
The OpenACC®
1

Application Programming Interface2

Version 3.43

OpenACC-Standard.org4

June 20255

Updated: October 20256

The OpenACC® API Version 3.4

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,7

no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form8

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express9

written permission of the authors.10

© 2011-2025 OpenACC-Standard.org. All rights reserved.11

2

The OpenACC® API Version 3.4

Contents12

1. Introduction 913

1.1. Scope . 914

1.2. Execution Model . 915

1.3. Memory Model . 1116

1.4. Language Interoperability . 1317

1.5. Runtime Errors . 1318

1.6. Conventions used in this document . 1319

1.7. Organization of this document . 1520

1.8. References . 1521

1.9. Changes from Version 1.0 to 2.0 . 1722

1.10. Corrections in the August 2013 document . 1823

1.11. Changes from Version 2.0 to 2.5 . 1824

1.12. Changes from Version 2.5 to 2.6 . 1925

1.13. Changes from Version 2.6 to 2.7 . 2026

1.14. Changes from Version 2.7 to 3.0 . 2127

1.15. Changes from Version 3.0 to 3.1 . 2228

1.16. Changes from Version 3.1 to 3.2 . 2329

1.17. Changes from Version 3.2 to 3.3 . 2430

1.18. Changes from Version 3.3 to 3.4 . 2531

1.19. Corrections in the October 2025 document . 2732

1.20. Topics Deferred For a Future Revision . 2733

2. Directives 2934

2.1. Directive Format . 2935

2.2. Conditional Compilation . 3136

2.3. Internal Control Variables . 3137

2.3.1. Modifying and Retrieving ICV Values . 3138

2.4. Device-Specific Clauses . 3139

2.5. Compute Constructs . 3340

2.5.1. Parallel Construct . 3341

2.5.2. Serial Construct . 3542

2.5.3. Kernels Construct . 3543

2.5.4. Compute Construct Restrictions . 3644

2.5.5. Compute Construct Errors . 3745

2.5.6. if clause . 3746

2.5.7. self clause . 3747

2.5.8. async clause . 3748

2.5.9. wait clause . 3749

2.5.10. num gangs clause . 3850

2.5.11. num workers clause . 3851

2.5.12. vector length clause . 3852

2.5.13. private clause . 3853

2.5.14. firstprivate clause . 3854

2.5.15. reduction clause . 3955

3

The OpenACC® API Version 3.4

2.5.16. default clause . 4056

2.6. Data Environment . 4057

2.6.1. Variables with Predetermined Data Attributes 4058

2.6.2. Variables with Implicitly Determined Data Attributes 4159

2.6.3. Data Regions and Data Lifetimes . 4260

2.6.4. Data Structures with Pointers . 4361

2.6.5. Data Construct . 4362

2.6.6. Enter Data and Exit Data Directives . 4563

2.6.7. Reference Counters . 4764

2.6.8. Attachment Counter . 4765

2.7. Data Clauses . 4866

2.7.1. Data Specification in Data Clauses . 4867

2.7.2. Data Clause Actions . 5068

2.7.3. Data Clause Errors . 5269

2.7.4. Data Clause Modifiers . 5270

2.7.5. deviceptr clause . 5371

2.7.6. present clause . 5372

2.7.7. copy clause . 5473

2.7.8. copyin clause . 5574

2.7.9. copyout clause . 5675

2.7.10. create clause . 5776

2.7.11. no create clause . 5777

2.7.12. delete clause . 5878

2.7.13. attach clause . 5979

2.7.14. detach clause . 5980

2.8. Host Data Construct . 6281

2.8.1. use device clause . 6382

2.8.2. if clause . 6383

2.8.3. if present clause . 6384

2.9. Loop Construct . 6485

2.9.1. collapse clause . 6586

2.9.2. gang clause . 6687

2.9.3. worker clause . 6888

2.9.4. vector clause . 6889

2.9.5. seq clause . 6890

2.9.6. independent clause . 6991

2.9.7. auto clause . 6992

2.9.8. tile clause . 6993

2.9.9. device type clause . 7094

2.9.10. private clause . 7095

2.9.11. reduction clause . 7196

2.10. Cache Directive . 7597

2.11. Combined Constructs . 7598

2.12. Atomic Construct . 7799

2.13. Declare Directive . 81100

2.13.1. device resident clause . 82101

2.13.2. create clause . 83102

2.13.3. link clause . 84103

4

The OpenACC® API Version 3.4

2.14. Executable Directives . 84104

2.14.1. Init Directive . 84105

2.14.2. Shutdown Directive . 85106

2.14.3. Set Directive . 87107

2.14.4. Update Directive . 88108

2.14.5. Wait Directive . 90109

2.14.6. Enter Data Directive . 90110

2.14.7. Exit Data Directive . 91111

2.15. Procedure Calls in Compute Regions . 91112

2.15.1. Routine Directive . 91113

2.15.2. Global Data Access . 99114

2.16. Asynchronous Behavior . 99115

2.16.1. async clause . 101116

2.16.2. wait clause . 101117

2.16.3. Wait Directive . 101118

2.17. Fortran Specific Behavior . 103119

2.17.1. Optional Arguments . 103120

2.17.2. Do Concurrent Construct . 103121

3. Runtime Library 105122

3.1. Runtime Library Definitions . 105123

3.2. Runtime Library Routines . 106124

3.2.1. acc get num devices . 106125

3.2.2. acc set device type . 106126

3.2.3. acc get device type . 107127

3.2.4. acc set device num . 108128

3.2.5. acc get device num . 108129

3.2.6. acc get property . 109130

3.2.7. acc init . 110131

3.2.8. acc shutdown . 110132

3.2.9. acc async test . 111133

3.2.10. acc wait . 112134

3.2.11. acc wait async . 113135

3.2.12. acc wait any . 115136

3.2.13. acc get default async . 115137

3.2.14. acc set default async . 116138

3.2.15. acc on device . 116139

3.2.16. acc malloc . 117140

3.2.17. acc free . 117141

3.2.18. acc copyin and acc create . 118142

3.2.19. acc copyout and acc delete . 120143

3.2.20. acc update device and acc update self . 122144

3.2.21. acc map data . 123145

3.2.22. acc unmap data . 124146

3.2.23. acc deviceptr . 125147

3.2.24. acc hostptr . 125148

3.2.25. acc is present . 126149

3.2.26. acc memcpy to device . 127150

5

The OpenACC® API Version 3.4

3.2.27. acc memcpy from device . 128151

3.2.28. acc memcpy device . 129152

3.2.29. acc attach and acc detach . 130153

3.2.30. acc memcpy d2d . 132154

4. Environment Variables 135155

4.1. ACC DEVICE TYPE . 135156

4.2. ACC DEVICE NUM . 135157

4.3. ACC PROFLIB . 135158

5. Profiling and Error Callback Interface 137159

5.1. Events . 137160

5.1.1. Runtime Initialization and Shutdown . 138161

5.1.2. Device Initialization and Shutdown . 138162

5.1.3. Enter Data and Exit Data . 139163

5.1.4. Data Allocation . 139164

5.1.5. Data Construct . 140165

5.1.6. Update Directive . 140166

5.1.7. Compute Construct . 140167

5.1.8. Enqueue Kernel Launch . 141168

5.1.9. Enqueue Data Update (Upload and Download) 141169

5.1.10. Wait . 141170

5.1.11. Error Event . 142171

5.2. Callbacks Signature . 142172

5.2.1. First Argument: General Information . 143173

5.2.2. Second Argument: Event-Specific Information 144174

5.2.3. Third Argument: API-Specific Information 149175

5.3. Loading the Library . 150176

5.3.1. Library Registration . 151177

5.3.2. Statically-Linked Library Initialization 152178

5.3.3. Runtime Dynamic Library Loading . 152179

5.3.4. Preloading with LD PRELOAD . 153180

5.3.5. Application-Controlled Initialization . 154181

5.4. Registering Event Callbacks . 154182

5.4.1. Event Registration and Unregistration . 154183

5.4.2. Disabling and Enabling Callbacks . 156184

5.5. Advanced Topics . 157185

5.5.1. Dynamic Behavior . 157186

5.5.2. OpenACC Events During Event Processing 158187

5.5.3. Multiple Host Threads . 159188

6. Glossary 161189

A. Recommendations for Implementers 167190

A.1. Target Devices . 167191

A.1.1. NVIDIA GPU Targets . 167192

A.1.2. AMD GPU Targets . 167193

A.1.3. Multicore Host CPU Target . 168194

6

The OpenACC® API Version 3.4

A.2. API Routines for Target Platforms . 168195

A.2.1. NVIDIA CUDA Platform . 168196

A.2.2. OpenCL Target Platform . 169197

A.3. Recommended Options and Diagnostics . 170198

A.3.1. C Pointer in Present clause . 170199

A.3.2. Nonconforming Applications and Implementations 171200

A.3.3. Automatic Data Attributes . 171201

A.3.4. Routine Directive with a Name . 171202

A.4. Implementation-Defined Clauses . 172203

Index 173204

7

The OpenACC® API Version 3.4

8

The OpenACC® API Version 3.4 1.1. Scope

1. Introduction205

This document describes the compiler directives, library routines, and environment variables that206

collectively define the OpenACC™ Application Programming Interface (OpenACC API) for writ-207

ing parallel programs in C, C++, and Fortran that run identified regions in parallel on multicore208

CPUs or attached accelerators. The method described provides a model for parallel programming209

that is portable across operating systems and various types of multicore CPUs and accelerators. The210

directives extend the ISO/ANSI standard C, C++, and Fortran base languages in a way that allows211

a programmer to migrate applications incrementally to parallel multicore and accelerator targets212

using standards-based C, C++, or Fortran.213

The directives and programming model defined in this document allow programmers to create appli-214

cations capable of using accelerators without the need to explicitly manage data or program transfers215

between a host and accelerator or to initiate accelerator startup and shutdown. Rather, these details216

are implicit in the programming model and are managed by the OpenACC API-enabled compilers217

and runtime environments. The programming model allows the programmer to augment informa-218

tion available to the compilers, including specification of data local to an accelerator, guidance on219

mapping of loops for parallel execution, and similar performance-related details.220

1.1 Scope221

This OpenACC API document covers only user-directed parallel and accelerator programming,222

where the user specifies the regions of a program to be targeted for parallel execution. The remainder223

of the program will be executed sequentially on the host. This document does not describe features224

or limitations of the host programming environment as a whole; it is limited to specification of loops225

and regions of code to be executed in parallel on a multicore CPU or an accelerator.226

This document does not describe automatic detection of parallel regions or automatic offloading227

of regions of code to an accelerator by a compiler or other tool. This document does not describe228

splitting loops or code regions across multiple accelerators attached to a single host. While future229

compilers may allow for automatic parallelization or automatic offloading, or parallelizing across230

multiple accelerators of the same type, or across multiple accelerators of different types, these pos-231

sibilities are not addressed in this document.232

1.2 Execution Model233

The execution model targeted by OpenACC API-enabled implementations is host-directed execu-234

tion with an attached parallel accelerator, such as a GPU, or a multicore host with a host thread that235

initiates parallel execution on the multiple cores, thus treating the multicore CPU itself as a device.236

Much of a user application executes on a host thread. Compute intensive regions are offloaded to an237

accelerator or executed on the multiple host cores under control of a host thread. A device, either238

an attached accelerator or the multicore CPU, executes parallel regions, which typically contain239

work-sharing loops, kernels regions, which typically contain one or more loops that may be exe-240

cuted as kernels, or serial regions, which are blocks of sequential code. Even in accelerator-targeted241

regions, the host thread may orchestrate the execution by allocating memory on the accelerator de-242

vice, initiating data transfer, sending the code to the accelerator, passing arguments to the compute243

region, queuing the accelerator code, waiting for completion, transferring results back to the host,244

9

The OpenACC® API Version 3.4 1.2. Execution Model

and deallocating memory. In most cases, the host can queue a sequence of operations to be executed245

on a device, one after the other.246

Most current accelerators and many multicore CPUs support two or three levels of parallelism.247

Most accelerators and multicore CPUs support coarse-grain parallelism, which is fully parallel exe-248

cution across execution units. There may be limited support for synchronization across coarse-grain249

parallel operations. Many accelerators and some CPUs also support fine-grain parallelism, often250

implemented as multiple threads of execution within a single execution unit, which are typically251

rapidly switched on the execution unit to tolerate long latency memory operations. Finally, most252

accelerators and CPUs also support SIMD or vector operations within each execution unit. The253

execution model exposes these multiple levels of parallelism on a device and the programmer is254

required to understand the difference between, for example, a fully parallel loop and a loop that255

is vectorizable but requires synchronization between statements. A fully parallel loop can be pro-256

grammed for coarse-grain parallel execution. Loops with dependences must either be split to allow257

coarse-grain parallel execution, or be programmed to execute on a single execution unit using fine-258

grain parallelism, vector parallelism, or sequentially.259

OpenACC exposes these three levels of parallelism via gang, worker, and vector parallelism. Gang260

parallelism is coarse-grain. A number of gangs will be launched on the accelerator. The gangs are261

organized in a one-, two-, or three-dimensional grid, where dimension one corresponds to the inner262

level of gang parallelism; the default is to only use dimension one. Worker parallelism is fine-grain.263

Each gang will have one or more workers. Vector parallelism is for SIMD or vector operations264

within a worker. In this way, OpenACC provides six levels of parallelism, which are arranged265

from highest to lowest as follows: gang dimension three, gang dimension two, gang dimension one,266

worker, vector, and sequential, which corresponds to no parallelism.267

When executing a compute region on a device, one or more gangs are launched, each with one or268

more workers, where each worker may have vector execution capability with one or more vector269

lanes. The gangs start executing in gang-redundant mode (GR mode), meaning one vector lane of270

one worker in each gang executes the same code, redundantly. Each gang dimension is associated271

with a gang-redundant mode dimension, denoted GR1, GR2, and GR3. When the program reaches272

a loop or loop nest marked for gang-level work-sharing at some dimension, the program starts to273

execute in gang-partitioned mode for that dimension, denoted GP1, GP2, or GP3 mode, where the274

iterations of the loop or loops are partitioned across the gangs in that dimension for truly parallel275

execution, but still with only one worker per gang and one vector lane per worker active. The276

program may be simultaneously in different gang modes for different dimensions. For instance,277

after entering a loop partitioned for gang-level work-sharing at dimension 3, the program will be in278

GP3, GR2, GR1 mode.279

When only one worker is active, in any gang-level execution mode, the program is in worker-single280

mode (WS mode). When only one vector lane is active, the program is in vector-single mode281

(VS mode). If a gang reaches a loop or loop nest marked for worker-level work-sharing, the gang282

transitions to worker-partitioned mode (WP mode), which activates all the workers of the gang. The283

iterations of the loop or loops are partitioned across the workers of this gang. If the same loop is284

marked for both gang-partitioning in dimension d and worker-partitioning, then the iterations of the285

loop are spread across all the workers of all the gangs of dimension d. If a worker reaches a loop286

or loop nest marked for vector-level work-sharing, the worker will transition to vector-partitioned287

mode (VP mode). Similar to WP mode, the transition to VP mode activates all the vector lanes of288

the worker. The iterations of the loop or loops will be partitioned across the vector lanes using vector289

or SIMD operations. Again, a single loop may be marked for one, two, or all three of gang, worker,290

10

The OpenACC® API Version 3.4 1.3. Memory Model

and vector parallelism, and the iterations of that loop will be spread across the gangs, workers, and291

vector lanes as appropriate.292

The program starts executing with a single initial host thread, identified by a program counter and293

its stack. The initial host thread may spawn additional host threads, using OpenACC or another294

mechanism, such as with the OpenMP API. On a device, a single vector lane of a single worker of a295

single gang is called a device thread. When executing on an accelerator, a parallel execution context296

is created on the accelerator and may contain many such threads.297

Attempting to implement barrier synchronization, critical sections, or locks across any of gang,298

worker, or vector parallelism might result in deadlock or non-portable code. The execution model299

allows for an implementation that executes some gangs to completion before starting to execute300

other gangs. This means that trying to implement synchronization between gangs is likely to fail. In301

particular, a barrier across gangs cannot be implemented in a portable fashion, since all gangs may302

not ever be active at the same time. Similarly, the execution model allows for an implementation303

that executes some workers within a gang or vector lanes within a worker to completion before304

starting other workers or vector lanes, or for some workers or vector lanes to be suspended until305

other workers or vector lanes complete. This means that trying to implement synchronization across306

workers or vector lanes is likely to fail. In particular, implementing a barrier or critical section across307

workers or vector lanes using atomic operations and a busy-wait loop may never succeed, since the308

scheduler may suspend the worker or vector lane that owns the lock, and the worker or vector lane309

waiting on the lock can never complete.310

Some devices, such as a multicore CPU, may also create and launch additional compute regions,311

allowing for nested parallelism. In that case, the OpenACC directives may be executed by a host312

thread or a device thread. This specification uses the term local thread or local memory to mean the313

thread that executes the directive, or the memory associated with that thread, whether that thread314

executes on the host or on the accelerator. The specification uses the term local device to mean the315

device on which the local thread is executing.316

Most accelerators can operate asynchronously with respect to the host thread. Such devices have one317

or more activity queues. The host thread will enqueue operations onto the device activity queues,318

such as data transfers and procedure execution. After enqueuing the operation, the host thread can319

continue execution while the device operates independently and asynchronously. The host thread320

may query the device activity queue(s) and wait for all the operations in a queue to complete.321

Operations on a single device activity queue will complete before starting the next operation on the322

same queue; operations on different activity queues may be active simultaneously and may complete323

in any order.324

1.3 Memory Model325

The most significant difference between a host-only program and a host+accelerator program is that326

the memory on an accelerator may be discrete from host memory. This is the case with most current327

GPUs, for example. In this case, the host thread may not be able to read or write device memory328

directly because it is not mapped into the host thread’s virtual memory space. All data movement329

between host memory and accelerator memory must be performed by the host thread through system330

calls that explicitly move data between the separate memories, typically using direct memory access331

(DMA) transfers. Similarly, the accelerator may not be able to read or write host memory; though332

this is supported by some accelerators, it may incur significant performance penalty.333

The concept of discrete host and accelerator memories is very apparent in low-level accelerator334

11

The OpenACC® API Version 3.4 1.4. Language Interoperability

programming languages such as CUDA or OpenCL, in which data movement between the memories335

can dominate user code. In the OpenACC model, data movement between the memories can be336

implicit and managed by the compiler, based on directives from the programmer. However, the337

programmer must be aware of the potentially discrete memories for many reasons, including but338

not limited to:339

• Memory bandwidth between host memory and accelerator memory determines the level of340

compute intensity required to effectively accelerate a given region of code.341

• Discrete accelerator memory is usually significantly smaller than the host memory, possibly342

prohibiting the offloading of regions of code that operate on very large amounts of data.343

• Data in host memory may only be accessible on the host; data in accelerator memory may344

only be accessible on that accelerator. Explicitly transferring pointer values between host and345

accelerator memory is not advised. Dereferencing pointers to host memory on an accelerator346

or dereferencing pointers to accelerator memory on the host is likely to result in a runtime347

error or incorrect results on such targets.348

OpenACC exposes the discrete memories through the use of a device data environment. Device data349

has an explicit lifetime, from when it is allocated or created until it is deleted. If a device shares350

memory with the local thread, its device data environment will be shared with the local thread. In351

that case, the implementation need not create new copies of the data for the device and no data352

movement need be done. If a device has a discrete memory and shares no memory with the local353

thread, the implementation will allocate space in device memory and copy data between the local354

memory and device memory, as appropriate. The local thread may share some memory with a355

device and also have some memory that is not shared with that device. In that case, data in shared356

memory may be accessed by both the local thread and the device. Data not in shared memory will357

be copied to device memory as necessary.358

Some accelerators implement a weak memory model. In particular, they do not support memory359

coherence between operations executed by different threads; even on the same execution unit, mem-360

ory coherence is only guaranteed when the memory operations are separated by an explicit memory361

fence. Otherwise, if one thread updates a memory location and another reads the same location, or362

two threads store a value to the same location, the hardware may not guarantee the same result for363

each execution. While a compiler can detect some potential errors of this nature, it is nonetheless364

possible to write a compute region that produces inconsistent numerical results.365

Similarly, some accelerators implement a weak memory model for memory shared between the366

host and the accelerator, or memory shared between multiple accelerators. Programmers need to367

be very careful that the program uses appropriate synchronization to ensure that an assignment or368

modification by a thread on any device to data in shared memory is complete and available before369

that data is used by another thread on the same or another device.370

Some current accelerators have a software-managed cache, some have hardware managed caches,371

and most have hardware caches that can be used only in certain situations and are limited to read-372

only data. In low-level programming models such as CUDA or OpenCL languages, it is up to the373

programmer to manage these caches. In the OpenACC model, these caches are managed by the374

compiler with hints from the programmer in the form of directives.375

12

The OpenACC® API Version 3.4 1.4. Language Interoperability

1.4 Language Interoperability376

The specification supports programs written using OpenACC in two or more of Fortran, C, and377

C++ languages. The parts of the program in any one base language will interoperate with the parts378

written in the other base languages as described here. In particular:379

• Data made present in one base language on a device will be seen as present by any base380

language.381

• A region that starts and ends in a procedure written in one base language may directly or382

indirectly call procedures written in any base language. The execution of those procedures383

are part of the region.384

1.5 Runtime Errors385

Common runtime errors are noted in this document. When one of these runtime errors is issued, one386

or more error callback routines are called by the program. Error conditions are noted throughout387

Chapter 2 Directives and Chapter 3 Runtime Library along with the error code that gets set for the388

error callback.389

A list of error codes appears in Section 5.2.2. Since device actions may occur asynchronously,390

some errors may occur asynchronously as well. In such cases, the error callback routines may not391

be called immediately when the error occurs, but at some point later when the error is detected392

during program execution. In situations when more than one error may occur or has occurred,393

any one of the errors may be issued and different implementations may issue different errors. An394

acc_error_system error may be issued at any time if the current device becomes unavailable395

due to underlying system issues.396

The default error callback routine may print an error message and halt program execution. The ap-397

plication can register one or more additional error callback routines, to allow a failing application to398

release resources or to cleanly shut down a large parallel runtime with many threads and processes.399

See Chapter 5 Profiling and Error Callback Interface. The error callback mechanism is not intended400

for error recovery. There is no support for restarting or retrying an OpenACC program, construct, or401

API routine after an error condition has been detected and an error callback routine has been called.402

1.6 Conventions used in this document403

Some terms are used in this specification that conflict with their usage as defined in the base lan-404

guages. When there is potential confusion, the term will appear in the Glossary.405

Keywords and punctuation that are part of the actual specification will appear in typewriter font:406

#pragma acc407

Italic font is used where a keyword or other name must be used:408

#pragma acc directive-name409

For C and C++, new-line means the newline character at the end of a line:410

#pragma acc directive-name new-line411

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is412

followed by ellipses:413

13

The OpenACC® API Version 3.4 1.6. Conventions used in this document

#pragma acc directive-name [clause [[,] clause]. . .] new-line414

In this spec, a var (in italics) is one of the following:415

• a variable name (a scalar, array, or composite variable name);416

• a subarray specification with subscript ranges;417

• an array element;418

• a member of a composite variable;419

• a common block name between slashes;420

• a named constant in Fortran.421

Not all options are allowed in all clauses; the allowable options are clarified for each use of the term422

var. Unnamed common blocks (blank commons) are not permitted and common blocks of the same423

name must be of the same size in all scoping units as required by the Fortran standard.424

If during an optimization phase var is removed by the compiler, appearances of var in data clauses425

are ignored. If a data action on var would result in writing to an unwritable/constant location, such426

as a named constant in Fortran or a const variable in C or C++, the behavior is undefined.427

To simplify the specification and convey appropriate constraint information, a pqr-list is a comma-428

separated list of one or more pqr items. For example, an int-expr-list is a comma-separated list429

of one or more integer expressions, and a var-list is a comma-separated list of one or more vars.430

Elements of such a list must not be empty and must not be followed by a trailing comma. The one431

exception is clause-list, which is a list of one or more clauses optionally separated by commas.432

#pragma acc directive-name [clause-list] new-line433

For C/C++, unless otherwise specified, each expression inside of the OpenACC clauses and direc-434

tive arguments must be a valid assignment-expression. This avoids ambiguity between the comma435

operator and comma-separated list items.436

In this spec, a do loop (in italics) is the do construct as defined by the Fortran standard. The do-stmt437

of the do construct must conform to one of the following forms:438

do [label] do-var = lb, ub [, incr]439

do concurrent [label] concurrent-header [concurrent-locality]440

The do-var is a variable name and the lb, ub, incr are scalar integer expressions. A do concurrent441

is treated as if defining a loop for each index in the concurrent-header.442

An italicized true is used for a condition that evaluates to nonzero in C or C++, or .true. in443

Fortran. An italicized false is used for a condition that evaluates to zero in C or C++, or .false.444

in Fortran.445

When used as an argument to a clause, a condition is an expression that evalautes to true or false446

according to the rules of the respective language. In Fortran, this is a scalar logical expression. In C,447

a condition is an expression of scalar type. In C++, a condition is an expression that is contextually448

convertible to bool.449

The term integral-constant-expression is used in this document to refer to an expression that is a450

compile-time constant. In C, it is equivalent to integer constant expression. In C++, it is equivalent451

