible device copy, 1163

VP mode,

VS mode,

wait clause, [44] 101
wait directive,[102]

worker, 34

worker clause,
worker parallelism,
worker-partitioned mode,
worker-single mode,

WP mode,

WS mode,

175

	Introduction
	Scope
	Execution Model
	Memory Model
	Language Interoperability
	Runtime Errors
	Conventions used in this document
	Organization of this document
	References
	Changes from Version 1.0 to 2.0
	Corrections in the August 2013 document
	Changes from Version 2.0 to 2.5
	Changes from Version 2.5 to 2.6
	Changes from Version 2.6 to 2.7
	Changes from Version 2.7 to 3.0
	Changes from Version 3.0 to 3.1
	Changes from Version 3.1 to 3.2
	Changes from Version 3.2 to 3.3
	Changes from Version 3.3 to 3.4
	Corrections in the October 2025 document
	Topics Deferred For a Future Revision

	Directives
	Directive Format
	Conditional Compilation
	Internal Control Variables
	Modifying and Retrieving ICV Values

	Device-Specific Clauses
	Compute Constructs
	Parallel Construct
	Serial Construct
	Kernels Construct
	Compute Construct Restrictions
	Compute Construct Errors
	if clause
	self clause
	async clause
	wait clause
	num_gangs clause
	num_workers clause
	vector_length clause
	private clause
	firstprivate clause
	reduction clause
	default clause

	Data Environment
	Variables with Predetermined Data Attributes
	Variables with Implicitly Determined Data Attributes
	Data Regions and Data Lifetimes
	Data Structures with Pointers
	Data Construct
	Enter Data and Exit Data Directives
	Reference Counters
	Attachment Counter

	Data Clauses
	Data Specification in Data Clauses
	Data Clause Actions
	Data Clause Errors
	Data Clause Modifiers
	deviceptr clause
	present clause
	copy clause
	copyin clause
	copyout clause
	create clause
	no_create clause
	delete clause
	attach clause
	detach clause

	Host_Data Construct
	use_device clause
	if clause
	if_present clause

	Loop Construct
	collapse clause
	gang clause
	worker clause
	vector clause
	seq clause
	independent clause
	auto clause
	tile clause
	device_type clause
	private clause
	reduction clause

	Cache Directive
	Combined Constructs
	Atomic Construct
	Declare Directive
	device_resident clause
	create clause
	link clause

	Executable Directives
	Init Directive
	Shutdown Directive
	Set Directive
	Update Directive
	Wait Directive
	Enter Data Directive
	Exit Data Directive

	Procedure Calls in Compute Regions
	Routine Directive
	Global Data Access

	Asynchronous Behavior
	async clause
	wait clause
	Wait Directive

	Fortran Specific Behavior
	Optional Arguments
	Do Concurrent Construct

	Runtime Library
	Runtime Library Definitions
	Runtime Library Routines
	acc_get_num_devices
	acc_set_device_type
	acc_get_device_type
	acc_set_device_num
	acc_get_device_num
	acc_get_property
	acc_init
	acc_shutdown
	acc_async_test
	acc_wait
	acc_wait_async
	acc_wait_any
	acc_get_default_async
	acc_set_default_async
	acc_on_device
	acc_malloc
	acc_free
	acc_copyin and acc_create
	acc_copyout and acc_delete
	acc_update_device and acc_update_self
	acc_map_data
	acc_unmap_data
	acc_deviceptr
	acc_hostptr
	acc_is_present
	acc_memcpy_to_device
	acc_memcpy_from_device
	acc_memcpy_device
	acc_attach and acc_detach
	acc_memcpy_d2d

	Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	Profiling and Error Callback Interface
	Events
	Runtime Initialization and Shutdown
	Device Initialization and Shutdown
	Enter Data and Exit Data
	Data Allocation
	Data Construct
	Update Directive
	Compute Construct
	Enqueue Kernel Launch
	Enqueue Data Update (Upload and Download)
	Wait
	Error Event

	Callbacks Signature
	First Argument: General Information
	Second Argument: Event-Specific Information
	Third Argument: API-Specific Information

	Loading the Library
	Library Registration
	Statically-Linked Library Initialization
	Runtime Dynamic Library Loading
	Preloading with LD_PRELOAD
	Application-Controlled Initialization

	Registering Event Callbacks
	Event Registration and Unregistration
	Disabling and Enabling Callbacks

	Advanced Topics
	Dynamic Behavior
	OpenACC Events During Event Processing
	Multiple Host Threads

	Glossary
	Recommendations for Implementers
	Target Devices
	NVIDIA GPU Targets
	AMD GPU Targets
	Multicore Host CPU Target

	API Routines for Target Platforms
	NVIDIA CUDA Platform
	OpenCL Target Platform

	Recommended Options and Diagnostics
	C Pointer in Present clause
	Nonconforming Applications and Implementations
	Automatic Data Attributes
	Routine Directive with a Name

	Implementation-Defined Clauses

	Index