14

The OpenACC® API Version 3.4 1.7. Organization of this document

to integral constant expression. In Fortran, it is equivalent to a scalar constant expression of integer452

type.453

The term balanced-paren-token-sequence is used in this document to refer to any sequence of tokens454

such that for every left parenthesis there is a corresponding right parenthesis (i.e., balanced); any455

parenthesis contained within a string literal token is not considered when determining if a sequence456

is balanced.457

Further details of OpenACC directive syntax are presented in Section 2.1.458

1.7 Organization of this document459

The rest of this document is organized as follows:460

Chapter 2 Directives, describes the C, C++, and Fortran directives used to delineate accelerator461

regions and augment information available to the compiler for scheduling of loops and classification462

of data.463

Chapter 3 Runtime Library, defines user-callable functions and library routines to query the accel-464

erator features and control behavior of accelerator-enabled programs at runtime.465

Chapter 4 Environment Variables, defines user-settable environment variables used to control be-466

havior of accelerator-enabled programs at runtime.467

Chapter 5 Profiling and Error Callback Interface, describes the OpenACC interface for tools that468

can be used for profile and trace data collection.469

Chapter 6 Glossary, defines common terms used in this document.470

Appendix A Recommendations for Implementers, gives advice to implementers to support more471

portability across implementations and interoperability with other accelerator APIs.472

1.8 References473

Each language version inherits the limitations that remain in previous versions of the language in474

this list.475

• American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).476

• ISO/IEC 9899:1999, Information Technology – Programming Languages – C, (C99).477

• ISO/IEC 9899:2011, Information Technology – Programming Languages – C, (C11).478

The use of the following C11 features may result in unspecified behavior.479

– Threads480

– Thread-local storage481

– Parallel memory model482

– Atomic483

• ISO/IEC 9899:2018, Information Technology – Programming Languages – C, (C18).484

The use of the following C18 features may result in unspecified behavior.485

– Thread related features486

15

The OpenACC® API Version 3.4 1.8. References

• ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.487

• ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, (C++11).488

The use of the following C++11 features may result in unspecified behavior.489

– Extern templates490

– copy and rethrow exceptions491

– memory model492

– atomics493

– move semantics494

– std::thread495

– thread-local storage496

• ISO/IEC 14882:2014, Information Technology – Programming Languages – C++, (C++14).497

• ISO/IEC 14882:2017, Information Technology – Programming Languages – C++, (C++17).498

• ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran – Part499

1: Base Language, (Fortran 2003).500

• ISO/IEC 1539-1:2010, Information Technology – Programming Languages – Fortran – Part501

1: Base Language, (Fortran 2008).502

The use of the following Fortran 2008 features may result in unspecified behavior.503

– Coarrays504

– Simply contiguous arrays rank remapping to rank>1 target505

– Allocatable components of recursive type506

– Polymorphic assignment507

• ISO/IEC 1539-1:2018, Information Technology – Programming Languages – Fortran – Part508

1: Base Language, (Fortran 2018).509

The use of the following Fortran 2018 features may result in unspecified behavior.510

– Interoperability with C511

* C functions declared in ISO Fortran binding.h512

* Assumed rank513

– All additional parallel/coarray features514

• OpenMP Application Program Interface, version 5.0, November 2018515

• NVIDIA CUDA™ C Programming Guide, version 11.1.1, October 2020516

• The OpenCL Specification, version 2.2, Khronos OpenCL Working Group, July 2019517

• INCITS INCLUSIVE TERMINOLOGY GUIDELINES, version 2021.06.07, InterNational Com-518

mittee for Information Technology Standards, June 2021519

16

The OpenACC® API Version 3.4 1.9. Changes from Version 1.0 to 2.0

• Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, IETF Network Work-520

ing Group, March 1997521

1.9 Changes from Version 1.0 to 2.0522

• _OPENACC value updated to 201306523

• default(none) clause on parallel and kernels directives524

• the implicit data attribute for scalars in parallel constructs has changed525

• the implicit data attribute for scalars in loops with loop directives with the independent526

attribute has been clarified527

• acc_async_sync and acc_async_noval values for the async clause528

• Clarified the behavior of the reduction clause on a gang loop529

• Clarified allowable loop nesting (gang may not appear inside worker, which may not ap-530

pear within vector)531

• wait clause on parallel, kernels and update directives532

• async clause on the wait directive533

• enter data and exit data directives534

• Fortran common block names may now appear in many data clauses535

• link clause for the declare directive536

• the behavior of the declare directive for global data537

• the behavior of a data clause with a C or C++ pointer variable has been clarified538

• predefined data attributes539

• support for multidimensional dynamic C/C++ arrays540

• tile and auto loop clauses541

• update self introduced as a preferred synonym for update host542

• routine directive and support for separate compilation543

• device_type clause and support for multiple device types544

• nested parallelism using parallel or kernels region containing another parallel or kernels re-545

gion546

• atomic constructs547

• new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; vector-548

single, vector-partitioned; thread549

• new API routines:550

– acc_wait, acc_wait_all instead of acc_async_wait and acc_async_wait_all551

– acc_wait_async552

17

The OpenACC® API Version 3.4 1.11. Changes from Version 2.0 to 2.5

– acc_copyin, acc_present_or_copyin553

– acc_create, acc_present_or_create554

– acc_copyout, acc_delete555

– acc_map_data, acc_unmap_data556

– acc_deviceptr, acc_hostptr557

– acc_is_present558

– acc_memcpy_to_device, acc_memcpy_from_device559

– acc_update_device, acc_update_self560

• defined behavior with multiple host threads, such as with OpenMP561

• recommendations for specific implementations562

• clarified that no arguments are allowed on the vector clause in a parallel region563

1.10 Corrections in the August 2013 document564

• corrected the atomic capture syntax for C/C++565

• fixed the name of the acc_wait and acc_wait_all procedures566

• fixed description of the acc_hostptr procedure567

1.11 Changes from Version 2.0 to 2.5568

• The _OPENACC value was updated to 201510; see Section 2.2 Conditional Compilation.569

• The num_gangs, num_workers, and vector_length clauses are now allowed on the570

kernels construct; see Section 2.5.3 Kernels Construct.571

• Reduction on C++ class members, array elements, and struct elements are explicitly disal-572

lowed; see Section 2.5.15 reduction clause.573

• Reference counting is now used to manage the correspondence and lifetime of device data;574

see Section 2.6.7 Reference Counters.575

• The behavior of the exit data directive has changed to decrement the dynamic reference576

counter. A new optional finalize clause was added to set the dynamic reference counter577

to zero. See Section 2.6.6 Enter Data and Exit Data Directives.578

• The copy, copyin, copyout, and create data clauses were changed to behave like579

present_or_copy, etc. The present_or_copy, pcopy, present_or_copyin,580

pcopyin, present_or_copyout, pcopyout, present_or_create, and pcreate581

data clauses are no longer needed, though will be accepted for compatibility; see Section 2.7582

Data Clauses.583

• Reductions on orphaned gang loops are explicitly disallowed; see Section 2.9 Loop Construct.584

• The description of the loop auto clause has changed; see Section 2.9.7 auto clause.585

• Text was added to the private clause on a loop construct to clarify that a copy is made586

for each gang or worker or vector lane, not each thread; see Section 2.9.10 private clause.587

18

The OpenACC® API Version 3.4 1.12. Changes from Version 2.5 to 2.6

• The description of the reduction clause on a loop construct was corrected; see Sec-588

tion 2.9.11 reduction clause.589

• A restriction was added to the cache clause that all references to that variable must lie within590

the region being cached; see Section 2.10 Cache Directive.591

• Text was added to the private and reduction clauses on a combined construct to clarify592

that they act like private and reduction on the loop, not private and reduction593

on the parallel or reduction on the kernels; see Section 2.11 Combined Constructs.594

• The declare create directive with a Fortran allocatable has new behavior; see Sec-595

tion 2.13.2 create clause.596

• New init, shutdown, set directives were added; see Section 2.14.1 Init Directive, 2.14.2597

Shutdown Directive, and 2.14.3 Set Directive.598

• A new if_present clause was added to the update directive, which changes the behavior599

when data is not present from a runtime error to a no-op; see Section 2.14.4 Update Directive.600

• The routine bind clause definition changed; see Section 2.15.1 Routine Directive.601

• An acc routine without gang/worker/vector/seq is now defined as an error; see602

Section 2.15.1 Routine Directive.603

• A new default(present) clause was added for compute constructs; see Section 2.5.16604

default clause.605

• The Fortran header file openacc_lib.h is no longer supported; see Section 3.1 Runtime Library Definitions.606

• New API routines were added to get and set the default async queue value; see Section 3.2.13607

acc get default async and 3.2.14 acc set default async.608

• The acc_copyin, acc_create, acc_copyout, and acc_delete API routines were609

changed to behave like acc_present_or_copyin, etc. The acc_present_or_ names610

are no longer needed, though will be supported for compatibility. See Sections 3.2.18 and fol-611

lowing.612

• Asynchronous versions of the data API routines were added; see Sections 3.2.18 and follow-613

ing.614

• A new API routine added, acc_memcpy_device, to copy from one device address to615

another device address; see Section 3.2.26 acc memcpy to device.616

• A new OpenACC interface for profile and trace tools was added;617

see Chapter 5 Profiling and Error Callback Interface.618

1.12 Changes from Version 2.5 to 2.6619

• The _OPENACC value was updated to 201711.620

• A new serial compute construct was added. See Section 2.5.2 Serial Construct.621

• A new runtime API query routine was added. acc_get_property may be called from622

the host and returns properties about any device. See Section 3.2.6.623

19

The OpenACC® API Version 3.4 1.13. Changes from Version 2.6 to 2.7

• The text has clarified that if a variable is in a reduction which spans two or more nested loops,624

each loop directive on any of those loops must have a reduction clause that contains the625

variable; see Section 2.9.11 reduction clause.626

• An optional if or if_present clause is now allowed on the host_data construct. See627

Section 2.8 Host Data Construct.628

• A new no_create data clause is now allowed on compute and data constructs. See Sec-629

tion 2.7.11 no create clause.630

• The behavior of Fortran optional arguments in data clauses and in routine calls has been631

specified; see Section 2.17.1 Optional Arguments.632

• The descriptions of some of the Fortran versions of the runtime library routines were simpli-633

fied; see Section 3.2 Runtime Library Routines.634

• To allow for manual deep copy of data structures with pointers, new attach and detach be-635

havior was added to the data clauses, new attach and detach clauses were added, and636

matching acc_attach and acc_detach runtime API routines were added; see Sections637

2.6.4, 2.7.13-2.7.14 and 3.2.29.638

• The Intel Coprocessor Offload Interface target and API routine sections were removed from639

the Section A Recommendations for Implementers, since Intel no longer produces this prod-640

uct.641

1.13 Changes from Version 2.6 to 2.7642

• The _OPENACC value was updated to 201811.643

• The specification allows for hosts that share some memory with the device but not all memory.644

The wording in the text now discusses whether local thread data is in shared memory (memory645

shared between the local thread and the device) or discrete memory (local thread memory that646

is not shared with the device), instead of shared-memory devices and non-shared memory647

devices. See Sections 1.3 Memory Model and 2.6 Data Environment.648

• The text was clarified to allow an implementation that treats a multicore CPU as a device,649

either an additional device or the only device.650

• The readonly modifier was added to the copyin data clause and cache directive. See651

Sections 2.7.8 and 2.10.652

• The term local device was defined; see Section 1.2 Execution Model and the Glossary.653

• The term var is used more consistently throughout the specification to mean a variable name,654

array name, subarray specification, array element, composite variable member, or Fortran655

common block name between slashes. Some uses of var allow only a subset of these options,656

and those limitations are given in those cases.657

• The self clause was added to the compute constructs; see Section 2.5.7 self clause.658

• The appearance of a reduction clause on a compute construct implies a copy clause for659

each reduction variable; see Sections 2.5.15 reduction clause and 2.11 Combined Constructs.660

• The default(none) and default(present) clauses were added to the data con-661

struct; see Section 2.6.5 Data Construct.662

20

The OpenACC® API Version 3.4 1.14. Changes from Version 2.7 to 3.0

• Data is defined to be present based on the values of the structured and dynamic reference663

counters; see Section 2.6.7 Reference Counters and the Glossary.664

• The interaction of the acc_map_data and acc_unmap_data runtime API calls on the665

present counters is defined; see Section 2.7.2, 3.2.21, and 3.2.22.666

• A restriction clarifying that a host_data construct must have at least one use_device667

clause was added.668

• Arrays, subarrays and composite variables are now allowed in reduction clauses; see669

Sections 2.9.11 reduction clause and 2.5.15 reduction clause.670

• Changed behavior of ICVs to support nested compute regions and host as a device semantics.671

See Section 2.3.672

1.14 Changes from Version 2.7 to 3.0673

• Updated _OPENACC value to 201911.674

• Updated the normative references to the most recent standards for all base languages. See675

Section 1.8.676

• Changed the text to clarify uses and limitations of the device_type clause and added677

examples; see Section 2.4.678

• Clarified the conflict between the implicit copy clause for variables in a reduction clause679

and the implicit firstprivate for scalar variables not in a data clause but used in a680

parallel or serial construct; see Sections 2.5.1 and 2.5.2.681

• Required at least one data clause on a data construct, an enter data directive, or an exit682

data directive; see Sections 2.6.5 and 2.6.6.683

• Added text describing how a C++ lambda invoked in a compute region and the variables684

captured by the lambda are handled; see Section 2.6.2.685

• Added a zeromodifier to create and copyout data clauses that zeros the device memory686

after it is allocated; see Sections 2.7.9 and 2.7.10.687

• Added a new restriction on the loop directive allowing only one of the seq, independent,688

and auto clauses to appear; see Section 2.9.689

• Added a new restriction on the loop directive disallowing a gang, worker, or vector690

clause to appear if a seq clause appears; see Section 2.9.691

• Allowed variables to be modified in an atomic region in a loop where the iterations must692

otherwise be data independent, such as loops with a loop independent clause or a loop693

directive in a parallel construct; see Sections 2.9.2, 2.9.3, 2.9.4, and 2.9.6.694

• Clarified the behavior of the auto and independent clauses on the loop directive; see695

Sections 2.9.7 and 2.9.6.696

• Clarified that an orphaned loop construct, or a loop construct in a parallel construct697

with no auto or seq clauses is treated as if an independent clause appears; see Sec-698

tion 2.9.6.699

21

The OpenACC® API Version 3.4 1.15. Changes from Version 3.0 to 3.1

• For a variable in a reduction clause, clarified when the update to the original variable is700

complete, and added examples; see Section 2.9.11.701

• Clarified that a variable in an orphaned reduction clause must be private; see Section 2.9.11.702

• Required at least one clause on a declare directive; see Section 2.13.703

• Added an if clause to init, shutdown, set, and wait directives; see Sections 2.14.1,704

2.14.2, 2.14.3, and 2.16.3.705

• Required at least one clause on a set directive; see Section 2.14.3.706

• Added a devnum modifier to the wait directive and clause to specify a device to which the707

wait operation applies; see Section 2.16.3.708

• Allowed a routine directive to include a C++ lambda name or to appear before a C++709

lambda definition, and defined implicit routine directive behavior when a C++ lambda is710

called in a compute region or an accelerator routine; see Section 2.15.711

• Added runtime API routine acc_memcpy_d2d for copying data directly between two de-712

vice arrays on the same or different devices; see Section 3.2.30.713

• Defined the values for the acc_construct_t and acc_device_api enumerations for714

cross-implementation compatibility; see Sections 5.2.2 and 5.2.3.715

• Changed the return type of acc_set_cuda_stream from int (values were not specified)716

to void; see Section A.2.1.717

• Edited and expanded Section 1.20 Topics Deferred For a Future Revision.718

1.15 Changes from Version 3.0 to 3.1719

• Updated _OPENACC value to 202011.720

• Clarified that Fortran blank common blocks are not permitted and that same-named common721

blocks must have the same size. See Section 1.6.722

• Clarified that a parallel construct’s block is considered to start in gang-redundant mode723

even if there’s just a single gang. See Section 2.5.1.724

• Added support for the Fortran BLOCK construct. See Sections 2.5.1, 2.5.3, 2.6.1, 2.6.5, 2.8,725

2.13, and 6.726

• Defined the serial construct in terms of the parallel construct to improve readability.727

Instead of defining it in terms of clauses num_gangs(1) num_workers(1)728

vector_length(1), defined the serial construct as executing with a single gang of a729

single worker with a vector length of one. See Section 2.5.2.730

• Consolidated compute construct restrictions into a new section to improve readability. See731

Section 2.5.4.732

• Clarified that a default clause may appear at most once on a compute construct. See733

Section 2.5.16.734

• Consolidated discussions of implicit data attributes on compute and combined constructs into735

a separate section. Clarified the conditions under which each data attribute is implied. See736

Section 2.6.2.737

22

The OpenACC® API Version 3.4 1.16. Changes from Version 3.1 to 3.2

• Added a restriction that certain loop reduction variables must have explicit data clauses on738

their parent compute constructs. This change addresses portability across existing OpenACC739

implementations. See Sections 2.6.2 and A.3.3.740

• Restored the OpenACC 2.5 behavior of the present, copy, copyin, copyout, create,741

no_create, delete data clauses at exit from a region, or on an exit data directive, as742

applicable, and create clause at exit from an implicit data region where a declare di-743

rective appears, and acc_copyout, acc_delete routines, such that no action is taken if744

the appropriate reference counter is zero, instead of a runtime error being issued if data is not745

present. See Sections 2.7.6, 2.7.7, 2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.7.12, 2.13.2, and 3.2.19.746

• Clarified restrictions on loop forms that can be associated with loop constructs, including747

the case of C++ range-based for loops. See Section 2.9.748

• Specified where gang clauses are implied on loop constructs. This change standardizes749

behavior of existing OpenACC implementations. See Section 2.9.2.750

• Corrected C/C++ syntax for atomic capture with a structured block. See Section 2.12.751

• Added the behavior of the Fortran do concurrent construct. See Section 2.17.2.752

• Changed the Fortran run-time procedures: acc_device_property has been renamed to753

acc_device_property_kind and acc_get_property uses a different integer kind754

for the result. See Section 3.2.755

• Added or changed argument names for the Runtime Library routines to be descriptive and756

consistent. This mostly impacts Fortran programs, which can pass arguments by name. See757

Section 3.2.758

• Replaced composite variable by aggregate variable in reduction, default, and private759

clauses and in implicitly determined data attributes; the new wording also includes Fortran760

character and allocatable/pointer variables. See glossary in Section 6.761

1.16 Changes from Version 3.1 to 3.2762

• Updated _OPENACC value to 202111.763

• Modified specification to comply with INCITS standard for inclusive terminology.764

• The text was changed to state that certain runtime errors, when detected, result in a call to the765

current runtime error callback routines. See Section 1.5.766

• An ambiguity issue with the C/C++ comma operator was resolved. See Section 1.6.767

• The terms true and false were defined and used throughout to shorten the descriptions. See768

Section 1.6.769

• Implicitly determined data attributes on compute constructs were clarified. See Section 2.6.2.770

• Clarified that the default(none) clause applies to scalar variables. See Section 2.6.2.771

• The async, wait, and device_type clauses may be specified on data constructs. See772

Section 2.6.5.773

• The behavior of data clauses and data API routines with a null pointer in the clause or as a774

routine argument is defined. See Sections 2.7.6-2.7.12, 2.8.1, and 3.2.16-3.2.30.775

23

The OpenACC® API Version 3.4 1.17. Changes from Version 3.2 to 3.3

• Precision issues with the loop trip count calculation were clarified. See Section 2.9.776

• Text in Section 2.16 was moved and reorganized to improve clarity and reduce redundancy.777

• Some runtime routine descriptions were expanded and clarified. See Section 3.2.778

• The acc_init_device and acc_shutdown_device routines were added to initialize779

and shut down individual devices. See Section 3.2.7 and Section 3.2.8.780

• Some runtime routine sections were reorganized and combined into a single section to sim-781

plify maintenance and reduce redundant text:782

– The sections for four acc_async_test routines were combined into a single section.783

See Section 3.2.9.784

– The sections for four acc_wait routines were combined into a single section. See785

Section 3.2.10.786

– The sections for four acc_wait_async routines were combined into a single section.787

See Section 3.2.11.788

– The two sections for acc_copyin and acc_create were combined into a single789

section. See Section 3.2.18.790

– The two sections for acc_copyout and acc_delete were combined into a single791

section. See Section 3.2.19.792

– The two sections for acc_update_self and acc_update_device were com-793

bined into a single section. See Section 3.2.20.794

– The two sections for acc_attach and acc_detach were combined into a single795

section. See Section 3.2.29.796

• Added runtime API routine acc_wait_any. See section 3.2.12.797

• The descriptions of the async and async_queue fields of acc_callback_info were798

clarified. See Section 5.2.1.799

1.17 Changes from Version 3.2 to 3.3800

• Updated _OPENACC value to 202211.801

• Allowed three dimensions of gang parallelism:802

– Defined multiple levels of gang-redundant and gang-partitioned execution modes. See803

Section 1.2804

– Allowed multiple values in the num_gangs clauses on the parallel construct. See805

Section 2.5.10.806

– Allowed a dim argument to the gang clause on the loop construct. See Section 2.9.2.807

– Allowed a dim argument to the gang clause on the routine directive. See Sec-808

tion 2.15.1.809

– Changed the launch event information to include all three gang dimension sizes. See810

Section 5.2.2.811

24

The OpenACC® API Version 3.4 1.18. Changes from Version 3.3 to 3.4

• Clarified user-visible behavior of evaluation of expressions in clause arguments. See Sec-812

tion 2.1.813

• Added the force modifier to the collapse clause on loops to enable collapsing non-814

tightly nested loops. See Section 2.9.1.815

• Generalized implicit routine directives for all procedures instead of just C++ lambdas. See816

Section 2.15.1.817

• Revised Section 2.15.1 for clarity and conciseness, including:818

– Specified predetermined routine directives that the implementation may apply.819

– Clarified where routine directives must appear relative to definitions or uses of their820

associated procedures in C and C++. This clarification includes the case of forward821

references in C++ class member lists.822

– Clarified to which procedure a routine directive with a name applies in C and C++.823

– Clarified how a nohost clause affects a procedure’s use within a compute region.824

• Added a Fortran interface for the following runtime routines (See Chapter 3):825

– acc_malloc826

– acc_free827

– acc_map_data828

– acc_unmap_data829

– acc_deviceptr830

– acc_hostptr831

– The two acc_memcpy_to_device routines832

– The two acc_memcpy_from_device routines833

– The two acc_memcpy_device routines834

– The two acc_attach routines835

– The four acc_detach routines836

• Added a new error condition for acc_map_data when the bytes argument is zero. See837

Section 3.2.21.838

• Added recommendations for how a routine directive affects multicore host CPU compila-839

tion. See Section A.1.3.840

• Recommended additional diagnostics promoting portable and readable OpenACC. See Section A.3.841

1.18 Changes from Version 3.3 to 3.4842

• Clarified that a pqr-list must have at least one item and is not permitted to have a trailing843

comma. See Section 1.6.844

• Defined condition when used as an argument to a clause, and cleaned up the restrictions845

around the if clause argument throughout the document. See Section 1.6.846

25

The OpenACC® API Version 3.4 1.18. Changes from Version 3.3 to 3.4

• Clarified that a named constant in Fortran is allowed in data clauses and firstprivate847

clauses. See Section 1.6.848

• Added the term integral-constant-expression to align better with base languages. See Section 1.6.849

• Clarified that the _Pragma operator form is supported for OpenACC directives in C and850

C++. See Section 2.1.851

• Clarified user-visible behavior of evaluation of expressions in directive arguments. See Section-852

2.1.853

• Updated _OPENACC value to 202506. See Section 2.2.854

• Clarified the analysis of implicit data attributes and parallelism across the boundaries of pro-855

cedures that can appear within other procedures (e.g., C++ lambdas, C++ class member func-856

tions, and Fortran internal procedures). See Sections 2.5, 2.6.2, 2.9, and 2.15.1.857

• Corrected the grammar for compute constructs to use async-argument and wait-argument,858

consistent with the rest of the specification. See Section 2.5 and Section 2.16.859

• Clarified and normalized the specification of only a single if clause being permitted on860

data, enter data, exit data, and host data clauses. See Section 2.6.5, Section 2.6.6,861

and Section 2.8.862

• Restated data actions to improve data clause descriptions. See Section 2.7.2.863

• Added the capture modifier for specifying that a particular variable requires a discrete864

copy in device-accessible memory, even when already in shared memory. See Section 2.7.4,865

Section 2.7.9 and Section 2.7.10.866

• Added the always, alwaysin, and alwaysout modifiers to the copy, copyin, and867

copyout data clauses. See Section 2.7.7, Section 2.7.8, and Section 2.7.9.868

• Clarified that compatibility of nested levels of parallelism can be validated at compile time.869

See Sections 2.9 and 2.15.1.870

• Clarified that loops affected by a tile clause must be tightly nested. See Section 2.9.8.871

• Clarified cache directive appertainment rules. See Section 2.10.872

• Clarified the syntax of subrarrays and single elements in cache directives. See Section 2.10.873

• Added the if clause to the atomic construct to enable conditional atomic operations based874

on the parallelism strategy employed. See Section 2.12.875

• Clarified that in Fortran any declare directive with a create or device_resident876

clause referencing a variable with the allocatable or pointer attributes must be visible when877

the variable is allocated or deallocated. See Section 2.13.878

• Clarified that intrinsic assignment of declare create variable in Fortran will result in memory879

allocation and/or deallocation on the device if memory is allocated and/or deallocated on the880

host. See Section 2.13.2.881

• Specified that routine directives are implicitly determined for C++ lambdas such that882

gang, worker, vector, seq, and nohost clauses are selected based on their definitions.883

See Section 2.15.1.884

26

The OpenACC® API Version 3.4 1.19. Corrections in the October 2025 document

• Clarified that a C++ lambda has an implicit routine directive with a nohost clause if an885

enclosing accelerator routine has a nohost clause even if the lambda is unused. This case886

might affect compilation of OpenACC programs during development. See Section 2.15.1.887

1.19 Corrections in the October 2025 document888

• Restored the extension syntax and generalized routine inference, inadvertently excluded889

from original document.890

• Fixed modifier list for copyout clause.891

1.20 Topics Deferred For a Future Revision892

The following topics are under discussion for a future revision. Some of these are known to be893

important, while others will depend on feedback from users. Readers who have feedback or want894

to participate may send email to feedback@openacc.org. No promises are made or implied that all895

these items will be available in a future revision.896

• Directives to define implicit deep copy behavior for pointer-based data structures.897

• Defined behavior when data in data clauses on a directive are aliases of each other.898

• Clarifying when data becomes present or not present on the device for enter data or exit899

data directives with an async clause.900

• Clarifying the behavior of Fortran pointer variables in data clauses.901

• Allowing Fortran pointer variables to appear in deviceptr clauses.902

• Support for attaching C/C++ pointers that point to an address past the end of a memory region.903

• Fully defined interaction with multiple host threads.904

• Optionally removing the synchronization or barrier at the end of vector and worker loops.905

• Allowing an if clause after a device_type clause.906

• A shared clause (or something similar) for the loop directive.907

• Better support for multiple devices from a single thread, whether of the same type or of908

different types.909

• An auto construct (by some name), to allow kernels-like auto-parallelization behavior910

inside parallel constructs or accelerator routines.911

• A begin declare . . .end declare construct that behaves like putting any global vari-912

ables declared inside the construct in a declare clause.913

• Defining the behavior of additional parallelism constructs in the base languages when used914

inside a compute construct or accelerator routine.915

• Optimization directives or clauses, such as an unroll directive or clause.916

• Extended reductions.917

• Fortran bindings for all the API routines.918

• A linear clause for the loop directive.919

27

mailto:feedback@openacc.org

The OpenACC® API Version 3.4 1.20. Topics Deferred For a Future Revision

• Allowing two or more of gang, worker, vector, or seq clause on an acc routine920

directive.921

• A single list of all devices of all types, including the host device.922

• A memory allocation API for specific types of memory, including device memory, host pinned923

memory, and unified memory.924

• Allowing non-contiguous Fortran array sections as arguments to some Runtime API routines,925

such as acc_update_device.926

• Bindings to other languages.927

• Allowing capture modifier on unstructured data lifetimes.928

28

The OpenACC® API Version 3.4 2.1. Directive Format

2. Directives929

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++, Open-930

ACC directives are specified using the pragma mechanism provided by the language. In Fortran,931

OpenACC directives are specified using special comments that are identified by a unique sentinel.932

Compilers will typically ignore OpenACC directives if support is disabled or not provided.933

2.1 Directive Format934

In C and C++, an OpenACC directive is specified as either a #pragma directive:935

#pragma acc directive-name [clause-list] new-line936

or a _Pragma operator:937

_Pragma("acc directive-name [clause-list]")938

While any OpenACC directive can be specified equivalently in either form, the convention in this939

document is to show only the #pragma form. The first preprocessing token within either form is940

acc. The remainder of the directive follows the C and C++ conventions for pragmas. Whitespace941

may be used before and after the #; whitespace may be required to separate words in a directive.942

Preprocessing tokens following acc are subject to macro replacement. Directives are case-sensitive.943

In Fortran, OpenACC directives are specified in free-form source files as944

!$acc directive-name [clause-list]945

The comment prefix (!) may appear in any column, but may only be preceded by whitespace (spaces946

and tabs). The sentinel (!$acc) must appear as a single word, with no intervening whitespace.947

Line length, whitespace, and continuation rules apply to the directive line. Initial directive lines948

must have whitespace after the sentinel. Continued directive lines must have an ampersand (&) as949

the last nonblank character on the line, prior to any comment placed in the directive. Continuation950

directive lines must begin with the sentinel (possibly preceded by whitespace) and may have an951

ampersand as the first non-whitespace character after the sentinel. Comments may appear on the952

same line as a directive, starting with an exclamation point and extending to the end of the line. If953

the first nonblank character after the sentinel is an exclamation point, the line is ignored.954

In Fortran fixed-form source files, OpenACC directives are specified as one of955

!$acc directive-name [clause-list]956

c$acc directive-name [clause-list]957

*$acc directive-name [clause-list]958

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,959

whitespace, continuation, and column rules apply to the directive line. Initial directive lines must960

have a space or zero in column 6, and continuation directive lines must have a character other than961

a space or zero in column 6. Comments may appear on the same line as a directive, starting with an962

exclamation point on or after column 7 and continuing to the end of the line.963

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued state-964

ments, and statements must not be embedded within continued directives. In this document, free965

form is used for all Fortran OpenACC directive examples.966

29

The OpenACC® API Version 3.4 2.1. Directive Format

Only one directive-name can appear per directive, except that a combined directive name is consid-967

ered a single directive-name.968

The order in which clauses appear is not significant unless otherwise specified. A program must969

not depend on the order of evaluation of expressions in clause, construct, or directive arguments,970

or on any side effects of the evaluations. (See examples below.) Clauses may be repeated unless971

otherwise specified.972

Clause names beginning with two consecutive underscores (__) are reserved for the implementa-973

tion; an implementation should ignore such a clause if the clause is not supported by the implemen-974

tation. Such clauses must follow the grammar below:975

__clause-name [(balanced-paren-token-sequence)]976

Note: In Fortran fixed-form source files, clauses without parentheses may result in parsing ambigu-977

ity. In such cases the optional comma separator should be used to disambiguate the clause.978

Further details of OpenACC directive syntax are presented in Section 1.6.979

H H
980

Examples981

982

• In the following example, the order and number of evaluations of ++i and calls to foo()983

and bar() are unspecified.984

#pragma acc parallel \985

num_gangs(foo(++i)) \986

num_workers(bar(++i)) \987

async(foo(++i))988

{ ... }989

See Section 2.5.1 for the parallel construct.990

• In the following example, if the implementation knows that array is not present in the991

current device memory, it may omit calling size().992

#pragma acc update \993

device(array[0:size()])994

if_present995

See Section 2.14.4 for the update directive.996

• In the following example, execution and order of the constructor and destructor of S and U is997

not guaranteed.998

#pragma acc wait(devnum:S{}.Value:queues:acc_async_sync) \999

if (U{}.Condition)1000

See Section 2.16.3 for the wait directive.1001

N N1002

1003

30

The OpenACC® API Version 3.4 2.2. Conditional Compilation

2.2 Conditional Compilation1004

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is1005

the month designation of the version of the OpenACC directives supported by the implementation.1006

This macro must be defined by a compiler only when OpenACC directives are enabled. The version1007

described here is 202506.1008

2.3 Internal Control Variables1009

An OpenACC implementation acts as if there are internal control variables (ICVs) that control the1010

behavior of the program. These ICVs are initialized by the implementation, and may be given1011

values through environment variables and through calls to OpenACC API routines. The program1012

can retrieve values through calls to OpenACC API routines.1013

The ICVs are:1014

• acc-current-device-type-var - controls which type of device is used.1015

• acc-current-device-num-var - controls which device of the selected type is used.1016

• acc-default-async-var - controls which asynchronous queue is used when none appears in an1017

async clause.1018

2.3.1 Modifying and Retrieving ICV Values1019

The following table shows environment variables or procedures to modify the values of the internal1020

control variables, and procedures to retrieve the values:1021

ICV Ways to modify values Way to retrieve value

acc-current-device-type-var acc_set_device_type acc_get_device_type

set device_type

init device_type

ACC_DEVICE_TYPE

acc-current-device-num-var acc_set_device_num acc_get_device_num

set device_num

init device_num

ACC_DEVICE_NUM

acc-default-async-var acc_set_default_async acc_get_default_async

set default_async

1022

The initial values are implementation-defined. After initial values are assigned, but before any1023

OpenACC construct or API routine is executed, the values of any environment variables that were1024

set by the user are read and the associated ICVs are modified accordingly. There is one copy of1025

each ICV for each host thread that is not generated by a compute construct. For threads that are1026

generated by a compute construct the initial value for each ICV is inherited from the local thread.1027

The behavior for each ICV is as if there is a copy for each thread. If an ICV is modified, then a1028

unique copy of that ICV must be created for the modifying thread.1029

2.4 Device-Specific Clauses1030

OpenACC directives can specify different clauses or clause arguments for different devices using1031

the device_type clause. Clauses that precede any device_type clause are default clauses.1032

31

The OpenACC® API Version 3.4 2.4. Device-Specific Clauses

Clauses that follow a device_type clause up to the end of the directive or up to the next1033

device_type clause are device-specific clauses for the device types specified in the device_type1034

argument. For each directive, only certain clauses may be device-specific clauses. If a directive has1035

at least one device-specific clause, it is device-dependent, and otherwise it is device-independent.1036

The argument to the device_type clause is a comma-separated list of one or more device ar-1037

chitecture name identifiers, or an asterisk. An asterisk indicates all device types that are not named1038

in any other device_type clause on that directive. A single directive may have one or several1039

device_type clauses. The device_type clauses may appear in any order.1040

Except where otherwise noted, the rest of this document describes device-independent directives, on1041

which all clauses apply when compiling for any device type. When compiling a device-dependent1042

directive for a particular device type, the directive is treated as if the only clauses that appear are (a)1043

the clauses specific to that device type and (b) all default clauses for which there are no like-named1044

clauses specific to that device type. If, for any device type, the resulting directive is nonconforming,1045

then the original directive is nonconforming.1046

The supported device types are implementation-defined. Depending on the implementation and the1047

compiling environment, an implementation may support only a single device type, or may support1048

multiple device types but only one at a time, or may support multiple device types in a single1049

compilation.1050

A device architecture name may be generic, such as a vendor, or more specific, such as a partic-1051

ular generation of device; see Appendix A Recommendations for Implementers for recommended1052

names. When compiling for a particular device, the implementation will use the clauses associated1053

with the device_type clause that specifies the most specific architecture name that applies for1054

this device; clauses associated with any other device_type clause are ignored. In this context,1055

the asterisk is the least specific architecture name.1056

Syntax1057

The syntax of the device_type clause is1058

device_type(*)1059

device_type(device-type-list)1060

1061

The device_type clause may be abbreviated to dtype.1062

H H
1063

Examples1064

1065

• On the following directive, worker appears as a device-specific clause for devices of type1066

foo, but gang appears as a default clause and so applies to all device types, including foo.1067

#pragma acc loop gang device_type(foo) worker1068

• The first directive below is identical to the previous directive except that loop is replaced1069

with routine. Unlike loop, routine does not permit gang to appear with worker,1070

but both apply for device type foo, so the directive is nonconforming. The second directive1071

below is conforming because gang there applies to all device types except foo.1072

32

The OpenACC® API Version 3.4 2.5. Compute Constructs

// nonconforming: gang and worker not permitted together1073

#pragma acc routine gang device_type(foo) worker1074

1075

// conforming: gang and worker for different device types1076

#pragma acc routine device_type(foo) worker \1077

device_type(*) gang1078

• On the directive below, the value of num_gangs is 4 for device type foo, but it is 2 for all1079

other device types, including bar. That is, foo has a device-specific num_gangs clause,1080

so the default num_gangs clause does not apply to foo.1081

!$acc parallel num_gangs(2) &1082

!$acc device_type(foo) num_gangs(4) &1083

!$acc device_type(bar) num_workers(8)1084

• The directive below is the same as the previous directive except that num_gangs(2) has1085

moved after device_type(*) and so now does not apply to foo or bar.1086

!$acc parallel device_type(*) num_gangs(2) &1087

!$acc device_type(foo) num_gangs(4) &1088

!$acc device_type(bar) num_workers(8)1089

N N1090

1091

2.5 Compute Constructs1092

Compute constructs indicate code that is intended to be executed on the current device. It is imple-1093

mentation defined how users specify for which accelerators that code is compiled and whether it is1094

also compiled for the host.1095

For any point in the program, the parent procedure is the nearest lexically enclosing procedure such1096

that expressions at this point are not evaluated until the procedure is called. For example, the parent1097

procedure within the capture specification of a C++ lambda is the procedure in which the lambda is1098

defined, but the parent procedure within the lambda’s body is the lambda itself.1099

For any point in the program, the parent compute construct is the nearest lexically enclosing com-1100

pute construct that has the same parent procedure.1101

For any point in the program, the parent compute scope is the parent compute construct or, if none,1102

the parent procedure.1103

2.5.1 Parallel Construct1104

Summary1105

This fundamental construct starts parallel execution on the current device.1106

Syntax1107

In C and C++, the syntax of the OpenACC parallel construct is1108

#pragma acc parallel [clause-list] new-line1109

structured block1110

1111

33

The OpenACC® API Version 3.4 2.5. Compute Constructs

and in Fortran, the syntax is1112

!$acc parallel [clause-list]1113

structured block1114

!$acc end parallel1115

or1116

!$acc parallel [clause-list]1117

block construct1118

[!$acc end parallel]1119

where clause is one of the following:1120

async [(async-argument)]1121

wait [(wait-argument)]1122

num_gangs(int-expr-list)1123

num_workers(int-expr)1124

vector_length(int-expr)1125

device_type(device-type-list)1126

if(condition)1127

self [(condition)]1128

reduction(operator : var-list)1129

copy([modifier-list :] var-list)1130

copyin([modifier-list :] var-list)1131

copyout([modifier-list :] var-list)1132

create([modifier-list :] var-list)1133

no_create(var-list)1134

present(var-list)1135

deviceptr(var-list)1136

attach(var-list)1137

private(var-list)1138

firstprivate(var-list)1139

default(none | present)1140

Description1141

When the program encounters an accelerator parallel construct, one or more gangs of workers1142

are created to execute the accelerator parallel region. The number of gangs, and the number of1143

workers in each gang and the number of vector lanes per worker remain constant for the duration of1144

that parallel region. Each gang begins executing the code in the structured block in gang-redundant1145

mode even if there is only a single gang. This means that code within the parallel region, but outside1146

of a loop construct with gang-level worksharing, will be executed redundantly by all gangs.1147

One worker in each gang begins executing the code in the structured block of the construct. Note:1148

Unless there is a loop construct within the parallel region, all gangs will execute all the code within1149

the region redundantly.1150

If the async clause does not appear, there is an implicit barrier at the end of the accelerator parallel1151

region, and the execution of the local thread will not proceed until all gangs have reached the end1152

of the parallel region.1153

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach1154

34

The OpenACC® API Version 3.4 2.5. Compute Constructs

data clauses are described in Section 2.7 Data Clauses. The private and firstprivate1155

clauses are described in Sections 2.5.13 and Sections 2.5.14. The device_type clause is de-1156

scribed in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described1157

in Section 2.6.2. Restrictions are described in Section 2.5.4.1158

2.5.2 Serial Construct1159

Summary1160

This construct defines a region of the program that is to be executed sequentially on the current1161

device. The behavior of the serial construct is the same as that of the parallel construct1162

except that it always executes with a single gang of a single worker with a vector length of one.1163

Note: The serial construct may be used to execute sequential code on the current device,1164

which removes the need for data movement when the required data is already present on the device.1165

Syntax1166

In C and C++, the syntax of the OpenACC serial construct is1167

#pragma acc serial [clause-list] new-line1168

structured block1169

1170

and in Fortran, the syntax is1171

!$acc serial [clause-list]1172

structured block1173

!$acc end serial1174

or1175

!$acc serial [clause-list]1176

block construct1177

[!$acc end serial]1178

where clause is as for the parallel construct except that the num_gangs, num_workers, and1179

vector_length clauses are not permitted.1180

2.5.3 Kernels Construct1181

Summary1182

This construct defines a region of the program that is to be compiled into a sequence of kernels for1183

execution on the current device.1184

Syntax1185

In C and C++, the syntax of the OpenACC kernels construct is1186

#pragma acc kernels [clause-list] new-line1187

structured block1188

1189

and in Fortran, the syntax is1190

!$acc kernels [clause-list]1191

structured block1192

!$acc end kernels1193

35

The OpenACC® API Version 3.4 2.5. Compute Constructs

or1194

!$acc kernels [clause-list]1195

block construct1196

[!$acc end kernels]1197

where clause is one of the following:1198

async [(async-argument)]1199

wait [(wait-argument)]1200

num_gangs(int-expr)1201

num_workers(int-expr)1202

vector_length(int-expr)1203

device_type(device-type-list)1204

if(condition)1205

self [(condition)]1206

copy([modifier-list :] var-list)1207

copyin([modifier-list :] var-list)1208

copyout([modifier-list :] var-list)1209

create([modifier-list :] var-list)1210

no_create(var-list)1211

present(var-list)1212

deviceptr(var-list)1213

attach(var-list)1214

default(none | present)1215

Description1216

The compiler will split the code in the kernels region into a sequence of accelerator kernels. Typi-1217

cally, each loop nest will be a distinct kernel. When the program encounters a kernels construct,1218

it will launch the sequence of kernels in order on the device. The number and configuration of gangs1219

of workers and vector length may be different for each kernel.1220

If the async clause does not appear, there is an implicit barrier at the end of the kernels region,1221

and the local thread execution will not proceed until the entire sequence of kernels has completed1222

execution.1223

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach1224

data clauses are described in Section 2.7 Data Clauses. The device_type clause is described1225

in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described in Sec-1226

tion 2.6.2. Restrictions are described in Section 2.5.4.1227

2.5.4 Compute Construct Restrictions1228

The following restrictions apply to all compute constructs:1229

• A program may not branch into or out of a compute construct.1230

• Only the async, wait, num_gangs, num_workers, and vector_length clauses1231

may follow a device_type clause.1232

• At most one if clause may appear.1233

36

The OpenACC® API Version 3.4 2.5. Compute Constructs

• At most one default clause may appear, and it must have a value of either none or1234

present.1235

• A reduction clause may not appear on a parallel construct with a num_gangs clause1236

that has more than one argument.1237

2.5.5 Compute Construct Errors1238

• An acc_error_wrong_device_type error is issued if the compute construct was not1239

compiled for the current device type. This includes the case when the current device is the1240

host multicore.1241

• An acc_error_device_type_unavailable error is issued if no device of the cur-1242

rent device type is available.1243

• An acc_error_device_unavailable error is issued if the current device is not avail-1244

able.1245

• An acc_error_device_init error is issued if the current device cannot be initialized.1246

• An acc_error_execution error is issued if the execution of the compute construct on1247

the current device type fails and the failure can be detected.1248

• Explicit or implicitly determined data attributes can cause an error to be issued; see Sec-1249

tion 2.7.3.1250

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.1251

See Section 5.2.2.1252

2.5.6 if clause1253

The if clause is optional.1254

When the condition in the if clause evaluates to true., the region will execute on the current device.1255

When the condition in the if clause evaluates to false, the local thread will execute the region.1256

2.5.7 self clause1257

The self clause is optional.1258

The self clause may have a single condition argument. If the condition argument is not present it1259

is assumed to evaluate to true. When both an if clause and a self clause appear and the condition1260

in the if clause evaluates to false, the self clause has no effect.1261

When the condition evaluates to true, the region will execute on the local device. When the condition1262

in the self clause evaluates to false, the region will execute on the current device.1263

2.5.8 async clause1264

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1265

2.5.9 wait clause1266

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1267

37

The OpenACC® API Version 3.4 2.5. Compute Constructs

2.5.10 num gangs clause1268

The num_gangs clause is allowed on the parallel and kernels constructs. On a parallel1269

construct, it may have one, two, or three arguments. The values of the integer expressions define1270

the number of parallel gangs along dimensions one, two, and three that will execute the parallel1271

region. If it has fewer than three arguments, the missing values are treated as having the value 1.1272

The total number of gangs must be at least 1 and is the product of the values of the arguments. On a1273

kernels construct, the num_gangs clause must have a single argument, the value of which will1274

define the number of parallel gangs that will execute each kernel created for the kernels region.1275

If the num_gangs clause does not appear, an implementation-defined default will be used which1276

may depend on the code within the construct. The implementation may use a lower value than1277

specified based on limitations imposed by the target architecture.1278

2.5.11 num workers clause1279

The num_workers clause is allowed on the parallel and kernels constructs. The value1280

of the integer expression defines the number of workers within each gang that will be active after1281

a gang transitions from worker-single mode to worker-partitioned mode. If the clause does not1282

appear, an implementation-defined default will be used; the default value may be 1, and may be1283

different for each parallel construct or for each kernel created for a kernels construct. The1284

implementation may use a different value than specified based on limitations imposed by the target1285

architecture.1286

2.5.12 vector length clause1287

The vector_length clause is allowed on the parallel and kernels constructs. The value1288

of the integer expression defines the number of vector lanes that will be active after a worker transi-1289

tions from vector-single mode to vector-partitioned mode. This clause determines the vector length1290

to use for vector or SIMD operations. If the clause does not appear, an implementation-defined1291

default will be used. This vector length will be used for loop constructs annotated with the vector1292

clause, as well as loops automatically vectorized by the compiler. The implementation may use a1293

different value than specified based on limitations imposed by the target architecture.1294

2.5.13 private clause1295

The private clause is allowed on the parallel and serial constructs; it declares that a copy1296

of each item on the list will be created for each gang in all dimensions.1297

Restrictions1298

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private1299

clauses.1300

2.5.14 firstprivate clause1301

The firstprivate clause is allowed on the parallel and serial constructs; it declares that1302

a copy of each item on the list will be created for each gang, and that the copy will be initialized with1303

the value of that item on the local thread when a parallel or serial construct is encountered.1304

38

The OpenACC® API Version 3.4 2.5. Compute Constructs

Restrictions1305

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1306

firstprivate clauses.1307

2.5.15 reduction clause1308

The reduction clause is allowed on the parallel and serial constructs. It specifies a1309

reduction operator and one or more vars. It implies copy clauses as described in Section 2.6.2. For1310

each reduction var, a private copy is created for each parallel gang and initialized for that operator.1311

At the end of the region, the values for each gang are combined using the reduction operator, and1312

the result combined with the value of the original var and stored in the original var. If the reduction1313

var is an array or subarray, the array reduction operation is logically equivalent to applying that1314

reduction operation to each element of the array or subarray individually. If the reduction var1315

is a composite variable, the reduction operation is logically equivalent to applying that reduction1316

operation to each member of the composite variable individually. The reduction result is available1317

after the region.1318

The following table lists the operators that are valid and the initialization values; in each case, the1319

initialization value will be cast into the data type of the var. For max and min reductions, the1320

initialization values are the least representable value and the largest representable value for that data1321

type, respectively. At a minimum, the supported data types include Fortran logical as well as1322

the numerical data types in C (e.g., _Bool, char, int, float, double, float _Complex,1323

double _Complex), C++ (e.g., bool, char, wchar_t, int, float, double), and Fortran1324

(e.g., integer, real, double precision, complex). However, for each reduction operator,1325

the supported data types include only the types permitted as operands to the corresponding operator1326

in the base language where (1) for max and min, the corresponding operator is less-than and (2) for1327

other operators, the operands and the result are the same type.1328

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ˜0 iand all bits on

| 0 ior 0

ˆ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

.eqv. .true.

.neqv. .false.

1329

Restrictions1330

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,1331

an array element, or a subarray (refer to Section 2.7.1).1332

• If the reduction var is an array element or a subarray, accessing the elements of the array1333

outside the specified index range results in unspecified behavior.1334

39

The OpenACC® API Version 3.4 2.6. Data Environment

• The reduction var may not be a member of a composite variable.1335

• If the reduction var is a composite variable, each member of the composite variable must be1336

a supported datatype for the reduction operation.1337

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1338

reduction clauses.1339

2.5.16 default clause1340

The default clause is optional. At most one default clause may appear. It adjusts what1341

data attributes are implicitly determined for variables used in the compute construct as described in1342

Section 2.6.2.1343

2.6 Data Environment1344

This section describes the data attributes for variables. The data attributes for a variable may be1345

predetermined, implicitly determined, or explicitly determined. Variables with predetermined data1346

attributes may not appear in a data clause that conflicts with that data attribute. Variables with1347

implicitly determined data attributes may appear in a data clause that overrides the implicit attribute.1348

Variables with explicitly determined data attributes are those which appear in a data clause on a1349

data construct, a compute construct, or a declare directive. See Section A.3.3 for recommended1350

diagnostics related to data attributes.1351

OpenACC supports systems with accelerators that have discrete memory from the host, systems1352

with accelerators that share memory with the host, as well as systems where an accelerator shares1353

some memory with the host but also has some discrete memory that is not shared with the host.1354

In the first case, no data is in shared memory. In the second case, all data is in shared memory.1355

In the third case, some data may be in shared memory and some data may be in discrete memory,1356

although a single array or aggregate data structure must be allocated completely in shared or discrete1357

memory. When a nested OpenACC construct is executed on the device, the default target device for1358

that construct is the same device on which the encountering accelerator thread is executing. In that1359

case, the target device shares memory with the encountering thread.1360

Memory is considered shared memory if data residing in that memory is accessible from both the1361

host and the current device. Memory is considered device memory if it is physically connected to the1362

current device. Memory is considered device-accessible if it is accessible from the current device,1363

regardless of where the physical memory resides. A captured variable is a variable which the user1364

has specific must have a device-accessible copy that is discrete from the original, even if the original1365

is in shared memory.1366

2.6.1 Variables with Predetermined Data Attributes1367

The loop variable in a C for statement or Fortran do statement that is associated with a loop1368

directive is predetermined to be private to each thread that will execute each iteration of the loop.1369

Loop variables in Fortran do statements within a compute construct are predetermined to be private1370

to the thread that executes the loop.1371

Variables declared in a C block or Fortran block construct that is executed in vector-partitioned1372

mode are private to the thread associated with each vector lane. Variables declared in a C block1373

or Fortran block construct that is executed in worker-partitioned vector-single mode are private to1374

40

The OpenACC® API Version 3.4 2.6. Data Environment

the worker and shared across the threads associated with the vector lanes of that worker. Variables1375

declared in a C block or Fortran block construct that is executed in worker-single mode are private1376

to the gang and shared across the threads associated with the workers and vector lanes of that gang.1377

A procedure called from a compute construct will be annotated as seq, vector, worker, or1378

gang, as described Section 2.15 Procedure Calls in Compute Regions. Variables declared in seq1379

routine are private to the thread that made the call. Variables declared in vector routine are private1380

to the worker that made the call and shared across the threads associated with the vector lanes of1381

that worker. Variables declared in worker or gang routine are private to the gang that made the1382

call and shared across the threads associated with the workers and vector lanes of that gang.1383

2.6.2 Variables with Implicitly Determined Data Attributes1384

When implicitly determining data attributes on a compute construct, the following clauses are visi-1385

ble and variable accesses are exposed to the compute construct:1386

• Visible default clause: The nearest default clause appearing on the compute construct1387

or on a lexically enclosing data construct that has the same parent compute scope.1388

• Visible data clause: Any data clause on the compute construct, on a lexically enclosing data1389

construct that has the same parent compute scope, or on a visible declare directive.1390

• Exposed variable access: Any access to the data or address of a variable at a point within the1391

compute construct where the variable is not private to a scope lexically enclosed within the1392

compute construct.1393

Note: In the argument of C’s sizeof operator, the appearance of a variable is not an exposed1394

access because neither its data nor its address is accessed. In the argument of a reduction1395

clause on an enclosed loop construct, the appearance of a variable that is not otherwise1396

privatized is an exposed access to the original variable.1397

On a compute or combined construct, if a variable appears in a reduction clause but no other1398

data clause, it is treated as if it also appears in a copy clause. Otherwise, for any variable, the1399

compiler will implicitly determine its data attribute on a compute construct if all of the following1400

conditions are met:1401

• There is no default(none) clause visible at the compute construct.1402

• An access to the variable is exposed to the compute construct.1403

• The variable does not appear in a data clause visible at the compute construct.1404

An aggregate variable will be treated as if it appears either:1405

• In a present clause if there is a default(present) clause visible at the compute con-1406

struct.1407

• In a copy clause otherwise.1408

A scalar variable will be treated as if it appears either:1409

• In a copy clause if the compute construct is a kernels construct.1410

• In a firstprivate clause otherwise.1411

41

The OpenACC® API Version 3.4 2.6. Data Environment

Note: Any default(none) clause visible at the compute construct applies to both aggregate1412

and scalar variables. However, any default(present) clause visible at the compute construct1413

applies only to aggregate variables.1414

Restrictions1415

• If there is a default(none) clause visible at a compute construct, for any variable access1416

exposed to the compute construct, the compiler requires the variable to appear either in an1417

explicit data clause visible at the compute construct or in a firstprivate, private, or1418

reduction clause on the compute construct.1419

• If a scalar variable appears in a reduction clause on a loop construct that has a parent1420

parallel or serial construct, and if the reduction’s access to the original variable is1421

exposed to the parent compute construct, the variable must appear either in an explicit data1422

clause visible at the compute construct or in a firstprivate, private, or reduction1423

clause on the compute construct. Note: Implementations are encouraged to issue a compile-1424

time diagnostic when this restriction is violated to assist users in writing portable OpenACC1425

applications.1426

If a C++ lambda is called in a compute region and does not appear in a data clause, then it is1427

treated as if it appears in a copyin clause on the current construct. A variable captured by a1428

lambda is processed according to its data types: a pointer type variable is treated as if it appears1429

in a no_create clause; a reference type variable is treated as if it appears in a present clause;1430

for a struct or a class type variable, any pointer member is treated as if it appears in a no_create1431

clause on the current construct. If the variable is defined as global or file or function static, it must1432

appear in a declare directive.1433

2.6.3 Data Regions and Data Lifetimes1434

Data in shared memory is accessible from the current device as well as to the local thread. Such1435

data is available to the accelerator for the lifetime of the variable. Data not in shared memory must1436

be copied to and from device memory using data constructs, clauses, and API routines. A data1437

lifetime is the duration from when the data is first made available to the accelerator until it becomes1438

unavailable. For data in shared memory, the data lifetime begins when the data is allocated and1439

ends when it is deallocated; for statically allocated data, the data lifetime begins when the program1440

begins and does not end. For data not in shared memory, the data lifetime begins when it is made1441

present and ends when it is no longer present.1442

There are four types of data regions. When the program encounters a data construct, it creates a1443

data region.1444

When the program encounters a compute construct with explicit data clauses or with implicit data1445

allocation added by the compiler, it creates a data region that has a duration of the compute construct.1446

When the program enters a procedure, it creates an implicit data region that has a duration of the1447

procedure. That is, the implicit data region is created when the procedure is called, and exited when1448

the program returns from that procedure invocation. There is also an implicit data region associated1449

with the execution of the program itself. The implicit program data region has a duration of the1450

execution of the program.1451

In addition to data regions, a program may create and delete data on the accelerator using enter1452

data and exit data directives or using runtime API routines. When the program executes1453

42

The OpenACC® API Version 3.4 2.6. Data Environment

an enter data directive, or executes a call to a runtime API acc_copyin or acc_create1454

routine, each var on the directive or the variable on the runtime API argument list will be made live1455

on accelerator.1456

2.6.4 Data Structures with Pointers1457

This section describes the behavior of data structures that contain pointers. A pointer may be a1458

C or C++ pointer (e.g., float*), a Fortran pointer or array pointer (e.g., real, pointer,1459

dimension(:)), or a Fortran allocatable (e.g., real, allocatable, dimension(:)).1460

When a data object is copied to device memory, the values are copied exactly. If the data is a data1461

structure that includes a pointer, or is just a pointer, the pointer value copied to device memory1462

will be the host pointer value. If the pointer target object is also allocated in or copied to device1463

memory, the pointer itself needs to be updated with the device address of the target object before1464

dereferencing the pointer in device memory.1465

An attach action updates the pointer in device memory to point to the device copy of the data that1466

the host pointer targets; see Section 2.7.2. For Fortran array pointers and allocatable arrays, this1467

includes copying any associated descriptor (dope vector) to the device copy of the pointer. When1468

the device pointer target is deallocated, the pointer in device memory is restored to the host value, so1469

it can be safely copied back to host memory. A detach action updates the pointer in device memory1470

to have the same value as the corresponding pointer in local memory; see Section 2.7.2. The attach1471

and detach actions are performed by the copy, copyin, copyout, create, attach, and1472

detach data clauses (Sections 2.7.5-2.7.14), and the acc_attach and acc_detach runtime1473

API routines (Section 3.2.29). The attach and detach actions use attachment counters to determine1474

when the pointer in device memory needs to be updated; see Section 2.6.8.1475

2.6.5 Data Construct1476

Summary1477

The data construct defines vars are accessible to the current device for the duration of the region.1478

It also defines the data actions that occur upon entry to and exit from the region.1479

Syntax1480

In C and C++, the syntax of the OpenACC data construct is1481

#pragma acc data [clause-list] new-line1482

structured block1483

and in Fortran, the syntax is1484

!$acc data [clause-list]1485

structured block1486

!$acc end data1487

or1488

!$acc data [clause-list]1489

block construct1490

[!$acc end data]1491

where clause is one of the following:1492

43

The OpenACC® API Version 3.4 2.6. Data Environment

if(condition)1493

async [(async-argument)]1494

wait [(wait-argument)]1495

device_type(device-type-list)1496

copy([modifier-list :] var-list)1497

copyin([modifier-list :] var-list)1498

copyout([modifier-list :] var-list)1499

create([modifier-list :] var-list)1500

no_create(var-list)1501

present(var-list)1502

deviceptr(var-list)1503

attach(var-list)1504

default(none | present)1505

Description1506

Data will be allocated in the memory of the current device and copied from local memory to device1507

memory, or copied back, as required. The data clauses are described in Section 2.7 Data Clauses.1508

Structured reference counters are incremented for data when entering a data region, and decre-1509

mented when leaving the region, as described in Section 2.6.7 Reference Counters. The device_type1510

clause is described in Section 2.4 Device-Specific Clauses.1511

Restrictions1512

• At least one copy, copyin, copyout, create, no_create, present, deviceptr,1513

attach, or default clause must appear on a data construct.1514

• Only the async and wait clauses may follow a device_type clause.1515

• At most one if clause may appear on a data directive.1516

if clause1517

The if clause is optional; when there is no if clause, the compiler will generate code to allocate1518

space in the current device memory and move data from and to the local memory as required. When1519

an if clause appears, the program will conditionally allocate memory in and move data to and/or1520

from device memory. When the condition in the if clause evaluates to false, no device memory1521

will be allocated, and no data will be moved. When the condition evaluates to true, the data will be1522

allocated and moved as specified.1523

async clause1524

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1525

Note: The async clause only affects operations directly associated with this particular data con-1526

struct, such as data transfers. Execution of the associated structured block or block construct remains1527

synchronous to the local thread. Nested OpenACC constructs, directives, and calls to runtime li-1528

brary routines do not inherit the async clause from this construct, and the programmer must take1529

care to not accidentally introduce race conditions related to asynchronous data transfers.1530

wait clause1531

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1532

44

The OpenACC® API Version 3.4 2.6. Data Environment

default clause1533

The default clause is optional. At most one default clause may appear. It adjusts what data1534

attributes are implicitly determined for variables used in lexically contained compute constructs as1535

described in Section 2.6.2.1536

Errors1537

• See Section 2.7.3 for errors due to data clauses.1538

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1539

2.6.6 Enter Data and Exit Data Directives1540

Summary1541

An enter data directive defines vars are accessible to the current device for the remaining dura-1542

tion of the program, or until an exit data directive makes the data no longer accessible. These1543

directives also specify data actions which occur upon reaching the enter data or exit data di-1544

rective. The dynamic data lifetime for data referred to by an enter data or exit data directive1545

is defined by its dynamic reference counter, as defined in Section 2.6.7.1546

Syntax1547

In C and C++, the syntax of the OpenACC enter data directive is1548

#pragma acc enter data clause-list new-line1549

and in Fortran, the syntax is1550

!$acc enter data clause-list1551

where clause is one of the following:1552

if(condition)1553

async [(async-argument)]1554

wait [(wait-argument)]1555

copyin([modifier-list :] var-list)1556

create([modifier-list :] var-list)1557

attach(var-list)1558

In C and C++, the syntax of the OpenACC exit data directive is1559

#pragma acc exit data clause-list new-line1560

and in Fortran, the syntax is1561

!$acc exit data clause-list1562

where clause is one of the following:1563

if(condition)1564

async [(async-argument)]1565

wait [(wait-argument)]1566

copyout([modifier-list :] var-list)1567

delete(var-list)1568

detach(var-list)1569

finalize1570

45

The OpenACC® API Version 3.4 2.6. Data Environment

Description1571

At an enter data directive, data may be allocated in the current device memory and copied from1572

local memory to device memory. This action enters a data lifetime for those vars, and will make1573

the data available for present clauses on constructs within the data lifetime. Dynamic reference1574

counters are incremented for this data, as described in Section 2.6.7 Reference Counters. Pointers1575

in device memory may be attached to point to the corresponding device copy of the host pointer1576

target.1577

At an exit data directive, data may be copied from device memory to local memory and deal-1578

located from device memory. If no finalize clause appears, dynamic reference counters are1579

decremented for this data. If a finalize clause appears, the dynamic reference counters are set1580

to zero for this data. Pointers in device memory may be detached so as to have the same value as1581

the original host pointer.1582

The data clauses are described in Section 2.7 Data Clauses. Reference counting behavior is de-1583

scribed in Section 2.6.7 Reference Counters.1584

Restrictions1585

• At least one copyin, create, or attach clause must appear on an enter data direc-1586

tive.1587

• At least one copyout, delete, or detach clause must appear on an exit data direc-1588

tive.1589

• At most one if clause may appear on an enter data or exit data directive.1590

if clause1591

The if clause is optional; when there is no if clause, the compiler will generate code to allocate or1592

deallocate space in the current device memory and move data from and to local memory. When an1593

if clause appears, the program will conditionally allocate or deallocate device memory and move1594

data to and/or from device memory. When the condition in the if clause evaluates to false, no1595

device memory will be allocated or deallocated, and no data will be moved. When the condition1596

evaluates to true, the data will be allocated or deallocated and moved as specified.1597

async clause1598

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1599

wait clause1600

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1601

finalize clause1602

The finalize clause is allowed on the exit data directive and is optional. When no finalize1603

clause appears, the exit data directive will decrement the dynamic reference counters for vars1604

appearing in copyout and delete clauses, and will decrement the attachment counters for point-1605

ers appearing in detach clauses. If a finalize clause appears, the exit data directive will1606

set the dynamic reference counters to zero for vars appearing in copyout and delete clauses,1607

and will set the attachment counters to zero for pointers appearing in detach clauses.1608

46

The OpenACC® API Version 3.4 2.6. Data Environment

Errors1609

• See Section 2.7.3 for errors due to data clauses.1610

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1611

2.6.7 Reference Counters1612

When device memory is allocated for data not in shared memory due to data clauses or OpenACC1613

API routine calls, the OpenACC implementation keeps track of that section of device memory and1614

its relationship to the corresponding data in host memory.1615

Each section of device memory is associated with two reference counters per device, a structured1616

reference counter and a dynamic reference counter. The structured and dynamic reference counters1617

are used to determine when to allocate or deallocate data in device memory. The structured reference1618

counter for a section of memory keeps track of how many nested data regions have been entered for1619

that data. The initial value of the structured reference counter for static data in device memory (in a1620

global declare directive) is one; for all other data, the initial value is zero. The dynamic reference1621

counter for a section of memory keeps track of how many dynamic data lifetimes are currently active1622

in device memory for that section. The initial value of the dynamic reference counter is zero. Data1623

is considered present if the sum of the structured and dynamic reference counters is greater than1624

zero.1625

A structured reference counter is incremented when entering each data or compute region that con-1626

tain an explicit data clause or implicitly-determined data attributes for that section of memory, and1627

is decremented when exiting that region. A dynamic reference counter is incremented for each1628

enter data copyin or create clause, or each acc_copyin or acc_create API routine1629

call for that section of memory. The dynamic reference counter is decremented for each exit1630

data copyout or delete clause when no finalize clause appears, or each acc_copyout1631

or acc_delete API routine call for that section of memory. The dynamic reference counter will1632

be set to zero with an exit data copyout or delete clause when a finalize clause ap-1633

pears, or each acc_copyout_finalize or acc_delete_finalize API routine call for1634

the section of memory. The reference counters are modified synchronously with the local thread,1635

even if the data directives include an async clause. When both structured and dynamic reference1636

counters reach zero, the data lifetime in device memory for that data ends.1637

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-1638

mented to zero, except by a call to acc_unmap_data.1639

2.6.8 Attachment Counter1640

Since multiple pointers can target the same address, each pointer in device memory is associated1641

with an attachment counter per device. The attachment counter for a pointer is initialized to zero1642

when the pointer is allocated in device memory. The attachment counter for a pointer is set to one1643

whenever the pointer is attached to new target address, and incremented whenever an attach action1644

for that pointer is performed for the same target address. The attachment counter is decremented1645

whenever a detach action occurs for the pointer, and the pointer is detached when the attachment1646

counter reaches zero. This is described in more detail in Section 2.7.2 Data Clause Actions.1647

A pointer in device memory can be assigned a device address in two ways. The pointer can be1648

attached to a device address due to data clauses or API routines, as described in Section 2.7.21649

47

The OpenACC® API Version 3.4 2.7. Data Clauses

Data Clause Actions, or the pointer can be assigned in a compute region executed on that device.1650

Unspecified behavior may result if both ways are used for the same pointer.1651

Pointer members of structs, classes, or derived types in device or host memory can be overwritten1652

due to update directives or API routines. It is the user’s responsibility to ensure that the pointers1653

have the appropriate values before or after the data movement in either direction. The behavior of1654

the program is undefined if any of the pointer members are attached when an update of a composite1655

variable is performed.1656

2.7 Data Clauses1657

Data clauses may appear on the parallel construct, serial construct, kernels construct,1658

data construct, the enter data and exit data directives, and declare directives. In the1659

descriptions, the region is a compute region with a clause appearing on a parallel, serial, or1660

kernels construct, a data region with a clause on a data construct, or an implicit data region1661

with a clause on a declare directive. If the declare directive appears in a global context,1662

the corresponding implicit data region has a duration of the program. The list argument to each1663

data clause is a comma-separated collection of vars. On a declare directive, the list argument1664

of a copyin, create, device_resident, or link clause may include a Fortran common1665

block name enclosed within slashes. On any directive, for any clause except deviceptr and1666

present, the list argument may include a Fortran common block name enclosed within slashes1667

if that common block name also appears in a declare directive link clause. In all cases, the1668

compiler will allocate and manage a copy of the var in the memory of the current device, creating a1669

visible device copy of that var, for data not in shared memory.1670

OpenACC supports accelerators with discrete memories from the local thread. However, if the1671

accelerator can access the local memory directly, the implementation may avoid the memory allo-1672

cation and data movement and simply share the data in local memory unless an explicit copy in1673

device-accessible memory is specified. Therefore, a program that uses and assigns data on the host1674

and uses and assigns the same data on the accelerator within a data region without update directives1675

to manage the coherence of the two copies may get different answers on different accelerators or1676

implementations.1677

Restrictions1678

• Data clauses may not follow a device_type clause.1679

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in data1680

clauses.1681

2.7.1 Data Specification in Data Clauses1682

In C and C++, a subarray is an array name followed by an extended array range specification in1683

brackets, with start and length, such as1684

AA[2:n]1685

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the1686

size of the array is used; otherwise the length is required. The subarray AA[2:n] means elements1687

AA[2], AA[3], . . . , AA[2+n-1].1688

In C and C++, a two dimensional array may be declared in at least four ways:1689

48

The OpenACC® API Version 3.4 2.7. Data Clauses

• Statically-sized array: float AA[100][200];1690

• Pointer to statically sized rows: typedef float row[200]; row* BB;1691

• Statically-sized array of pointers: float* CC[200];1692

• Pointer to pointers: float** DD;1693

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of1694

these may be included in a data clause using subarray notation to specify a rectangular array:1695

• AA[2:n][0:200]1696

• BB[2:n][0:m]1697

• CC[2:n][0:m]1698

• DD[2:n][0:m]1699

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any com-1700

bination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions, all1701

dimensions except the first must specify the whole extent to preserve the contiguous data restriction,1702

discussed below. For dynamically allocated dimensions, the implementation will allocate pointers1703

in device memory corresponding to the pointers in local memory and will fill in those pointers as1704

appropriate.1705

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications1706

in parentheses, with lower and upper bound subscripts, such as1707

arr(1:high,low:100)1708

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if1709

known, are used. All dimensions except the last must specify the whole extent, to preserve the1710

contiguous data restriction, discussed below.1711

Restrictions1712

• In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be1713

specified.1714

• In C and C++, the length for dynamically allocated dimensions of an array must be explicitly1715

specified.1716

• In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host1717

or on the device, may result in undefined behavior.1718

• If a subarray appears in a data clause, the implementation may choose to allocate memory for1719

only that subarray on the accelerator.1720

• In Fortran, array pointers may appear, but pointer association is not preserved in device mem-1721

ory.1722

• Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous1723

section of memory, except for dynamic multidimensional C arrays.1724

• In C and C++, if a variable or array of composite type appears, all the data members of the1725

struct or class are allocated and copied, as appropriate. If a composite member is a pointer1726

type, the data addressed by that pointer are not implicitly copied.1727

49

The OpenACC® API Version 3.4 2.7. Data Clauses

• In Fortran, if a variable or array of composite type appears, all the members of that derived1728

type are allocated and copied, as appropriate. If any member has the allocatable or1729

pointer attribute, the data accessed through that member are not copied.1730

• If an expression is used in a subscript or subarray expression in a clause on a data construct,1731

the same value is used when copying data at the end of the data region, even if the values of1732

variables in the expression change during the data region.1733

2.7.2 Data Clause Actions1734

Data clauses perform one or more the following actions.1735

Increment Counter Action1736

An increment counter action is one of the actions that may be performed for a present (Section1737

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1738

tion 2.7.10), no_create (Section 2.7.11), or attach (Section 2.7.13) clause, or for a call to an1739

acc_copyin, acc_create, or acc_attach API routine (Sections 3.2.18 and 3.2.29). See1740

those sections for details.1741

An increment counter action for a var increments the structured or dynamic reference counter or1742

the attachment counter for var by one.1743

Decrement Counter Action1744

A decrement counter action is one of the actions that may be performed for a present (Section1745

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1746

tion 2.7.10), no_create (Section 2.7.11), delete (Section 2.7.12), attach (Section 2.7.13), or1747

detach clause, or for a call to an acc_copyout, acc_delete, or acc_detach API routine1748

(Sections 3.2.19 and 3.2.29). See those sections for details.1749

A decrement counter action for a var decrements the structured or dynamic reference counter or1750

the attachment counter for var by one. If the reference counter is already zero, its value is left1751

unchanged.1752

If the device memory associated with var was mapped to the device using acc_map_data, the1753

dynamic reference count may not be decremented to zero, except by a call to acc_unmap_data.1754

Reset Counter Action1755

A reset counter action is one of the actions that may be performed for a copyout (Section 2.7.9),1756

delete (Section 2.7.12), or detach (Section 2.7.14) clause, or for a call to an acc_copyout,1757

acc_delete, or acc_detach API routine (Sections 3.2.19 and 3.2.29). See those sections for1758

details.1759

A reset counter action for a var sets the structured or dynamic reference counter or attachment1760

counter for var to zero.1761

Allocate Memory Action1762

An allocate memory action is one of the actions that may be performed for a copy (Section 2.7.7),1763

copyin (Section 2.7.8), copyout (Section 2.7.9) or create (Section 2.7.10) clause, or for a call1764

50

The OpenACC® API Version 3.4 2.7. Data Clauses

to an acc_copyin or acc_create API routine (Section 3.2.18). See those sections for details.1765

An allocate memory action for a var allocates device-accessible memory for var. If device memory1766

is unavailable, shared memory is allocated. If shared memory is unavailable, device memory is1767

allocated. When both shared and device memory are available, the choice of memory allocated is1768

implementation-defined.1769

Deallocate Memory Action1770

A deallocate memory action is one of the actions that may be performed for a copy (Section 2.7.8),1771

copyin (Section 2.7.8), copyout (Section 2.7.8), create (Section 2.7.10), no_create (Sec-1772

tion 2.7.11), or delete (Section 2.7.12) clause, or for a call to an acc_copyout or acc_delete1773

API routine (Section 3.2.19). See those sections for details.1774

A deallocate memory action for var deallocates device-accessible memory for var.1775

Transfer In Action1776

A transfer in action is one of the actions that may be performed for a copy (Section 2.7.7) or1777

copyin (Section 2.7.8) clause, update (Section 2.14.4) directive, or for a call to an acc_copyin1778

or acc_update_deviceAPI routine (Sections 3.2.18 and 3.2.20). See those sections for details.1779

A transfer in action for a var initiates a transfer of the data for var from the local thread memory to1780

the corresponding device-accessible memory.1781

The data copy may occur asynchronously, depending on other clauses on the directive.1782

Transfer Out Action1783

A transfer out action is one of the actions that may be performed for a copy (Section 2.7.7) or1784

copyout (Section 2.7.9) clause, update (Section 2.14.4) directive, or for a call to an acc_copyout1785

or acc_update_self API routine (Sections 3.2.19 and 3.2.20). See those sections for details.1786

A transfer out action for a var initiates a transfer of the data for var from device-accesible memory1787

to the corresponding local thread memory.1788

The data copy may occur asynchronously, depending on other clauses on the directive, in which1789

case the memory is deallocated when the data copy is complete.1790

Attach Pointer Action1791

An attach pointer action is one of the actions that may be performed for a present (Section1792

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1793

tion 2.7.10), no_create (Section 2.7.11), or attach (Section 2.7.12) clause, or for a call to an1794

acc_attach API routine (Section 3.2.29). See those sections for details.1795

An attach pointer action for a var occurs only when var is a pointer reference.1796

If the pointer var is in shared memory and it is not a captured variable or is not present in the current1797

device-accessible memory, or if the address to which var points is not present in the current device-1798

accessible memory, no action is taken. If the pointer is a null pointer, the pointer in device-accessible1799

memory is updated to have the same value. Otherwise, the pointer in device-accessible memory is1800

updated to point to the corresponding copy of the data. The update may occur asynchronously,1801

51

The OpenACC® API Version 3.4 2.7. Data Clauses

depending on other clauses on the directive. The implementation schedules pointer updates after1802

any data transfers due to transfer in actions that are performed for the same directive.1803

Detach Pointer Action1804

A detach pointer action is one of the actions that may be performed for a present (Section1805

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1806

tion 2.7.10), no_create (Section 2.7.11), delete (Section 2.7.12), or attach (Section 2.7.13),1807

or detach (Section 2.7.12) clause, or for a call to an acc_detach API routine (Section 3.2.29).1808

See those sections for details.1809

A detach pointer action for a var occurs only when var is a pointer reference.1810

If the pointer var is in shared memory and is not a captured variable or is not present in the current1811

device-accessible memory, or if the attachment counter for var for the pointer is not zero, no action1812

is taken. The var in device-accessible memory is updated to have the same value as the correspond-1813

ing pointer in local memory. The update may occur asynchronously, depending on other clauses1814

on the directive. The implementation schedules pointer updates before any data transfers due to1815

transfer out actions that are performed for the same directive.1816

2.7.3 Data Clause Errors1817

An error is issued for a var that appears in a copy, copyin, copyout, create, and delete1818

clause as follows:1819

• An acc_error_partly_present error is issued if part of var is present in device-1820

accessible memory of the current device but all of var is not.1821

• An acc_error_invalid_data_section error is issued if var is a Fortran subarray1822

with a stride that is not one.1823

• An acc_error_out_of_memory error is issued if the accelerator device does not have1824

enough memory for var.1825

An error is issued for a var that appears in a present clause as follows:1826

• An acc_error_not_present error is issued if var is not present in the current device1827

memory at entry to a data or compute construct.1828

• An acc_error_partly_present error is issued if part of var is present in device-1829

accessible memory of the current device but all of var is not.1830

See Section 5.2.2.1831

2.7.4 Data Clause Modifiers1832

Some clauses allow an optional modifier list, with the following supported modifiers:1833

• always indicating that the data transfer in and transfer out actions must always occur even1834

if the data is present in the device.1835

• alwaysin indicating that the data transfer in action must always occur even if the data is1836

present in the device.1837

52

The OpenACC® API Version 3.4 2.7. Data Clauses

• alwaysout indicating that the data transfer out action must always occur even if the data is1838

present in the device.1839

• capture indicating that the implementation must capture the variables in the clause with a1840

discrete copy of such variables created in the device-accessible memory even if the original1841

variable is already in accessible shared memory.1842

• readonly indicating that the data in the data region are only read and not written.1843

• zero indicating that the implementation must zero-initialise the variables in the clause.1844

2.7.5 deviceptr clause1845

The deviceptr clause may appear on structured data and compute constructs and declare1846

directives.1847

The deviceptr clause is used to declare that the pointers in var-list are device-accessible pointers,1848

so the data need not be allocated or moved between the host and device for this pointer.1849

In C and C++, the vars in var-list must be pointer variables.1850

In Fortran, the vars in var-list must be dummy arguments (arrays or scalars), and may not have the1851

Fortran pointer, allocatable, or value attributes.1852

For data in shared memory, host pointers are the same as device pointers, so this clause has no1853

effect.1854

2.7.6 present clause1855

The present clause may appear on structured data and compute constructs and declare di-1856

rectives. The present clause specifies that vars in var-list are in shared memory or are already1857

present in the current device memory due to data regions or data lifetimes that contain the construct1858

on which the present clause appears.1859

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is1860

taken; otherwise, the present clause behaves as follows:1861

• At entry to the region:1862

1. If var is a pointer reference,1863

a) If the attachment counter for var is zero, an attach pointer action is performed.1864

b) An increment counter action is performed with the associated attachment counter.1865

2. An increment counter action is performed with the associated structured reference counter.1866

• At exit from the region:1867

1. If the structured reference counter for var is zero, no action is taken.1868

2. Otherwise,1869

a) If var is a pointer reference,1870

i. A decrement counter action is performed with the associated attachment counter.1871

53

The OpenACC® API Version 3.4 2.7. Data Clauses

ii. If the attachment counter for var is now zero, a detach pointer action is per-1872

formed.1873

b) A decrement counter action is performed with the associate structured reference1874

counter.1875

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1876

2.7.7 copy clause1877

The copy clause may appear on structured data and compute constructs and on declare direc-1878

tives.1879

Only the following modifiers may appear in the optional modifier-list: always, alwaysin, alwaysout1880

or capture.1881

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1882

capture modifier, no action is taken; otherwise, the copy clause behaves as follows:1883

• At entry to the region:1884

1. If var is not present and is not a null pointer, an allocate memory action is performed.1885

2. If var is not present or if an always or alwaysin modifier appears, a transfer in1886

action is performed.1887

3. An increment counter action is performed with the associated structured reference counter.1888

4. If var is a pointer reference, an attach pointer action is performed, followed by an1889

increment counter action on the associated attachment counter.1890

• At exit from the region:1891

– If the structured reference counter for var is zero, no action is taken.1892

– Otherwise,1893

1. If var is a pointer reference, a decrement counter action is performed with the as-1894

sociated attachment counter1895

2. If the associated attachment counter is now zero, a detach pointer action is per-1896

formed.1897

3. A decrement counter action is performed with the structured associated reference1898

counter.1899

4. If both structured and dynamic reference counters are now zero or if an always1900

or alwaysout modifier appears, a transfer out action is performed.1901

5. If both structured and dynamic reference counters are now zero, a deallocate memory1902

action is performed.1903

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1904

For compatibility with OpenACC 2.0, present_or_copy and pcopy are alternate names for1905

copy.1906

54

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.8 copyin clause1907

The copyin clause may appear on structured data and compute constructs, on declare direc-1908

tives, and on enter data directives.1909

Only the following modifiers may appear in the optional modifier-list: always, alwaysin or readonly.1910

Additionally, on structured data and compute constructs capture modifier may appear.1911

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1912

capture modifier, no action is taken; otherwise, the copyin clause behaves as follows:1913

• At entry to a region, the structured reference counter is used. On an enter data directive,1914

the dynamic reference counter is used.1915

1. If var is not present and is not a null pointer, an allocate memory action is performed.1916

2. If var is not present or if an always or alwaysin modifier appears, a transfer in1917

action is performed.1918

3. If var is a pointer reference, an attach pointer action is performed followed by an1919

increment counter action with the associated attachment counter.1920

4. An increment counter action is performed with the appropriate associated reference1921

counter.1922

• At exit from the region:1923

– If the structured reference counter for var is zero, no action is taken.1924

– Otherwise,1925

1. If var is a pointer reference, a decrement counter action is performed on the asso-1926

ciated attachment counter.1927

2. If var is a pointer reference and the associated attachment counter is now zero, a1928

detach pointer action is performed.1929

3. A decrement counter action is performed with the associated structured reference1930

counter.1931

4. If both structured and dynamic reference counters are now zero, a deallocate memory1932

action is performed.1933

If the optional readonly modifier appears, then the implementation may assume that the data1934

referenced by var-list is never written to within the applicable region.1935

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1936

For compatibility with OpenACC 2.0, present_or_copyin and pcopyin are alternate names1937

for copyin.1938

An enter data directive with a copyin clause is functionally equivalent to a call to the acc_copyin1939

API routine, as described in Section 3.2.18.1940

55

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.9 copyout clause1941

The copyout clause may appear on structured data and compute constructs, on declare di-1942

rectives, and on exit data directives. The clause may optionally have a zero modifier if the1943

copyout clause appears on a structured data or compute construct.1944

Only the following modifiers may appear in the optional modifier-list: always, alwaysout or zero.1945

Additionally, on structured data and compute constructs capture modifier may appear.1946

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1947

capture modifier, no action is taken; otherwise, the copyout clause behaves as follows:1948

• At entry to a region:1949

1. If var is not present and is not a null pointer, an allocate memory action is performed. If1950

a zero modifier appears, the memory is initialized to zero.1951

2. If var is a pointer reference, an attach pointer action is performed, followed by an1952

increment counter action on the associated attachment counter.1953

3. An increment counter action is performed with the associated structured reference counter.1954

• At exit from a region, the structured reference counter is used. On an exit data directive,1955

the dynamic reference counter is used.1956

– If the appropriate reference counter for var is zero, no action is taken.1957

– Otherwise,1958

1. If var is a pointer reference, a decrement counter action is performed on the asso-1959

ciated attachment counter.1960

2. If var is a pointer reference and the associated attachment counter is now zero, a1961

detach pointer action is performed.1962

3. The reference count is updated as follows:1963

* On an exit data directive with a finalize clause, a reset counter action1964

is performed to the dynamic reference.1965

* Otherwise, a decrement counter action is performed with the appropriate asso-1966

ciated reference counter.1967

4. If both structured and dynamic reference counters are now zero or an always or1968

alwaysout modifier appears, a transfer out action is performed.1969

5. If both structured and dynamic reference counters are now zero, a deallocate memory1970

action is performed.1971

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1972

For compatibility with OpenACC 2.0, present_or_copyout and pcopyout are alternate1973

names for copyout.1974

An exit data directive with a copyout clause and with or without a finalize clause is func-1975

tionally equivalent to a call to the acc_copyout_finalize or acc_copyout API routine,1976

respectively, as described in Section 3.2.19.1977

56

The OpenACC® API Version 3.4 2.7. Data Clauses

2.7.10 create clause1978

The create clause may appear on structured data and compute constructs, on declare direc-1979

tives, and on enter data directives.1980

Only the following modifiers may appear in the optional modifier-list: zero. Additionally, on struc-1981

tured data and compute constructs capture modifier may appear.1982

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1983

capture modifier, no action is taken; otherwise, the create clause behaves as follows:1984

• At entry to a region, the structured reference counter is used. On an enter data directive,1985

the dynamic reference counter is used.1986

1. If var is not present and is not a null pointer, an allocate memory action is performed. If1987

a zero modifier appears, the memory is initialized to zero.1988

2. If var is a pointer reference, an attach pointer action is performed, followed by an1989

increment counter action on the associated attachment counter.1990

3. An increment counter action is performed on the appropriate associated reference counter.1991

• At exit from the region:1992

– If the structured reference counter for var is zero, no action is taken.1993

– Otherwise,1994

1. If var is a pointer reference, a decrement counter action is performed on the asso-1995

ciated attachment counter.1996

2. If var is a pointer reference and the associated attachment counter is now zero, a1997

detach pointer action is performed.1998

3. A decrement counter action is performed with the associated structured reference1999

counter.2000

4. If both structured and dynamic reference counters are zero, a deallocate memory2001

action is performed.2002

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.2003

For compatibility with OpenACC 2.0, present_or_create and pcreate are alternate names2004

for create.2005

An enter data directive with a create clause is functionally equivalent to a call to the acc_create2006

API routine, as described in Section 3.2.18, except the directive may perform an attach action for a2007

pointer reference.2008

2.7.11 no create clause2009

The no_create clause may appear on structured data and compute constructs.2010

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2011

taken; otherwise, the no_create clause behaves as follows:2012

• At entry to the region:2013

57

The OpenACC® API Version 3.4 2.7. Data Clauses

– If var is present and is not a null pointer, an increment counter action is performed with2014

the structured reference counter.2015

– If var is present and is a pointer reference,2016

1. an increment counter action is performed on the associated attachment counter,2017

2. and if the associated attachment counter is now one, an attach pointer action is2018

performed.2019

– If var is not present, no action is performed, and any device code in this construct will2020

use the local memory address for var.2021

• At exit from the region:2022

– If the structured reference counter for var is zero or var is a null pointer, no action is2023

taken.2024

– Otherwise,2025

1. If var is a pointer reference,2026

a) a decrement counter action is performed on the associated attachment counter,2027

b) and if the associated attachment counter is now zero, a detach pointer action is2028

performed.2029

2. A decrement counter action is performed with the structured reference counter.2030

3. If both structured and dynamic reference counters are zero, a deallocate memory2031

action is performed.2032

2.7.12 delete clause2033

The delete clause may appear on exit data directives.2034

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2035

taken; otherwise, the delete clause behaves as follows:2036

• If the dynamic reference counter for var is zero, no action is taken.2037

• Otherwise,2038

1. If var is a pointer reference,2039

a) a decrement counter action is performed on the associated attachment counter,2040

b) and if the associated attachment counter is now zero, a detach pointer action is2041

performed.2042

2. If var is not a null pointer, the dynamic reference counter is updated, as follows:2043

– On an exit data directive with a finalize clause, a reset counter action is2044

performed on the associated dynamic reference counter.2045

– Otherwise, a decrement counter action is performed with the associated dynamic2046

reference counter.2047

58

The OpenACC® API Version 3.4 2.7. Data Clauses

3. If both structured and dynamic reference counters are now zero, a deallocate memory2048

action is performed.2049

An exit data directive with a delete clause and with or without a finalize clause is func-2050

tionally equivalent to a call to the acc_delete_finalize or acc_delete API routine, re-2051

spectively, as described in Section 3.2.19.2052

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.2053

2.7.13 attach clause2054

The attach clause may appear on structured data and compute constructs and on enter data2055

directives. Each var argument to an attach clause must be a C or C++ pointer or a Fortran variable2056

or array with the pointer or allocatable attribute.2057

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2058

taken; otherwise, the attach clause behaves as follows:2059

• At entry to a region or at an enter data directive, an attach pointer action is performed2060

followed by an increment counter action with the associated attachment counter.2061

• At exit from the region,2062

1. a decrement counter action is performed with the associated attachment counter,2063

2. and if the associated attachment counter is now zero, a detach pointer action is per-2064

formed.2065

2.7.14 detach clause2066

The detach clause may appear on exit data directives. Each var argument to a detach clause2067

must be a C or C++ pointer or a Fortran variable or array with the pointer or allocatable2068

attribute.2069

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2070

taken; otherwise, the detach clause behaves as follows:2071

• If there is a finalize clause on the exit data directive, a reset counter action with the2072

attachment counter is performed. Otherwise, a decrement counter action is performed with2073

the associated attachment counter.2074

• If the attachment counter is now zero, a detach pointer action is performed.2075

H H
2076

Examples2077

2078

• The code below contains two copy clauses for variables x and y respectively. As the2079

capture modifier is used on the copy clause for y, the parallel loop always updates a2080

discrete copy of y from the original, regardless of whether the original variable y is allocated2081

in shared memory or not. The parallel loop may update the original or device copy of x2082

depending on the original allocation.2083

59

The OpenACC® API Version 3.4 2.7. Data Clauses

integer :: x(N), y(N)2084

! If x is in shared memory, no actions are performed,2085

! otherwise an allocate device memory and transfer in/out2086

! actions are performed.2087

!$acc data copy(x)2088

2089

! Since the capture modifier is used in the copy clause,2090

! an allocate device-accessible memory and transfer in/out2091

! actions always occur and the discrete copy of y is2092

! accessed in the parallel loop.2093

!$acc parallel loop copy(capture:y)2094

do i= 1, N2095

! Updates original x or a device copy depending on the2096

! memory x is allocated in.2097

x(i) = x(i) + 12098

! Always updates a discrete copy of y.2099

y(i) = y(i) + 12100

end do2101

!$acc end data2102

• In the following code, a variable x within a nested data region becomes captured in the en-2103

closed compute region. Depending on where x was originally allocated, creating its discrete2104

copy may occur at different points in the program, resulting in different values of x being2105

used within the parallel loop. Writing code in this manner can lead to reduced portability2106

across targets with differing memory architectures.2107

integer :: x(N)2108

x = 02109

! If x is in shared memory, no action is performed,2110

! otherwise allocate in device memory, transfer in/out and2111

! present increment actions are performed.2112

!$acc data copy(x)2113

x = 12114

! If x is in shared memory, allocate in device-accessible2115

! memory, and transfer in/out actions are performed for2116

! the copy clause below due to the capture modifier.2117

! Otherwise, only the present increment counter action will2118

! be performed as the device copy of x has already been2119

! created previously.2120

!$acc parallel loop copy(capture:x)2121

do i=1,N2122

! If the copy of x was created for the first data clause2123

! this loop updates its values from 0 to 1 but if it was2124

! created for the second data clause the updated values2125

! will be from 1 to 2.2126

x(i) = x(i) + 12127

end do2128

!$acc end data2129

• In the following code, a variable x within a nested data region is captured at the beginning of2130

the outer region. Regardless of how x is allocated, the descrete copy will always be created at2131

the start of the nested data region, ensuring that the updated value used in the parallel region2132

remains consistent across platforms with different memory architectures.2133

60

The OpenACC® API Version 3.4 2.7. Data Clauses

integer :: x(N)2134

x = 02135

! Regardless of the memory type for the original x allocation,2136

! allocate and transfer in/out actions will be performed for2137

! the clause below due to the capture modifier. Its discrete copy2138

! lifetime is bound to the structured data region.2139

!$acc data copy(capture:x)2140

x = 12141

! Even if x was allocated in the shared memory originally2142

! it became captured with a discrete copy in the data construct2143

! above, this means that for the following copy clause only2144

! the present counter actions will be performed.2145

!$acc parallel loop copy(x)2146

do i=1,N2147

! The update of x here will always result in values 1.2148

x(i) = x(i) + 12149

end do2150

!$acc end data2151

• In the code below, the use of the capture modifier on the subroutine’s local allocation B2152

ensures that no data race occurs when accessing B within asynchronous compute regions,2153

even if B is allocated in shared memory. The original shared memory allocation of B may be2154

reused for subsequent local allocations after the subroutine exits, even while the asynchronous2155

compute regions on the device may not yet have completed. However, with the capture2156

modifier a copy of B is created for the duration of the capturing asynchronous data region,2157

which outlives the enclosed asynchronous compute regions.2158

subroutine work(A, N)2159

integer :: i, N2160

real, dimension(N), intent(inout) :: A2161

real, dimension(N) :: B2162

2163

! A discrete copy of B is created here.2164

!$acc data create(capture:B(:)) async(1)2165

2166

! The captured copy of B is used in the enclosed2167

! compute regions.2168

2169

!$acc kernels async(1)2170

B(:) = 1.02171

!$acc end kernels2172

2173

!$acc parallel loop present(A(1:N),B(1:N)) async(1)2174

do i=1,N2175

A(i) = A(i) + B(i)2176

end do2177

2178

! When this asynchronous data region completes, B’s2179

! captured copy ends its lifetime, which may be after2180

! the subroutine exits, and therefore the original2181

! allocation of B ends its lifetime.2182

!$acc end data2183

end2184

61

The OpenACC® API Version 3.4 2.8. Host Data Construct

• Despite the use of the capturemodifier on the subroutine’s local allocation B, the following2185

example still contains a data race and therefore demonstrates an illegal code pattern. Although2186

the asynchronous compute regions access a discrete copy of B in a race-free manner, a data2187

race is possible at the end of the data construct — specifically during the transfer out2188

action, when the discrete copy of B is written back to the original. This race condition may2189

arise because the original shared memory allocation of Bmight be reused for subsequent local2190

allocations before the completion of the asynchronous data region and the compute regions it2191

encloses.2192

subroutine work(A, N)2193

integer :: i, N2194

real, dimension(N), intent(inout) :: A2195

real, dimension(N) :: B2196

2197

! A discrete copy of B is created here.2198

!$acc data copyout(capture:B(:)) async(1)2199

2200

! The captured copy of B is used in the enclosed2201

! compute regions.2202

2203

!$acc kernels async(1)2204

B(:) = 1.02205

!$acc end kernels2206

2207

!$acc parallel loop present(A(1:N),B(1:N)) async(1)2208

do i=1,N2209

A(i) = A(i) + B(i)2210

end do2211

2212

! When this asynchronous data region completes, B’s2213

! captured copy ends its lifetime, and the transfer2214

! out actions is performed. This action may occur2215

! after the subroutine exits and the original allocation2216

! of B ends its lifetime. This results in a data race2217

! updating the original location of B which is no longer2218

! in scope.2219

!$acc end data2220

end2221

N N2222

2.8 Host Data Construct2223

Summary2224

The host_data construct makes the address of data in device-accessible memory available on the2225

host.2226

Syntax2227

In C and C++, the syntax of the OpenACC host_data construct is2228

#pragma acc host_data clause-list new-line2229

structured block2230

and in Fortran, the syntax is2231

62

The OpenACC® API Version 3.4 2.8. Host Data Construct

!$acc host_data clause-list2232

structured block2233

!$acc end host_data2234

or2235

!$acc host_data clause-list2236

block construct2237

[!$acc end host_data]2238

where clause is one of the following:2239

use_device(var-list)2240

if(condition)2241

if_present2242

Description2243

This construct is used to make the address of data in device-accessible memory available in host2244

code.2245

Restrictions2246

• A var in a use_device clause must be the name of a variable or array.2247

• At least one use_device clause must appear.2248

• At most one if clause may appear.2249

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in2250

use_device clauses.2251

2.8.1 use device clause2252

The use_device clause tells the compiler to use device-accessible memory address of any var in2253

var-list in code within the construct. In particular, this may be used to pass the device address of2254

var to optimized procedures written in a lower-level API. If var is a null pointer, the same value is2255

used for the device address. Otherwise, when there is no if_present clause, and either there is2256

no if clause or the condition in the if clause evaluates to true, the var in var-list must be present2257

in device-accessible memory due to data regions or data lifetimes that contain this construct. For2258

data in shared memory which is not a captured variable, the device address is the same as the host2259

address.2260

2.8.2 if clause2261

The if clause is optional. When an if clause appears and the condition evaluates to false, the2262

compiler will not replace the addresses of any var in code within the construct. When there is no if2263

clause, or when an if clause appears and the condition evaluates to true, the compiler will replace2264

the addresses as described in the previous subsection.2265

2.8.3 if present clause2266

When an if_present clause appears on the directive, the compiler will only replace the address2267

of any var which appears in var-list that is present in device-accessible memory for the current2268

device.2269

63

The OpenACC® API Version 3.4 2.9. Loop Construct

2.9 Loop Construct2270

Summary2271

The OpenACC loop construct applies to a loop which must immediately follow this directive. The2272

loop construct can describe what type of parallelism to use to execute the loop and declare private2273

vars and reduction operations.2274

Syntax2275

In C and C++, the syntax of the loop construct is2276

#pragma acc loop [clause-list] new-line2277

for loop2278

In Fortran, the syntax of the loop construct is2279

!$acc loop [clause-list]2280

do loop2281

where clause is one of the following:2282

collapse([force:] n)2283

gang [(gang-arg-list)]2284

worker [([num:]int-expr)]2285

vector [([length:]int-expr)]2286

seq2287

independent2288

auto2289

tile(size-expr-list)2290

device_type(device-type-list)2291

private(var-list)2292

reduction(operator:var-list)2293

where gang-arg is one of:2294

[num:]int-expr2295

dim:int-expr2296

static:size-expr2297

and gang-arg-list may have at most one num, one dim, and one static argument, and where2298

size-expr is one of:2299

*2300

int-expr2301

2302

Some clauses are only valid in the context of a kernels construct; see the descriptions below.2303

An orphaned loop construct is a loop construct that has no parent compute construct.2304

A loop construct is data-independent if it has an independent clause that is determined explic-2305

itly, implicitly, or from an auto clause. A loop construct is sequential if it has a seq clause that2306

is determined explicitly or from an auto clause.2307

When do-loop is a do concurrent, the OpenACC loop construct applies to the loop for each2308

index in the concurrent-header. The loop construct can describe what type of parallelism to use2309

64

The OpenACC® API Version 3.4 2.9. Loop Construct

to execute all the loops, and declares all indices appearing in the concurrent-header to be implicitly2310

private. If the loop construct that is associated with do concurrent is combined with a compute2311

construct then concurrent-locality is processed as follows: variables appearing in a local are treated2312

as appearing in a private clause; variables appearing in a local init are treated as appearing in a2313

firstprivate clause; variables appearing in a shared are treated as appearing in a copy clause;2314

and a default(none) locality spec implies a default(none) clause on the compute construct. If2315

the loop construct is not combined with a compute construct, the behavior is implementation-2316

defined.2317

Restrictions2318

• Only the collapse, gang, worker, vector, seq, independent, auto, and tile2319

clauses may follow a device_type clause.2320

• The int-expr argument to the worker and vector clauses must be invariant in the kernels2321

region.2322

• A loop associated with a loop construct that does not have a seq clause must be written to2323

meet all of the following conditions:2324

– The loop variable must be of integer, C/C++ pointer, or C++ random-access iterator2325

type.2326

– The loop variable must monotonically increase or decrease in the direction of its termi-2327

nation condition.2328

– The loop trip count must be computable in constant time when entering the loop con-2329

struct.2330

For a C++ range-based for loop, the loop variable identified by the above conditions is the2331

internal iterator, such as a pointer, that the compiler generates to iterate the range. It is not the2332

variable declared by the for loop.2333

• Only one of the seq, independent, and auto clauses may appear.2334

• A gang, worker, or vector clause may not appear if a seq clause appears.2335

• A loop construct with a gang, worker, or vector clause must not lexically enclose2336

another loop construct with a gang, worker, or vector clause specifying an equal or2337

higher level of parallelism unless the loop constructs have different parent compute scopes.2338

For example, in a loop nest that contains no interleaved compute constructs or procedures, a2339

gang(dim:1) loop must not enclose a gang(dim:3) loop or be enclosed by a worker2340

loop, but a seq loop is permitted at any nesting level.2341

• At most one gang clause may appear on a loop construct.2342

• A tile and collapse clause may not appear on loop that is associated with do concurrent.2343

2.9.1 collapse clause2344

The collapse clause is used to specify how many nested loops are associated with the loop2345

construct. The argument to the collapse clause must be a positive, non-zero integral-constant-2346

expression. If no collapse clause appears, only the immediately following loop is associated2347

with the loop construct.2348

65

The OpenACC® API Version 3.4 2.9. Loop Construct

If more than one loop is associated with the loop construct, the iterations of all the associated loops2349

are all scheduled according to the rest of the clauses. The trip count for all loops associated with2350

the collapse clause must be computable and invariant in all the loops. The particular integer2351

type used to compute the trip count for the collapsed loops is implementation defined. However, the2352

integer type used for the trip count has at least the precision of each loop variable of the associated2353

loops.2354

It is implementation-defined whether a gang, worker or vector clause on the construct is ap-2355

plied to each loop, or to the linearized iteration space.2356

The associated loops are the n nested loops that immediately follow the loop construct. If the2357

force modifier does not appear, then the associated loops must be tightly nested. If the force2358

modifier appears, then any intervening code may be executed multiple times as needed to perform2359

the collapse.2360

Restrictions2361

• Each associated loop, except the innermost, must contain exactly one loop or loop nest.2362

• Intervening code must not contain other OpenACC directives, loops, or calls to API routines,2363

even when the force modifier appears.2364

H H
2365

Examples2366

2367

• In the code below, a compiler may choose to move the call to tan inside the inner loop in2368

order to collapse the two loops, resulting in redundant execution of the intervening code.2369

#pragma acc parallel loop collapse(force:2)2370

{2371

for (int i = 0; i < 360; i++)2372

{2373

// This operation may be executed additional times in order2374

// to perform the forced collapse.2375

tanI = tan(a[i]);2376

for (int j = 0; j < N; j++)2377

{2378

// Do Something.2379

}2380

}2381

}2382

N N2383

2.9.2 gang clause2384

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2385

the gang clause behaves as follows. It specifies that the iterations of the associated loop or loops are2386

to be executed in parallel by distributing the iterations among the gangs along the associated dimen-2387

sion created by the compute construct. The associated dimension is the value of the dim argument,2388

if it appears, or is dimension one. The dim argument must be an integral-constant-expression that2389

66

The OpenACC® API Version 3.4 2.9. Loop Construct

evaluates to the value 1, 2, or 3. If the associated dimension is d, a loop construct with the gang2390

clause transitions a compute region from gang-redundant mode to gang-partitioned mode on di-2391

mension d (GRd to GPd). The number of gangs in dimension d is controlled by the parallel2392

construct; the num argument is not allowed. The loop iterations must be data independent, except2393

for vars which appear in a reduction clause or which are modified in an atomic region.2394

When the parent compute construct is a kernels construct, the gang clause behaves as follows.2395

It specifies that the iterations of the associated loop or loops are to be executed in parallel across the2396

gangs. The dim argument is not allowed. An argument with no keyword or with the num keyword2397

is allowed only when the num_gangs does not appear on the kernels construct. If an argument2398

with no keyword or an argument after the num keyword appears, it specifies how many gangs to use2399

to execute the iterations of this loop.2400

The scheduling of loop iterations to gangs is not specified unless the static modifier appears as2401

an argument. If the static modifier appears with an integer expression, that expression is used2402

as a chunk size. If the static modifier appears with an asterisk, the implementation will select a2403

chunk size. The iterations are divided into chunks of the selected chunk size, and the chunks are2404

assigned to gangs starting with gang zero and continuing in round-robin fashion. Two gang loops2405

in the same parallel region with the same number of iterations, and with static clauses with the2406

same argument, will assign the iterations to gangs in the same manner. Two gang loops in the2407

same kernels region with the same number of iterations, the same number of gangs to use, and with2408

static clauses with the same argument, will assign the iterations to gangs in the same manner.2409

A gang(dim:1) clause is implied on a data-independent loop construct without an explicit2410

gang clause if the following conditions hold while ignoring gang, worker, and vector clauses2411

on any sequential loop constructs and while treating implicit routine directives as if they are2412

explicit:2413

• This loop construct’s parent compute construct, if any, is not a kernels construct.2414

• An explicit gang(dim:1) clause would be permitted on this loop construct. For example,2415

it must not conflict with a nested loop construct or an enclosing procedure’s routine2416

directive, as specified in Sections 2.9 and 2.15.1.2417

• For every lexically enclosing data-independent loop construct, either an explicit gang(dim:1)2418

clause would not be permitted on the enclosing loop construct, or the loop constructs have2419

different parent compute scopes.2420

Note: An important consequence of the above specification is that, before implicitly determining2421

gang clauses on loop constructs, the implementation must analyze any auto clauses to determine2422

if loop constructs are sequential, and it must determine relevant implicit routine directives (see2423

the implicit gang clause example in Section 2.15.1).2424

Note: As a performance optimization, the implementation might select different levels of paral-2425

lelism for a loop construct than specified by explicitly or implicitly determined clauses as long2426

as it can prove program semantics are preserved. In particular, the implementation must consider2427

semantic differences between gang-redundant and gang-partitioned mode. For example, in a series2428

of tightly nested, data-independent loop constructs, implementations often move gang-partitioning2429

from one loop construct to another without affecting semantics.2430

Note: If the auto or device_type clause appears on a loop construct, it is the programmer’s2431

responsibility to ensure that program semantics are the same regardless of whether the auto clause2432

67

The OpenACC® API Version 3.4 2.9. Loop Construct

is treated as independent or seq and regardless of the device type for which the program is2433

compiled. In particular, the programmer must consider the effect on both explicitly and implicitly2434

determined gang clauses and thus on gang-redundant and gang-partitioned mode. Examples in2435

Sections 2.9.11 and 2.15.1 demonstrate how this issue for the auto clause might affect portability2436

across OpenACC implementations.2437

2.9.3 worker clause2438

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2439

the worker clause specifies that the iterations of the associated loop or loops are to be executed2440

in parallel by distributing the iterations among the multiple workers within a single gang. A loop2441

construct with a worker clause causes a gang to transition from worker-single mode to worker-2442

partitioned mode. In contrast to the gang clause, the worker clause first activates additional2443

worker-level parallelism and then distributes the loop iterations across those workers. No argu-2444

ment is allowed. The loop iterations must be data independent, except for vars which appear in a2445

reduction clause or which are modified in an atomic region.2446

When the parent compute construct is a kernels construct, the worker clause specifies that the2447

iterations of the associated loop or loops are to be executed in parallel across the workers within2448

a single gang. An argument is allowed only when the num_workers does not appear on the2449

kernels construct. The optional argument specifies how many workers per gang to use to execute2450

the iterations of this loop.2451

All workers will complete execution of their assigned iterations before any worker proceeds beyond2452

the end of the loop.2453

2.9.4 vector clause2454

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2455

the vector clause specifies that the iterations of the associated loop or loops are to be executed in2456

vector or SIMD mode. A loop construct with a vector clause causes a worker to transition from2457

vector-single mode to vector-partitioned mode. Similar to the worker clause, the vector clause2458

first activates additional vector-level parallelism and then distributes the loop iterations across those2459

vector lanes. The operations will execute using vectors of the length specified or chosen for the2460

parallel region. The loop iterations must be data independent, except for vars which appear in a2461

reduction clause or which are modified in an atomic region.2462

When the parent compute construct is a kernels construct, the vector clause specifies that the2463

iterations of the associated loop or loops are to be executed with vector or SIMD processing. An2464

argument is allowed only when the vector_length does not appear on the kernels construct.2465

If an argument appears, the iterations will be processed in vector strips of that length; if no argument2466

appears, the implementation will choose an appropriate vector length.2467

All vector lanes will complete execution of their assigned iterations before any vector lane proceeds2468

beyond the end of the loop.2469

2.9.5 seq clause2470

The seq clause specifies that the associated loop or loops are to be executed sequentially by the2471

accelerator. This clause will override any automatic parallelization or vectorization.2472

68

The OpenACC® API Version 3.4 2.9. Loop Construct

2.9.6 independent clause2473

The independent clause tells the implementation that the loop iterations must be data indepen-2474

dent, except for vars which appear in a reduction clause or which are modified in an atomic2475

region. This allows the implementation to generate code to execute the iterations in parallel with no2476

synchronization.2477

A loop construct with no auto or seq clause is treated as if it has the independent clause2478

when it is an orphaned loop construct or its parent compute construct is a parallel construct.2479

Note2480

• It is likely a programming error to use the independent clause on a loop if any iteration2481

writes to a variable or array element that any other iteration also writes or reads, except for2482

vars which appear in a reduction clause or which are modified in an atomic region.2483

• The implementation may be restricted in the levels of parallelism it can apply by the presence2484

of loop constructs with gang, worker, or vector clauses for outer or inner loops.2485

2.9.7 auto clause2486

The auto clause specifies that the implementation must analyze the loop and determine whether the2487

loop iterations are data-independent. If it determines that the loop iterations are data-independent,2488

the implementation must treat the auto clause as if it is an independent clause. If not, or if it2489

is unable to make a determination, it must treat the auto clause as if it is a seq clause, and it must2490

ignore any gang, worker, or vector clauses on the loop construct.2491

When the parent compute construct is a kernels construct, a loop construct with no independent2492

or seq clause is treated as if it has the auto clause.2493

Note: Combining the auto and gang clauses might impact a program’s portability across Open-2494

ACC implementations. See Section 2.9.2 for details.2495

2.9.8 tile clause2496

The tile clause specifies that the implementation will split each loop in the loop nest into two2497

loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile2498

clause is a list of one or more tile sizes, where each tile size is a positive, non-zero integral-constant-2499

expression or an asterisk. If there are n tile sizes in the list, the loop construct must be immediately2500

followed by n tightly nested loops. The first argument in the size-expr-list corresponds to the inner-2501

most loop of the n associated loops, and the last element corresponds to the outermost associated2502

loop. If the tile size is an asterisk, the implementation will choose an appropriate value. Each loop2503

in the nest will be split, or strip-mined, into two loops, an outer tile loop and an inner element loop.2504

The trip count of the element loop will be limited to the corresponding tile size from the size-expr-2505

list. The tile loops will be reordered to be outside all the element loops, and the element loops will2506

all be inside the tile loops.2507

If the vector clause appears on the loop construct, the vector clause is applied to the element2508

loops. If the gang clause appears on the loop construct, the gang clause is applied to the tile2509

loops. If the worker clause appears on the loop construct, the worker clause is applied to the2510

element loops if no vector clause appears, and to the tile loops otherwise.2511

69

The OpenACC® API Version 3.4 2.9. Loop Construct

Restrictions2512

• Because the associated loops are tightly nested, each associated loop, except the innermost,2513

must contain exactly one loop or loop nest.2514

2.9.9 device type clause2515

The device_type clause is described in Section 2.4 Device-Specific Clauses.2516

2.9.10 private clause2517

The private clause on a loop construct specifies that a copy of each item in var-list will be2518

created. If the body of the loop is executed in vector-partitioned mode, a copy of the item is created2519

for each thread associated with each vector lane. If the body of the loop is executed in worker-2520

partitioned vector-single mode, a copy of the item is created for each worker and shared across the2521

set of threads associated with all the vector lanes of that worker. Otherwise, a copy of the item is2522

created for each gang in all dimensions and shared across the set of threads associated with all the2523

vector lanes of all the workers of that gang.2524

Restrictions2525

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private2526

clauses.2527

H H
2528

Examples2529

2530

• In the example below, tmp is private to each worker of every gang but shared across all the2531

vector lanes of a worker.2532

!$acc parallel2533

!$acc loop gang2534

do k = 1, n2535

!$acc loop worker private(tmp)2536

do j = 1, n2537

!a single vector lane in each gang and worker assigns to tmp2538

tmp = b(j,k) + c(j,k)2539

!$acc loop vector2540

do i = 1, n2541

!all vector lanes use the result of the above update to tmp2542

a(i,j,k) = a(i,j,k) + tmp/div2543

enddo2544

enddo2545

enddo2546

!$acc end parallel2547

• In the example below, tmp is private to each gang in every dimension.2548

!$acc parallel num_gangs(3,50,150)2549

!$acc loop gang(dim:3)2550

do k = 1, n2551

!$acc loop gang(dim:2) private(tmp)2552

70

The OpenACC® API Version 3.4 2.9. Loop Construct

do j = 1, n2553

!all gangs along dimension 1 execute in gang redundant mode and2554

!assign to tmp which is private to each gang in all dimensions2555

tmp = b(j,k) + c(j,k)2556

!$acc loop gang(dim:1)2557

do i = 1, n2558

a(i,j,k) = a(i,j,k) + tmp/div2559

enddo2560

enddo2561

enddo2562

!$acc end parallel2563

N N2564

2.9.11 reduction clause2565

The reduction clause specifies a reduction operator and one or more vars. For each reduction2566

var, a private copy is created in the same manner as for a private clause on the loop construct,2567

and initialized for that operator; see the table in Section 2.5.15 reduction clause. After the loop, the2568

values for each thread are combined using the specified reduction operator, and the result combined2569

with the value of the original var and stored in the original var. If the original var is not private,2570

this update occurs by the end of the compute region, and any access to the original var is undefined2571

within the compute region. Otherwise, the update occurs at the end of the loop. If the reduction2572

var is an array or subarray, the reduction operation is logically equivalent to applying that reduction2573

operation to each array element of the array or subarray individually. If the reduction var is a com-2574

posite variable, the reduction operation is logically equivalent to applying that reduction operation2575

to each member of the composite variable individually.2576

If a variable is involved in a reduction that spans multiple nested loops where two or more of those2577

loops have associated loop directives, a reduction clause containing that variable must appear2578

on each of those loop directives.2579

Restrictions2580

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,2581

an array element, or a subarray (refer to Section 2.7.1).2582

• Reduction clauses on nested constructs for the same reduction var must have the same reduc-2583

tion operator.2584

• Every var in a reduction clause appearing on an orphaned loop construct must be private.2585

• The restrictions for a reduction clause on a compute construct listed in in Section 2.5.152586

reduction clause also apply to a reduction clause on a loop construct.2587

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in2588

reduction clauses.2589

• See Section 2.6.2 Variables with Implicitly Determined Data Attributes for a restriction re-2590

quiring certain loop reduction variables to have explicit data clauses on their parent compute2591

constructs.2592

• A reduction clause may not appear on a loop directive that has a gang clause with a2593

dim: argument whose value is greater than 1.2594

71

The OpenACC® API Version 3.4 2.9. Loop Construct

• A reduction clause may not appear on a loop directive that has a gang clause and2595

is within a compute construct that has a num_gangs clause with more than one explicit2596

argument.2597

H H
2598

Examples2599

2600

• x is not private at the loop directive below, so its reduction normally updates x at the end2601

of the parallel region, where gangs synchronize. When possible, the implementation might2602

choose to partially update x at the loop exit instead, or fully if num_gangs(1) were added2603

to the parallel directive. However, portable applications cannot rely on such early up-2604

dates, so accesses to x are undefined within the parallel region outside the loop.2605

int x = 0;2606

#pragma acc parallel copy(x)2607

{2608

// gang-shared x undefined2609

#pragma acc loop gang worker vector reduction(+:x)2610

for (int i = 0; i < I; ++i)2611

x += 1; // vector-private x modified2612

// gang-shared x undefined2613

} // gang-shared x updated for gang/worker/vector reduction2614

// x = I2615

• x is private at each of the innermost two loop directives below, so each of their reductions2616

updates x at the loop’s exit. However, x is not private at the outer loop directive, so its2617

reduction updates x by the end of the parallel region instead.2618

int x = 0;2619

#pragma acc parallel copy(x)2620

{2621

// gang-shared x undefined2622

#pragma acc loop gang reduction(+:x)2623

for (int i = 0; i < I; ++i) {2624

#pragma acc loop worker reduction(+:x)2625

for (int j = 0; j < J; ++j) {2626

#pragma acc loop vector reduction(+:x)2627

for (int k = 0; k < K; ++k) {2628

x += 1; // vector-private x modified2629

} // worker-private x updated for vector reduction2630

} // gang-private x updated for worker reduction2631

}2632

// gang-shared x undefined2633

} // gang-shared x updated for gang reduction2634

// x = I * J * K2635

• At each loop directive below, x is private and y is not private due to the data clauses on2636

the parallel directive. Thus, each reduction updates x at the loop exit, but each reduction2637

updates y by the end of the parallel region instead.2638

int x = 0, y = 0;2639

72

The OpenACC® API Version 3.4 2.9. Loop Construct

#pragma acc parallel firstprivate(x) copy(y)2640

{2641

// gang-private x = 0; gang-shared y undefined2642

#pragma acc loop seq reduction(+:x,y)2643

for (int i = 0; i < I; ++i) {2644

x += 1; y += 2; // loop-private x and y modified2645

} // gang-private x updated for trivial seq reduction2646

// gang-private x = I; gang-shared y undefined2647

#pragma acc loop worker reduction(+:x,y)2648

for (int i = 0; i < I; ++i) {2649

x += 1; y += 2; // worker-private x and y modified2650

} // gang-private x updated for worker reduction2651

// gang-private x = 2 * I; gang-shared y undefined2652

#pragma acc loop vector reduction(+:x,y)2653

for (int i = 0; i < I; ++i) {2654

x += 1; y += 2; // vector-private x and y modified2655

} // gang-private x updated for vector reduction2656

// gang-private x = 3 * I; gang-shared y undefined2657

} // gang-shared y updated for gang/seq/worker/vector reductions2658

// x = 0; y = 3 * I * 22659

• The examples below are equivalent. That is, the reduction clause on the combined con-2660

struct applies to the loop construct but implies a copy clause on the parallel construct. Thus,2661

x is not private at the loop directive, so the reduction updates x by the end of the parallel2662

region.2663

int x = 0;2664

#pragma acc parallel loop worker reduction(+:x)2665

for (int i = 0; i < I; ++i) {2666

x += 1; // worker-private x modified2667

} // gang-shared x updated for gang/worker reduction2668

// x = I2669

2670

int x = 0;2671

#pragma acc parallel copy(x)2672

{2673

// gang-shared x undefined2674

#pragma acc loop worker reduction(+:x)2675

for (int i = 0; i < I; ++i) {2676

x += 1; // worker-private x modified2677

}2678

// gang-shared x undefined2679

} // gang-shared x updated for gang/worker reduction2680

// x = I2681

• If the implementation treats the auto clause below as independent, the loop executes in2682

gang-partitioned mode and thus examines every element of arr once to compute arr’s max-2683

imum. However, if the implementation treats auto as seq, the gangs redundantly compute2684

arr’s maximum, but the combined result is still arr’s maximum. Either way, because x is2685

not private at the loop directive, the reduction updates x by the end of the parallel region.2686

int x = 0;2687

const int *arr = /*array of I values*/;2688

#pragma acc parallel copy(x)2689

73

The OpenACC® API Version 3.4 2.9. Loop Construct

{2690

// gang-shared x undefined2691

#pragma acc loop auto gang reduction(max:x)2692

for (int i = 0; i < I; ++i) {2693

// complex loop body2694

x = x < arr[i] ? arr[i] : x; // gang- or loop-private2695

// x modified2696

}2697

// gang-shared x undefined2698

} // gang-shared x updated for gang or gang/seq reduction2699

// x = arr maximum2700

• The following example is the same as the previous one except that the reduction operator is2701

now +. While gang-partitioned mode sums the elements of arr once, gang-redundant mode2702

sums them once per gang, producing a result many times arr’s sum. This example shows2703

that, for some reduction operators, combining auto, gang, and reduction is typically2704

non-portable.2705

int x = 0;2706

const int *arr = /*array of I values*/;2707

#pragma acc parallel copy(x)2708

{2709

// gang-shared x undefined2710

#pragma acc loop auto gang reduction(+:x)2711

for (int i = 0; i < I; ++i) {2712

// complex loop body2713

x += arr[i]; // gang or loop-private x modified2714

}2715

// gang-shared x undefined2716

} // gang-shared x updated for gang or gang/seq reduction2717

// x = arr sum possibly times number of gangs2718

• At the following loop directive, x and z are private, so the loop reductions are not across2719

gangs even though the loop is gang-partitioned. Nevertheless, the reduction clause on the2720

loop directive is important as the loop is also vector-partitioned. These reductions are only2721

partial reductions relative to the full set of values computed by the loop, so the reduction2722

clause is needed on the parallel directive to reduce across gangs.2723

int x = 0, y = 0;2724

#pragma acc parallel copy(x) reduction(+:x,y)2725

{2726

int z = 0;2727

#pragma acc loop gang vector reduction(+:x,z)2728

for (int i = 0; i < I; ++i) {2729

x += 1; z += 2; // vector-private x and z modified2730

} // gang-private x and z updated for vector reduction2731

y += z; // gang-private y modified2732

} // gang-shared x and y updated for gang reduction2733

// x = I; y = I * 22734

N N2735

2736

74

The OpenACC® API Version 3.4 2.10. Cache Directive

2.10 Cache Directive2737

Summary2738

When the cache directive appears at the top of (inside of) a loop, it suggests array elements or2739

subarrays would benefit by being fetched into the highest level of the cache for the body of the loop.2740

Syntax2741

In C and C++, the syntax of the cache directive is2742

#pragma acc cache([readonly:]var-list) new-line2743

In Fortran, the syntax of the cache directive is2744

!$acc cache([readonly:]var-list)2745

A var in a cache directive must be a single array element or a contiguous subarray. In C and C++,2746

the subarray is an array name followed by an element index or an extended array range specification2747

with start and length in brackets, such as2748

arr[elem] or arr[lower:length]2749

where the element index or lower bound is an integral-constant-expression, loop invariant, or the2750

for loop variable plus or minus an integral-constant-expression or loop invariant, and the length is2751

an integral-constant-expression.2752

In Fortran, the subarray is an array name followed by a comma-separated list of range specifications2753

in parentheses, with an element index and/or optional lower and upper bound subscripts, such as2754

arr(elem) or arr(lower:upper) or arr(lower:) or arr(:upper) or2755

arr(lower:upper,elem) or arr(lower:upper,lower2:upper2)2756

The element index or lower bounds must be an integral-constant-expression, loop invariant, or the2757

do loop variable plus or minus an integral-constant-expression or loop invariant; moreover the2758

difference between the corresponding upper and lower bounds must be a constant. If either the2759

lower or upper bounds are missing, the declared or allocated bounds of the array, if known, are2760

used. Range specifications may be mixed.2761

If the optional readonly modifier appears, then the implementation may assume that the data2762

referenced by any var in that directive is never written to within the applicable region.2763

Restrictions2764

• If an array element or a subarray is listed in a cache directive, all references to that array2765

during execution of that loop iteration must not refer to elements of the array outside the index2766

range specified in the cache directive.2767

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in cache2768

directives.2769

2.11 Combined Constructs2770

Summary2771

The combined OpenACC parallel loop, serial loop, and kernels loop constructs are2772

shortcuts for specifying a loop construct nested immediately inside a parallel, serial, or2773

kernels construct. The meaning is identical to explicitly specifying a parallel, serial, or2774

75

The OpenACC® API Version 3.4 2.11. Combined Constructs

kernels construct containing a loop construct. Any clause that is allowed on a parallel or2775

loop construct is allowed on the parallel loop construct; any clause allowed on a serial or2776

loop construct is allowed on a serial loop construct; and any clause allowed on a kernels2777

or loop construct is allowed on a kernels loop construct.2778

Syntax2779

In C and C++, the syntax of the parallel loop construct is2780

#pragma acc parallel loop [clause-list] new-line2781

for loop2782

In Fortran, the syntax of the parallel loop construct is2783

!$acc parallel loop [clause-list]2784

do loop2785

[!$acc end parallel loop]2786

The associated structured block is the loop which must immediately follow the directive. Any of2787

the parallel or loop clauses valid in a parallel region may appear.2788

In C and C++, the syntax of the serial loop construct is2789

#pragma acc serial loop [clause-list] new-line2790

for loop2791

In Fortran, the syntax of the serial loop construct is2792

!$acc serial loop [clause-list]2793

do loop2794

[!$acc end serial loop]2795

The associated structured block is the loop which must immediately follow the directive. Any of2796

the serial or loop clauses valid in a serial region may appear.2797

In C and C++, the syntax of the kernels loop construct is2798

#pragma acc kernels loop [clause-list] new-line2799

for loop2800

In Fortran, the syntax of the kernels loop construct is2801

!$acc kernels loop [clause-list]2802

do loop2803

[!$acc end kernels loop]2804

The associated structured block is the loop which must immediately follow the directive. Any of2805

the kernels or loop clauses valid in a kernels region may appear.2806

A private or reduction clause on a combined construct is treated as if it appeared on the2807

loop construct. In addition, a reduction clause on a combined construct implies a copy clause2808

as described in Section 2.6.2.2809

Restrictions2810

• The restrictions for the parallel, serial, kernels, and loop constructs apply.2811

76

The OpenACC® API Version 3.4 2.12. Atomic Construct

2.12 Atomic Construct2812

Summary2813

An atomic construct ensures that a specific storage location is accessed and/or updated atomically,2814

preventing simultaneous reading and writing by gangs, workers, and vector threads that could result2815

in indeterminate values.2816

Syntax2817

In C and C++, the syntax of the atomic constructs is:2818

#pragma acc atomic [atomic-clause] [if(condition)] new-line2819

expression-stmt2820

or:2821

#pragma acc atomic capture [if(condition)] new-line2822

structured block2823

Where atomic-clause is one of read, write, update, or capture. The expression-stmt is an2824

expression statement with one of the following forms:2825

If the atomic-clause is read:2826

v = x;2827

If the atomic-clause is write:2828

x = expr;2829

If the atomic-clause is update or no clause appears:2830

x++;2831

x--;2832

++x;2833

--x;2834

x binop= expr;2835

x = x binop expr;2836

x = expr binop x;2837

If the atomic-clause is capture:2838

v = x++;2839

v = x--;2840

v = ++x;2841

v = --x;2842

v = x binop= expr;2843

v = x = x binop expr;2844

v = x = expr binop x;2845

The structured-block is a structured block with one of the following forms:2846

{v = x; x binop= expr;}2847

{x binop= expr; v = x;}2848

{v = x; x = x binop expr;}2849

{v = x; x = expr binop x;}2850

77

The OpenACC® API Version 3.4 2.12. Atomic Construct

{x = x binop expr; v = x;}2851

{x = expr binop x; v = x;}2852

{v = x; x = expr;}2853

{v = x; x++;}2854

{v = x; ++x;}2855

{++x; v = x;}2856

{x++; v = x;}2857

{v = x; x--;}2858

{v = x; --x;}2859

{--x; v = x;}2860

{x--; v = x;}2861

In the preceding expressions:2862

• x and v (as applicable) are both l-value expressions with scalar type.2863

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2864

the same storage location.2865

• Neither of v and expr (as applicable) may access the storage location designated by x.2866

• Neither of x and expr (as applicable) may access the storage location designated by v.2867

• expr is an expression with scalar type.2868

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.2869

• binop, binop=, ++, and -- are not overloaded operators.2870

• The expression x binop expr must be mathematically equivalent to x binop (expr). This2871

requirement is satisfied if the operators in expr have precedence greater than binop, or by2872

using parentheses around expr or subexpressions of expr.2873

• The expression expr binop x must be mathematically equivalent to (expr) binop x. This2874

requirement is satisfied if the operators in expr have precedence equal to or greater than binop,2875

or by using parentheses around expr or subexpressions of expr.2876

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2877

unspecified.2878

In Fortran the syntax of the atomic constructs is:2879

!$acc atomic read [if(condition)]2880

capture-statement2881

[!$acc end atomic]2882

or2883

!$acc atomic write [if(condition)]2884

write-statement2885

[!$acc end atomic]2886

or2887

!$acc atomic [update] [if(condition)]2888

update-statement2889

78

The OpenACC® API Version 3.4 2.12. Atomic Construct

[!$acc end atomic]2890

or2891

!$acc atomic capture [if(condition)]2892

update-statement2893

capture-statement2894

!$acc end atomic2895

or2896

!$acc atomic capture [if(condition)]2897

capture-statement2898

update-statement2899

!$acc end atomic2900

or2901

!$acc atomic capture [if(condition)]2902

capture-statement2903

write-statement2904

!$acc end atomic2905

where write-statement has the following form (if atomic-clause is write or capture):2906

x = expr2907

where capture-statement has the following form (if atomic-clause is capture or read):2908

v = x2909

and where update-statement has one of the following forms (if atomic-clause is update, capture,2910

or no clause appears):2911

x = x operator expr2912

x = expr operator x2913

x = intrinsic procedure name(x, expr-list)2914

x = intrinsic procedure name(expr-list, x)2915

In the preceding statements:2916

• x and v (as applicable) are both scalar variables of intrinsic type.2917

• x must not be an allocatable variable.2918

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2919

the same storage location.2920

• None of v, expr, and expr-list (as applicable) may access the same storage location as x.2921

• None of x, expr, and expr-list (as applicable) may access the same storage location as v.2922

• expr is a scalar expression.2923

• expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic procedure name2924

refers to iand, ior, or ieor, exactly one expression must appear in expr-list.2925

79

The OpenACC® API Version 3.4 2.12. Atomic Construct

• intrinsic procedure name is one of max, min, iand, ior, or ieor. operator is one of +,2926

*, -, /, .and., .or., .eqv., or .neqv..2927

• The expression x operator expr must be mathematically equivalent to x operator (expr).2928

This requirement is satisfied if the operators in expr have precedence greater than operator,2929

or by using parentheses around expr or subexpressions of expr.2930

• The expression expr operator x must be mathematically equivalent to (expr) operator x.2931

This requirement is satisfied if the operators in expr have precedence equal to or greater than2932

operator, or by using parentheses around expr or subexpressions of expr.2933

• intrinsic procedure name must refer to the intrinsic procedure name and not to other program2934

entities.2935

• operator must refer to the intrinsic operator and not to a user-defined operator. All assign-2936

ments must be intrinsic assignments.2937

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2938

unspecified.2939

An atomic construct with the read clause forces an atomic read of the location designated by x.2940

An atomic construct with the write clause forces an atomic write of the location designated by2941

x.2942

An atomic construct with the update clause forces an atomic update of the location designated2943

by x using the designated operator or intrinsic. Note that when no clause appears, the semantics2944

are equivalent to atomic update. Only the read and write of the location designated by x are2945

performed mutually atomically. The evaluation of expr or expr-list need not be atomic with respect2946

to the read or write of the location designated by x.2947

An atomic construct with the capture clause forces an atomic update of the location designated2948

by x using the designated operator or intrinsic while also capturing the original or final value of2949

the location designated by x with respect to the atomic update. The original or final value of the2950

location designated by x is written into the location designated by v depending on the form of the2951

atomic construct structured block or statements following the usual language semantics. Only2952

the read and write of the location designated by x are performed mutually atomically. Neither the2953

evaluation of expr or expr-list, nor the write to the location designated by v, need to be atomic with2954

respect to the read or write of the location designated by x.2955

For all forms of the atomic construct, any combination of two or more of these atomic constructs2956

enforces mutually exclusive access to the locations designated by x. To avoid race conditions, all2957

accesses of the locations designated by x that could potentially occur in parallel must be protected2958

with an atomic construct.2959

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic re-2960

gions to the same storage location x even if those accesses occur during the execution of a reduction2961

clause.2962

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a2963

multiple of the size of x), then the behavior of the atomic region is implementation-defined.2964

The if clause specifies a condition where an atomic operation is required for correct parallel exe-2965

cution. If condition evaluates to true or no if clause appears, the atomic operation is required. If2966

80

The OpenACC® API Version 3.4 2.13. Declare Directive

condition evaluates to false, the atomic directive can be safely ignored. Note: Conditional atom-2967

ics are useful when different parallelism strategies are employed for different architectures; it is the2968

programmer’s responsibility to ensure that the atomic operation is safe to ignore if condition is false.2969

Although not required, conditional atomics are recommended to be used with conditions that can2970

be evaluated at compile-time, including the acc_on_device routine.2971

Restrictions2972

• All atomic accesses to the storage locations designated by x throughout the program are2973

required to have the same type and type parameters.2974

• Storage locations designated by x must be less than or equal in size to the largest available2975

native atomic operator width.2976

• At most one if clause may appear.2977

2.13 Declare Directive2978

Summary2979

A declare directive is used in the declaration section of a Fortran subroutine, function, block2980

construct, or module, or following a variable declaration in C or C++. It can specify that a var is to2981

be allocated in device memory for the duration of the implicit data region of a function, subroutine2982

or program, and specify whether the data values are to be transferred from local memory to device2983

memory upon entry to the implicit data region, and from device memory to local memory upon exit2984

from the implicit data region. These directives create a visible device copy of the var.2985

Syntax2986

In C and C++, the syntax of the declare directive is:2987

#pragma acc declare clause-list new-line2988

In Fortran the syntax of the declare directive is:2989

!$acc declare clause-list2990

where clause is one of the following:2991

copy([modifier-list :] var-list)2992

copyin([modifier-list :] var-list)2993

copyout([modifier-list :] var-list)2994

create([modifier-list :] var-list)2995

present(var-list)2996

deviceptr(var-list)2997

device_resident(var-list)2998

link(var-list)2999

The associated region is the implicit region associated with the function, subroutine, or program in3000

which the directive appears. If the directive appears in the declaration section of a Fortran module3001

subprogram, for a Fortran common block, or in a C or C++ global or namespace scope, the associated3002

region is the implicit region for the whole program. The copy, copyin, copyout, present,3003

and deviceptr data clauses are described in Section 2.7 Data Clauses.3004

81

The OpenACC® API Version 3.4 2.13. Declare Directive

Restrictions3005

• A declare directive must be in the same scope as the declaration of any var that appears3006

in the clauses of the directive or any scope within a C or C++ function or Fortran function,3007

subroutine, or program.3008

• At least one clause must appear on a declare directive.3009

• A var in a declare directive must be a variable or array name, or a Fortran common block3010

name between slashes.3011

• A var may appear at most once in all the clauses of declare directives for a function,3012

subroutine, program, or module.3013

• In Fortran, assumed-size dummy arrays may not appear in a declare directive.3014

• In Fortran, pointer arrays may appear, but pointer association is not preserved in device mem-3015

ory.3016

• In a Fortran module declaration section, only create, copyin, device_resident, and3017

link clauses are allowed.3018

• In Fortran, any create or device_resident clause affecting a variable with the allo-3019

catable or pointer attribute must be visible at the allocation and deallocation of that variable.3020

• In C or C++ global or namespace scope, only create, copyin, deviceptr,3021

device_resident and link clauses are allowed.3022

• C and C++ extern variables may only appear in create, copyin, deviceptr,3023

device_resident and link clauses on a declare directive.3024

• In C or C++, the link clause must appear at global or namespace scope or the arguments3025

must be extern variables. In Fortran, the link clause must appear in a module declaration3026

section, or the arguments must be common block names enclosed in slashes.3027

• In C or C++, a longjmp call in the region must return to a setjmp call within the region.3028

• In C++, an exception thrown in the region must be handled within the region.3029

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional dummy arguments3030

in data clauses, including device_resident clauses.3031

2.13.1 device resident clause3032

Summary3033

The device_resident clause specifies that the memory for the named variables is allocated in3034

the current device memory and not in local memory. The host may not be able to access variables in3035

a device_resident clause. The accelerator data lifetime of global variables or common blocks3036

that appear in a device_resident clause is the entire execution of the program.3037

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable will3038

be allocated in and deallocated from the current device memory when the host thread executes3039

an allocate or deallocate statement for that variable, if the current device is a non-shared3040

memory device. If the variable has the Fortran pointer attribute, it may be allocated or deallocated3041

82

The OpenACC® API Version 3.4 2.13. Declare Directive

by the host in the current device memory, or may appear on the left hand side of a pointer assignment3042

statement, if the right hand side variable itself appears in a device_resident clause.3043

In Fortran, the argument to a device_resident clause may be a common block name enclosed3044

in slashes; in this case, all declarations of the common block must have a matching3045

device_resident clause. In this case, the common block will be statically allocated in de-3046

vice memory, and not in local memory. The common block will be available to accelerator routines;3047

see Section 2.15 Procedure Calls in Compute Regions.3048

In a Fortran module declaration section, a var in a device_resident clause will be available to3049

accelerator subprograms.3050

In C or C++ global scope, a var in a device_resident clause will be available to accelerator3051

routines. A C or C++ extern variable may appear in a device_resident clause only if the3052

actual declaration and all extern declarations are also followed by device_resident clauses.3053

2.13.2 create clause3054

For data in shared memory, no action is taken.3055

For data not in shared memory, the create clause on a declare directive behaves as follows,3056

for each var in var-list:3057

• At entry to an implicit data region where the declare directive appears:3058

– If var is present, a present increment action with the structured reference counter is3059

performed. If var is a pointer reference, an attach action is performed.3060

– Otherwise, a create action with the structured reference counter is performed. If var is3061

a pointer reference, an attach action is performed.3062

• At exit from an implicit data region where the declare directive appears:3063

– If the structured reference counter for var is zero, no action is taken.3064

– Otherwise, a present decrement action with the structured reference counter is per-3065

formed. If var is a pointer reference, a detach action is performed. If both structured3066

and dynamic reference counters are zero, a delete action is performed.3067

If the declare directive appears in a global context, then the data in var-list is statically allocated3068

in device memory and the structured reference counter is set to one.3069

In Fortran, if a variable var in var-list has the Fortran allocatable or pointer attribute, then for a3070

non-shared memory device:3071

• For an allocate statement for var or an intrinsic assignment statement of var that will3072

allocate memory, memory will be allocated in both local memory as well as in the current3073

device memory and the dynamic reference counter will be set to one.3074

• For a deallocate statement for var or an intrinsic assignment statement of var that will3075

deallocate memory, memory will be deallocated from both local memory as well as the current3076

device memory and the dynamic reference counter will be set to zero.3077

• In Fortran, an intrinsic assignment statement that reallocates var behaves the same as a deal-3078

location followed by an allocation of var. Note: No update of device memory will occur as3079

83

The OpenACC® API Version 3.4 2.14. Executable Directives

the result of an intrinsic assignment statement on the host; if data coherency between the host3080

and device is required, it is the user’s responsibility.3081

• An allocate, deallocate, or intrinsic assignment statement on a device other than the3082

host device will result in undefined behavior.3083

• If the structured reference counter is not zero, a runtime error is issued.3084

In Fortran, if a variable var in var-list has the Fortran pointer attribute, then it may appear on the3085

left hand side of a pointer assignment statement, if the right hand side variable itself appears in a3086

create clause.3087

Errors3088

• In Fortran, an acc_error_present error is issued at a deallocate statement if the struc-3089

tured reference counter is not zero.3090

See Section 5.2.2.3091

2.13.3 link clause3092

The link clause is used for large global host static data that is referenced within an accelerator3093

routine and that has a dynamic data lifetime on the device. The link clause specifies that only a3094

global link for the named variables is statically created in accelerator memory. The host data struc-3095

ture remains statically allocated and globally available. The device data memory will be allocated3096

only when the global variable appears on a data clause for a data construct, compute construct, or3097

enter data directive. The arguments to the link clause must be global data. A declare link3098

clause must be visible everywhere the global variables or common block variables are explicitly or3099

implicitly used in a data clause, compute construct, or accelerator routine. The global variable or3100

common block variables may be used in accelerator routines. The accelerator data lifetime of vari-3101

ables or common blocks that appear in a link clause is the data region that allocates the variable or3102

common block with a data clause, or from the execution of the enter data directive that allocates3103

the data until an exit data directive deallocates it or until the end of the program.3104

2.14 Executable Directives3105

2.14.1 Init Directive3106

Summary3107

The init directive initializes the runtime for the given device or devices of the given device type.3108

This can be used to isolate any initialization cost from the computational cost, when collecting3109

performance statistics. If no device type appears all devices will be initialized. An init directive3110

may be used in place of a call to the acc_init or acc_init_device runtime API routine, as3111

described in Section 3.2.7.3112

Syntax3113

In C and C++, the syntax of the init directive is:3114

#pragma acc init [clause-list] new-line3115

In Fortran the syntax of the init directive is:3116

!$acc init [clause-list]3117

84

The OpenACC® API Version 3.4 2.14. Executable Directives

where clause is one of the following:3118

device_type (device-type-list)3119

device_num (int-expr)3120

if(condition)3121

3122

device type clause3123

The device_type clause specifies the type of device that is to be initialized in the runtime. If the3124

device_type clause appears, then the acc-current-device-type-var for the current thread is set to3125

the argument value. If no device_num clause appears then all devices of this type are initialized.3126

device num clause3127

The device_num clause specifies the device id to be initialized. If the device_num clause3128

appears, then the acc-current-device-num-var for the current thread is set to the argument value. If3129

no device_type clause appears, then the specified device id will be initialized for all available3130

device types.3131

if clause3132

The if clause is optional; when there is no if clause, the implementation will generate code to3133

perform the initialization unconditionally. When an if clause appears, the implementation will3134

generate code to conditionally perform the initialization only when the condition evaluates to true.3135

Restrictions3136

• This directive may only appear in code executed on the host.3137

• If the directive is called more than once without an intervening acc_shutdown call or3138

shutdown directive, with a different value for the device type argument, the behavior is3139

implementation-defined.3140

• If some accelerator regions are compiled to only use one device type, using this directive with3141

a different device type may produce undefined behavior.3142

Errors3143

• An acc_error_device_type_unavailable error is issued if a device_type clause3144

appears and no device of that device type is available, or if no device_type clause appears3145

and no device of the current device type is available.3146

• An acc_error_device_unavailable error is issued if a device_num clause ap-3147

pears and the int-expr is not a valid device number or that device is not available, or if no3148

device_num clause appears and the current device is not available.3149

• An acc_error_device_init error is issued if the device cannot be initialized.3150

See Section 5.2.2.3151

2.14.2 Shutdown Directive3152

85

The OpenACC® API Version 3.4 2.14. Executable Directives

Summary3153

The shutdown directive shuts down the connection to the given device or devices of the given3154

device type, and frees any associated runtime resources. This ends all data lifetimes in device3155

memory, which effectively sets structured and dynamic reference counters to zero. A shutdown3156

directive may be used in place of a call to the acc_shutdown or acc_shutdown_device3157

runtime API routine, as described in Section 3.2.8.3158

Syntax3159

In C and C++, the syntax of the shutdown directive is:3160

#pragma acc shutdown [clause-list] new-line3161

In Fortran the syntax of the shutdown directive is:3162

!$acc shutdown [clause-list]3163

where clause is one of the following:3164

device_type (device-type-list)3165

device_num (int-expr)3166

if(condition)3167

3168

device type clause3169

The device_type clause specifies the type of device that is to be disconnected from the runtime.3170

If no device_num clause appears then all devices of this type are disconnected.3171

device num clause3172

The device_num clause specifies the device id to be disconnected.3173

If no clauses appear then all available devices will be disconnected.3174

if clause3175

The if clause is optional; when there is no if clause, the implementation will generate code3176

to perform the shutdown unconditionally. When an if clause appears, the implementation will3177

generate code to conditionally perform the shutdown only when the condition evaluates to true.3178

Restrictions3179

• This directive may only appear in code executed on the host.3180

Errors3181

• An acc_error_device_type_unavailable error is issued if a device_type clause3182

appears and no device of that device type is available,3183

• An acc_error_device_unavailable error is issued if a device_num clause ap-3184

pears and the int-expr is not a valid device number or that device is not available.3185

• An acc_error_device_shutdown error is issued if there is an error shutting down the3186

device.3187

See Section 5.2.2.3188

86

The OpenACC® API Version 3.4 2.14. Executable Directives

2.14.3 Set Directive3189

Summary3190

The set directive provides a means to modify internal control variables using directives. Each form3191

of the set directive is functionally equivalent to a matching runtime API routine.3192

Syntax3193

In C and C++, the syntax of the set directive is:3194

#pragma acc set [clause-list] new-line3195

In Fortran the syntax of the set directive is:3196

!$acc set [clause-list]3197

where clause is one of the following3198

default_async (async-argument)3199

device_num (int-expr)3200

device_type (device-type-list)3201

if(condition)3202

default async clause3203

The default_async clause specifies the asynchronous queue that is used if no queue appears3204

and changes the value of acc-default-async-var for the current thread to the argument value. If the3205

value is acc_async_default, the value of acc-default-async-var will revert to the initial value,3206

which is implementation-defined. A set default_async directive is functionally equivalent to3207

a call to the acc_set_default_async runtime API routine, as described in Section 3.2.14.3208

device num clause3209

The device_num clause specifies the device number to set as the default device for accelerator3210

regions and changes the value of acc-current-device-num-var for the current thread to the argument3211

value. If the value of device_num argument is negative, the runtime will revert to the default be-3212

havior, which is implementation-defined. A set device_num directive is functionally equivalent3213

to the acc_set_device_num runtime API routine, as described in Section 3.2.4.3214

device type clause3215

The device_type clause specifies the device type to set as the default device type for accelerator3216

regions and sets the value of acc-current-device-type-var for the current thread to the argument3217

value. If the value of the device_type argument is zero or the clause does not appear, the3218

selected device number will be used for all attached accelerator types. A set device_type3219

directive is functionally equivalent to a call to the acc_set_device_type runtime API routine,3220

as described in Section 3.2.2.3221

if clause3222

The if clause is optional; when there is no if clause, the implementation will generate code to3223

perform the set operation unconditionally. When an if clause appears, the implementation will3224

generate code to conditionally perform the set operation only when the condition evaluates to true.3225

87

The OpenACC® API Version 3.4 2.14. Executable Directives

Restrictions3226

• This directive may only appear in code executed on the host.3227

• Passing default_async the value of acc_async_noval has no effect.3228

• Passing default_async the value of acc_async_sync will cause all asynchronous3229

directives in the default asynchronous queue to become synchronous.3230

• Passing default_async the value of acc_async_default will restore the default3231

asynchronous queue to the initial value, which is implementation-defined.3232

• At least one default_async, device_num, or device_type clause must appear.3233

• Two instances of the same clause may not appear on the same directive.3234

Errors3235

• An acc_error_device_type_unavailable error is issued if a device_type clause3236

appears, and no device of that device type is available.3237

• An acc_error_device_unavailable error is issued if a device_num clause ap-3238

pears, and the int-expr is not a valid device number.3239

• An acc_error_invalid_async error is issued if a default_async clause appears,3240

and the argument is not a valid async-argument.3241

See Section 5.2.2.3242

2.14.4 Update Directive3243

Summary3244

The update directive is used during the lifetime of accelerator data to update vars in local memory3245

with values from the corresponding data in device-accessible memory, or to update vars in device-3246

accessible memory with values from the corresponding data in local memory.3247

Syntax3248

In C and C++, the syntax of the update directive is:3249

#pragma acc update clause-list new-line3250

In Fortran the syntax of the update data directive is:3251

!$acc update clause-list3252

where clause is one of the following:3253

async [(async-argument)]3254

wait [(wait-argument)]3255

device_type(device-type-list)3256

if(condition)3257

if_present3258

self(var-list)3259

host(var-list)3260

device(var-list)3261

88

The OpenACC® API Version 3.4 2.14. Executable Directives

Multiple subarrays of the same array may appear in a var-list of the same or different clauses on the3262

same directive. For any var in var-list that is in shared memory and that is not a captured variable,3263

no data action will occur. When a device clause appears, then for each var in the associated3264

var-list an transfer in action is performed.3265

When a host or self clause appears, then for each var in the associated var-list an transfer out3266

action is performed.3267

The transfer actions are performed in the order in which they appear on the directive, from left to3268

right.3269

Restrictions3270

• At least one self, host, or device clause must appear on an update directive.3271

self clause3272

The self clause specifies that, for data not in shared memory or for captured variables, a transfer out3273

action for the vars in var-list is performed. Otherwise, no action is taken.3274

An update directive with the self clause is equivalent to a call to the acc_update_self3275

routine, described in Section 3.2.20.3276

host clause3277

The host clause is a synonym for the self clause.3278

device clause3279

The device clause specifies that a transfer in action for the vars in var-list is performed for data3280

not in shared memory or for the captured variables. Otherwise, no action is taken.3281

An update directive with the device clause is equivalent to a call to the acc_update_device3282

routine, described in Section 3.2.20.3283

if clause3284

The if clause is optional; when there is no if clause, the implementation will generate code to3285

perform the updates unconditionally. When an if clause appears, the implementation will generate3286

code to conditionally perform the updates only when the condition evaluates to true.3287

async clause3288

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.3289

wait clause3290

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.3291

if present clause3292

When an if_present clause appears on the directive, no action is taken for a var which appears3293

in var-list that is not present in the device-accessible memory of the current device.3294

89

The OpenACC® API Version 3.4 2.14. Executable Directives

Restrictions3295

• The update directive is executable. It must not appear in place of the statement following3296

an if, while, do, switch, or label in C or C++, or in place of the statement following a logical3297

if in Fortran.3298

• If no if_present clause appears on the directive, each var in var-list must be present in3299

the device-accessible memory of the current device.3300

• Only the async and wait clauses may follow a device_type clause.3301

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical3302

value; in C or C++, the condition must evaluate to a scalar integer value.3303

• Noncontiguous subarrays may appear. It is implementation-specific whether noncontiguous3304

regions are updated by using one transfer for each contiguous subregion, or whether the non-3305

contiguous data is packed, transferred once, and unpacked, or whether one or more larger3306

subarrays (no larger than the smallest contiguous region that contains the specified subarray)3307

are updated.3308

• In C and C++, a member of a struct or class may appear, including a subarray of a member.3309

Members of a subarray of struct or class type may not appear.3310

• In C and C++, if a subarray notation is used for a struct member, subarray notation may not3311

be used for any parent of that struct member.3312

• In Fortran, members of variables of derived type may appear, including a subarray of a mem-3313

ber. Members of subarrays of derived type may not appear.3314

• In Fortran, if array or subarray notation is used for a derived type member, array or subarray3315

notation may not be used for a parent of that derived type member.3316

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in self,3317

host, and device clauses.3318

Errors3319

• An acc_error_not_present error is issued if no if_present clause appears and3320

any var in a device or self clause is not present on the current device.3321

• An acc_error_partly_present error is issued if part of var is present in the current3322

device memory but all of var is not.3323

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.3324

See Section 5.2.2.3325

2.14.5 Wait Directive3326

See Section 2.16 Asynchronous Behavior for more information.3327

2.14.6 Enter Data Directive3328

See Section 2.6.6 Enter Data and Exit Data Directives for more information.3329

90

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

2.14.7 Exit Data Directive3330

See Section 2.6.6 Enter Data and Exit Data Directives for more information.3331

2.15 Procedure Calls in Compute Regions3332

This section describes how routines are compiled for an accelerator and how procedure calls are3333

compiled in compute regions. See Section 2.17.1 Optional Arguments for discussion of Fortran3334

optional arguments in procedure calls inside compute regions.3335

2.15.1 Routine Directive3336

Summary3337

The routine directive is used to tell the compiler to compile the definition for a procedure, such3338

as a function or C++ lambda, for an accelerator as well as for the host. The routine directive is3339

also used to tell the compiler the attributes of the procedure when called on the accelerator.3340

Syntax3341

In C and C++, the syntax of the routine directive is:3342

#pragma acc routine clause-list new-line3343

#pragma acc routine(name) clause-list new-line3344

In C and C++, the routine directive without a name may appear immediately before a function3345

definition, a function prototype, or a C++ lambda and applies to the function or C++ lambda. The3346

routine directive with a name may appear anywhere that a function prototype is allowed and3347

applies to the function or the C++ lambda in scope with that name. See Section A.3.4 for recom-3348

mended diagnostics for a routine directive with a name.3349

In Fortran the syntax of the routine directive is:3350

!$acc routine clause-list3351

!$acc routine(name) clause-list3352

In Fortran, the routine directive without a name may appear within the specification part of a3353

subroutine or function definition, or within an interface body for a subroutine or function in an3354

interface block, and applies to the containing subroutine or function. The routine directive with3355

a name may appear in the specification part of a subroutine, function or module, and applies to the3356

named subroutine or function.3357

The clause is one of the following:3358

gang [(dim:int-expr)]3359

worker3360

vector3361

seq3362

bind(name)3363

bind(string)3364

device_type(device-type-list)3365

nohost3366

A gang, worker, vector, or seq clause specifies the level of parallelism in the routine.3367

91

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

A procedure compiled with the routine directive for an accelerator is called an accelerator rou-3368

tine.3369

If no explicit routine directive applies to a procedure whose definition appears in the program unit3370

being compiled, then the implementation applies an implicit routine directive to that procedure3371

if any of the following conditions holds:3372

• The procedure is called or its address is accessed in a compute region.3373

• The procedure is a C++ lambda defined in an accelerator routine that has a nohost clause,3374

which is considered relevant below.3375

• The procedure is the parent compute scope of either:3376

– A loop construct. If it is data-independent without auto clause, then its explicit3377

gang, worker, and vector clauses are considered relevant below.3378

– A call to an accelerator routine whose routine directive has a gang, worker,3379

vector clause explicitly or implicitly determined, each of which is considered rele-3380

vant below.3381

The implicit routine directive is determined as follows:3382

• An implicit routine directive has a seq clause if the procedure is a C++ virtual function3383

or a Fortran type-bound procedure. Otherwise, from the set containing seq and all relevant3384

clauses identified above, the implicit routine directive then copies the highest level-of-3385

parallelism clause. Loop constructs that do not have any parallelism clauses identified above3386

are ignored when determining the enclosing routine’s parallelism. However, if a routine with3387

a parallelism clause is called within such a loop, its clause is still considered when selecting3388

the highest level of parallelism.3389

• A C++ lambda’s implicit routine directive also copies a nohost clause if the lambda is3390

defined in an accelerator routine that has a nohost clause or if it contains a call to an accel-3391

eration routine with nohost clause.3392

• When the implementation applies an implicit routine directive to a procedure, it must3393

recursively apply implicit routine directives to other procedures for which the above rules3394

specify relevant dependencies. Such dependencies can form a cycle, so the implementation3395

must take care to avoid infinite recursion. The implicit routine parallelism clause for the3396

procedures being called must be determined before determining the parallelism clause of the3397

caller procedure.3398

The implementation may apply predetermined routine directives with a seq clause to any pro-3399

cedures that it provides for an accelerator, such as those of base language standard libraries.3400

gang clause3401

The associated dimension is the value of the dim clause, if it appears, or is dimension one. The3402

dim argument must be an integral-constant-expression that evaluates to the value 1, 2, or 3.3403

The gang clause with dimension d specifies that the procedure can be the parent compute scope3404

of a loop or a call to a routine with a gang clause associated with dimension d or less, but it must3405

not be the parent compute scope of a loop or a call to a routine with a gang clause with dimension3406

greater than d.3407

92

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

worker clause3408

The worker clause specifies that the procedure can be the parent compute scope of a loop or a call3409

to a routine with a worker clause, but it must not be the parent compute scope of a loop or a call3410

to a routine with a gang clause. A loop in this procedure with an auto clause may be selected by3411

the compiler to execute in worker or vector mode. A call to this procedure must appear in code3412

that is executed in worker-single mode, though it may be in gang-redundant or gang-partitioned3413

mode. For instance, a procedure with a routine worker directive may be called from within a3414

loop that has the gang clause, but not from within a loop that has the worker clause.3415

vector clause3416

The vector clause specifies that the procedure can be the parent compute scope of a loop or a3417

call to a routine with a vector clause, but it must not be the parent compute scope of a loop or3418

a call to a routine with a gang or worker clause. A loop in this procedure with an auto clause3419

may be selected by the compiler to execute in vector mode, but not worker mode. A call to3420

this procedure must appear in code that is executed in vector-single mode, though it may be in3421

gang-redundant or gang-partitioned mode, and in worker-single or worker-partitioned mode. For3422

instance, a procedure with a routine vector directive may be called from within a loop that has3423

the gang clause or the worker clause, but not from within a loop that has the vector clause.3424

seq clause3425

The seq clause specifies that the procedure must not be the parent compute scope of a loop or a3426

call to a routine with a gang, worker, or vector clause. A loop in this procedure with an auto3427

clause will be executed in seq mode. A call to this procedure may appear in any mode.3428

bind clause3429

The bind clause specifies the name to use when calling the procedure on a device other than the3430

host. If the name is specified as an identifier, it is called as if that name were specified in the3431

language being compiled. If the name is specified as a string, the string is used for the procedure3432

name unmodified. A bind clause on a procedure definition behaves as if it had appeared on a3433

declaration by changing the name used to call the procedure on a device other than the host; however,3434

the procedure is not compiled for the device with either the original name or the name in the bind3435

clause.3436

If there is both a Fortran bind and an acc bind clause for a procedure definition then a call on the3437

host will call the Fortran bound name and a call on another device will call the name in the bind3438

clause.3439

device type clause3440

The device_type clause is described in Section 2.4 Device-Specific Clauses.3441

nohost clause3442

The nohost clause tells the compiler not to compile a version of this procedure for the host.3443

93

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

Restrictions3444

• Only the gang, worker, vector, seq and bind clauses may follow a device_type3445

clause.3446

• Exactly one of the gang, worker, vector, or seq clauses must appear.3447

• In C and C++, function static variables are not supported in functions to which a routine3448

directive applies.3449

• In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported3450

in subprograms to which a routine directive applies.3451

• A call to a procedure with a nohost clause must not appear in a compute construct that is3452

compiled for the host. See examples below.3453

• If a call to a procedure with a nohost clause appears in another procedure but outside any3454

compute construct, that other procedure must also have a nohost clause.3455

• A call to a procedure with a gang(dim:d) clause must appear in code that is executed3456

in gang-redundant mode in all dimensions d and lower. For instance, a procedure with a3457

gang(dim:2) clause may not be called from within a loop that has a gang(dim:1)3458

or a gang(dim:2) clause. The user needs to ensure that a call to a procedure with a3459

gang(dim:d) clause, when present in a region executing in GRe or GPe mode with e > d3460

and called by a gang along dimension e, is executed by all of its corresponding gangs along3461

dimension d.3462

• A bind clause may not bind to a routine name that has a visible bind clause.3463

• If a procedure has a bind clause on both the declaration and the definition then they both3464

must bind to the same name.3465

• In C and C++, a definition or use of a procedure must appear within the scope of at least3466

one explicit and applying routine directive if any appears in the same compilation unit.3467

An explicit routine directive’s scope is from the directive to the end of the compilation3468

unit. If the routine directive appears in the member list of a C++ class, then its scope also3469

extends in the same manner as any class member’s scope (e.g., it includes the bodies of all3470

other member functions).3471

H H
3472

Examples3473

3474

• A function, such as f below, requires a nohost clause if it contains accelerator-specific code3475

that cannot be compiled for the host. By default, some implementations compile all compute3476

constructs for the host in addition to accelerators. In that case, a call to f must not appear in3477

any compute construct or compilation will fail. However, f can appear in the bind clause of3478

another function, such as g below, that does not have a nohost clause, and a call to g can3479

appear in a compute construct. Thus, g is called when the compute construct is compiled for3480

the host, and f is called when the compute construct is compiled for accelerators.3481

#pragma acc routine seq nohost3482

void f() { /*accelerator implementation*/ }3483

94

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

3484

#pragma acc routine seq bind(f)3485

void g() { /*host implementation*/ }3486

3487

void h() {3488

#pragma acc parallel3489

g();3490

}3491

• In C, the restriction that a function’s definitions and uses must appear within any applying3492

routine directive’s scope has a simple interpretation: the routine directive must appear3493

first. This interpretation seems intuitive for the common case in C where prototypes, defini-3494

tions, and routine directives for a function, such as f below, appear at global scope.3495

void f();3496

void scopeA() {3497

#pragma acc parallel3498

f(); // nonconforming3499

}3500

// The routine directive’s scope is not f’s full scope.3501

// Instead, it starts at the routine directive.3502

#pragma acc routine(f) gang3503

void scopeB() {3504

#pragma acc parallel3505

f(); // conforming3506

}3507

void f() {} // conforming3508

• C++ classes permit forward references from member function bodies to other members de-3509

clared later. For example, immediately within class A below, g’s scope does not start until3510

after f’s definition. Nevertheless, within f’s body, g is in scope throughout. The same is true3511

for g’s routine directive. Thus, f’s call to g is conforming.3512

class A {3513

void f() {3514

#pragma acc parallel3515

g(); // conforming3516

}3517

#pragma acc routine gang3518

void g();3519

};3520

• In some places, C++ classes do not permit forward references. For example, in the return type3521

of a member function, a member typedef that is declared later is not in scope. Likewise, g’s3522

definition below is not fully within the scope of g’s routine directive even though its body3523

is, so its definition is nonconforming.3524

class A {3525

#pragma acc routine(f) gang3526

void f() {} // conforming3527

void g() {} // nonconforming3528

#pragma acc routine(g) gang3529

};3530

95

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

• The C++ scope resolution operator and using directive do not affect the scope of routine3531

directives. For example, the routine directive below is specified for the name f, which3532

resolves to A::f. Every reference to both A::f and C::f afterward is in the routine3533

directive’s scope, but the routine directive always applies to A::f and never C::f even3534

when referenced as just f.3535

namespace A {3536

void f();3537

namespace B {3538

#pragma acc routine(f) gang // applies to A::f3539

}3540

}3541

void g() {3542

#pragma acc parallel3543

A::f(); // conforming3544

}3545

void h() {3546

using A::f;3547

#pragma acc parallel3548

f(); // conforming3549

}3550

namespace C {3551

void f();3552

using namespace A::B;3553

void i() {3554

#pragma acc parallel3555

f(); // nonconforming3556

}3557

}3558

• As specified earlier in this section, before the implementation determines the implicit routine3559

directive for the procedure g, it must determine the implicit routine directive for the procedure3560

f that is called from g.3561

// step1: implicit #pragma acc routine vector3562

void f(){3563

#pragma acc loop vector3564

for (int i = 0; i < I; ++i)3565

;3566

};3567

// step2: implicit #pragma acc routine vector3568

void g() {3569

f(); // has implicit routine directive3570

}3571

void h() {3572

#pragma acc parallel loop gang worker3573

for (int i = 0; i < I; ++i)3574

g(); // calling function with vector parallelism3575

}3576

• Since the call site of the procedure is not taken into account when determining its routine par-3577

allelism, calling procedures may become illegal after their routine parallelism is determined3578

implicitly. In the example below, f is resolved to be a vector routine implicitly, this means3579

96

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

it is legal to call f from g since g is executing in vector-single mode, but calling f from the3580

loop in h is illegal as the loop iterations are partitions across vector lanes.3581

// implicit #pragma acc routine vector3582

void f(){3583

#pragma acc loop vector3584

for (int i = 0; i < I; ++i)3585

;3586

};3587

// executing in vector-signle mode.3588

#pragma acc routine vector3589

void g() {3590

f(); // has implicit vector routine directive3591

}3592

void h() {3593

#pragma acc parallel loop gang vector3594

for (int i = 0; i < I; ++i)3595

f(); // illegal to call a function with vector parallelism3596

// from within a loop partitioned across vector lanes.3597

}3598

• Based on the specification of implicit gang clauses in Section 2.9.2, the implementation must3599

determine the implicit routine directive for a procedure before it determines implicit gang3600

clauses on its orphaned loop constructs. This behavior minimizes the implicit routine3601

directive’s level of parallelism and thus maximizes the number of places the lambda can be3602

called. For example, the implicit routine directive for the C++ lambda f below has only3603

a vector clause so that f can be called within gang or worker loops. An orphaned loop3604

construct has an implicit gang clause only if, as in h below, it does not have an explicit gang3605

clause but gang parallelism appears elsewhere in the lambda, such as the call to g.3606

// step 1: implicit #pragma acc routine vector3607

auto f = []() {3608

#pragma acc loop vector // step 2: no implicit gang clause3609

for (int i = 0; i < I; ++i)3610

;3611

};3612

3613

#pragma acc routine gang3614

void g();3615

3616

// step 1: implicit #pragma acc routine gang3617

auto h = []() {3618

#pragma acc loop // step 2: implicit gang clause3619

for (int i = 0; i < I; ++i)3620

;3621

g();3622

};3623

• As specified earlier in this section, when the implementation determines the implicit routine3624

directive for a procedure, it must assume that the orphaned loops with the auto clauses are3625

data-dependent. This behavior can result in unexploited additional parallelism in such loops3626

in the procedures without the explicit routine directive. For example, within the C++ lambda3627

f below, the implementation treats auto as seq, then f’s implicit routine directive has a3628

97

The OpenACC® API Version 3.4 2.15. Procedure Calls in Compute Regions

seq clause, which permits the implementation to worker- or vector-partition h’s loop con-3629

struct but prevents parallelising the loop in f even if the implementation resolves the auto3630

clause as data-independent.3631

// step 1: implicit #pragma acc routine with seq3632

auto f = []() {3633

// step 2: auto -> seq3634

#pragma acc loop auto worker vector3635

for (int j = 0; j < J; ++j) {3636

// complex loop body3637

}3638

};3639

3640

#pragma acc routine seq3641

void g();3642

3643

void h() {3644

#pragma acc parallel num_gangs(NG)3645

// step 3: implicit gang, possibly worker or vector3646

#pragma acc loop3647

for (int i = 0; i < I; ++i) {3648

f();3649

g();3650

}3651

}3652

• By specifying a contract between a procedure and its callers, implicit routine directives3653

help to establish the semantics of OpenACC programs to facilitate both the user’s under-3654

standing of the behavior and also the implementation’s analysis and diagnostics. However,3655

as usual, the implementation is free to perform optimizations that preserve program seman-3656

tics. For example, the implicit routine directive for the C++ lambda f below has a seq3657

clause because f’s definition provides no means to determine a higher parallelism level and3658

because executing f’s loop constructs sequentially is compatible with any conceivable call3659

site. Nevertheless, observing that both of f’s loop constructs are data-independent and that3660

g’s call to f is in vector-single mode, the implementation might choose to inline a version of3661

f such that both loop constructs are vector-partitioned.3662

// implicit #pragma acc routine seq3663

auto f = []() {3664

#pragma acc loop auto // auto -> independent3665

for (int i = 0; i < I; ++i)3666

;3667

#pragma acc loop // implicit independent3668

for (int i = 0; i < I; ++i)3669

;3670

};3671

void g() {3672

#pragma acc parallel loop gang worker3673

for (int i = 0; i < I; ++i)3674

f(); // can inline with vector partitioning3675

}3676

• As specified earlier in this section, when the implementation determines the implicit routine3677

98

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

directive for a procedure it ignores the loop constructs without any explicit parallelism3678

clause, however the parallelism level set on any routine enclosed within such loop con-3679

structs is considered when determining the implicit routine parallelism. In the example below3680

the routine parallelism clause of bar is determined as vector implicitly, because it is taken3681

from the parallelism of foo even though foo is enclosed into the loop construct that has3682

no parallelism clause.3683

#pragma acc routine vector3684

void foo(){3685

...3686

}3687

// implicit #pragma acc routine vector3688

void bar(int n){3689

#pragma acc loop3690

for(int i=0; i<n; i++)3691

// bar’s routine parallelism is based on foo’s parallelism3692

// clause, because foo is inside the loop construct with3693

// no parallelism set.3694

foo();3695

}3696

3697

void f(){3698

// This loop can be parallelised as gang or worker loop.3699

#pragma acc parallel loop3700

for(int i=0; i<100; i++)3701

bar(100); // has implicit vector routine.3702

}3703

N N3704

2.15.2 Global Data Access3705

C or C++ global, file static, or extern variables or array, and Fortran module or common block vari-3706

ables or arrays, that are used in accelerator routines must appear in a declare directive in a create,3707

copyin, device_resident or link clause. If the data appears in a device_resident3708

clause, the routine directive for the procedure must include the nohost clause. If the data ap-3709

pears in a link clause, that data must have an active accelerator data lifetime by virtue of appearing3710

in a data clause for a data construct, compute construct, or enter data directive.3711

2.16 Asynchronous Behavior3712

This section describes the async clause, the wait clause, the wait directive, and the behavior of3713

programs that use asynchronous data movement, compute regions, and asynchronous API routines.3714

In this section and throughout the specification, the term async-argument means a nonnegative3715

scalar integer expression (int for C or C++, integer for Fortran), or one of the special values3716

acc_async_default, acc_async_noval, or acc_async_sync as defined in the C header3717

file and the Fortran openacc module. The special values are negative values, so as not to conflict3718

with a user-specified nonnegative async-argument. An async-argument is used in async clauses,3719

wait clauses, wait directives, and as an argument to various runtime routines.3720

The async-value of an async-argument is3721

99

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

• acc_async_sync if async-argument has a value equal to the special value acc_async_sync,3722

• the value of acc-default-async-var if async-argument has a value equal to the special value3723

acc_async_noval or acc_async_default,3724

• the value of the async-argument, if it is nonnegative,3725

• implementation-defined, otherwise.3726

The async-value is used to select the activity queue to which the clause or directive or API routine3727

refers. The properties of the current device and the implementation will determine how many actual3728

activity queues are supported, and how the async-value is mapped onto the actual activity queues.3729

Two asynchronous operations on the same device with the same async-value will be enqueued3730

onto the same activity queue, and therefore will be executed on the device in the order they are3731

encountered by the local thread. Two asynchronous operations with different async-values may be3732

enqueued onto different activity queues, and therefore may be executed on the device in either order3733

or concurrently relative to each other. If there are two or more host threads executing and sharing the3734

same device, asynchronous operations on any thread with the same async-value will be enqueued3735

onto the same activity queue. If the threads are not synchronized with respect to each other, the3736

operations may be enqueued in either order and therefore may execute on the device in either order.3737

Asynchronous operations enqueued to difference devices may execute in any order or may execute3738

concurrently, regardless of the async-value used for each.3739

If a compute construct, data directive, or runtime API call has an async-value of acc_async_sync,3740

the associated operations are executed on the activity queue associated with the async-value3741

acc_async_sync, and the local thread will wait until the associated operations have completed3742

before executing the code following the construct or directive. If a data construct has an async-3743

value of acc_async_sync, the associated operations are executed on the activity queue associ-3744

ated with the async-value acc_async_sync, and the local thread will wait until the associated3745

operations that occur upon entry of the construct have completed before executing the code of the3746

construct’s structured block or block construct, and after that, will wait until the associated opera-3747

tions that occur upon exit of the construct have completed before executing the code following the3748

construct.3749

If a compute construct, data directive, or runtime API call has an async-value other than3750

acc_async_sync, the associated operations are executed on the activity queue associated with3751

that async-value and the associated operations may be processed asynchronously while the local3752

thread continues executing the code following the construct or directive. If a data construct has an3753

async-value other than acc_async_sync, the associated operations are executed on the activity3754

queue associated with that async-value, and the associated operations that occur upon entry of the3755

construct may be processed asynchronously while the local thread continues executing the code3756

of the construct’s structured block or block construct, and after that, the associated operations that3757

occur upon exit of the construct may be processed asynchronously while the local thread continues3758

executing the code following the construct.3759

In this section and throughout the specification, the term wait-argument, means:3760

[devnum : int-expr :] [queues :] async-argument-list3761

If a devnum modifier appears in the wait-argument then the associated device is the device with3762

that device number of the current device type. If no devnum modifier appears then the associated3763

device is the current device.3764

100

The OpenACC® API Version 3.4 2.16. Asynchronous Behavior

Each async-argument is associated with an async-value. The async-values select the associated3765

activity queue or queues on the associated device. If there is no async-argument-list, the associated3766

activity queues are all activity queues for the associated device.3767

The queues modifier within a wait-argument is optional to improve clarity of the expression list.3768

2.16.1 async clause3769

The async clause may appear on a parallel, serial, kernels, or data construct, or an3770

enter data, exit data, update, or wait directive. In all cases, the async clause is optional.3771

The async clause may have a single async-argument, as defined above. If the async clause does3772

not appear, the behavior is as if the async-argument is acc_async_sync. If the async clause3773

appears with no argument, the behavior is as if the async-argument is acc_async_noval. The3774

async-value for a construct or directive is defined in Section 2.16.3775

Errors3776

• An acc_error_invalid_async error is issued if an async clause with an argument3777

appears on any directive and the argument is not a valid async-argument.3778

See Section 5.2.2.3779

2.16.2 wait clause3780

The wait clause may appear on a parallel, serial, or kernels, or data construct, or3781

an enter data, exit data, or update directive. In all cases, the wait clause is optional.3782

When there is no wait clause, the associated operations may be enqueued or launched or executed3783

immediately on the device.3784

If there is an argument to the wait clause, it must be a wait-argument, the associated device and3785

activity queues are as specified in the wait-argument; see Section 2.16. If there is no argument to3786

the wait clause, the associated device is the current device and associated activity queues are all3787

activity queues. The associated operations may not be launched or executed until all operations3788

already enqueued up to this point by this thread on the associated asynchronous device activity3789

queues have completed. Note: One legal implementation is for the local thread to wait until the3790

operations already enqueued on the associated asynchronous device activity queues have completed;3791

another legal implementation is for the local thread to enqueue the associated operations in such a3792

way that they will not start until the operations already enqueued on the associated asynchronous3793

device activity queues have completed.3794

Errors3795

• An acc_error_device_unavailable error is issued if a wait clause appears on any3796

directive with a devnum modifier and the associated int-expr is not a valid device number.3797

• An acc_error_invalid_async error is issued if a wait clause appears on any direc-3798

tive with a queues modifier or no modifier and any value in the associated list is not a valid3799

async-argument.3800

See Section 5.2.2.3801

2.16.3 Wait Directive3802

101

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

Summary3803

The wait directive causes the local thread or operations enqueued onto a device activity queue on3804

the current device to wait for completion of asynchronous operations.3805

Syntax3806

In C and C++, the syntax of the wait directive is:3807

#pragma acc wait [(wait-argument)] [clause-list] new-line3808

In Fortran the syntax of the wait directive is:3809

!$acc wait [(wait-argument)] [clause-list]3810

where clause is:3811

async [(async-argument)]3812

if(condition)3813

If it appears, the wait-argument is as defined in Section 2.16, and the associated device and activity3814

queues are as specified in the wait-argument. If there is no wait-argument clause, the associated3815

device is the current device and associated activity queues are all activity queues.3816

If there is no async clause, the local thread will wait until all operations enqueued by this thread3817

onto each of the associated device activity queues for the associated device have completed. There3818

is no guarantee that all the asynchronous operations initiated by other threads onto those queues will3819

have completed without additional synchronization with those threads.3820

If there is an async clause, no new operation may be launched or executed on the activity queue3821

associated with the async-argument on the current device until all operations enqueued up to this3822

point by this thread on the activity queues associated with the wait-argument have completed. Note:3823

One legal implementation is for the local thread to wait for all the associated activity queues; another3824

legal implementation is for the thread to enqueue a synchronization operation in such a way that3825

no new operation will start until the operations enqueued on the associated activity queues have3826

completed.3827

The if clause is optional; when there is no if clause, the implementation will generate code to3828

perform the wait operation unconditionally. When an if clause appears, the implementation will3829

generate code to conditionally perform the wait operation only when the condition evaluates to true.3830

A wait directive is functionally equivalent to a call to one of the acc_wait, acc_wait_async,3831

acc_wait_all, or acc_wait_all_async runtime API routines, as described in Sections 3.2.103832

and 3.2.11.3833

Errors3834

• An acc_error_device_unavailable error is issued if a devnum modifier appears3835

and the int-expr is not a valid device number.3836

• An acc_error_invalid_async error is issued if a queues modifier or no modifier3837

appears and any value in the associated list is not a valid async-argument.3838

See Section 5.2.2.3839

102

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

2.17 Fortran Specific Behavior3840

2.17.1 Optional Arguments3841

This section refers to the Fortran intrinsic function PRESENT. A call to the Fortran intrinsic function3842

PRESENT(arg) returns .true., if arg is an optional dummy argument and an actual argument3843

for argwas present in the argument list of the call site. This is unrelated to the OpenACC present3844

data clause.3845

The appearance of a Fortran optional argument arg as a var in any of the following clauses has no3846

effect at runtime if PRESENT(arg) is .false.:3847

• in data clauses on compute and data constructs;3848

• in data clauses on enter data and exit data directives;3849

• in data and device_resident clauses on declare directives;3850

• in use_device clauses on host_data directives;3851

• in self, host, and device clauses on update directives.3852

The appearance of a Fortran optional argument arg in the following situations may result in unde-3853

fined behavior if PRESENT(arg) is .false. when the associated construct is executed:3854

• as a var in private, firstprivate, and reduction clauses;3855

• as a var in cache directives;3856

• as part of an expression in any clause or directive.3857

A call to the Fortran intrinsic function PRESENT behaves the same way in a compute construct or3858

an accelerator routine as on the host. The function call PRESENT(arg)must return the same value3859

in a compute construct as PRESENT(arg) would outside of the compute construct. If a Fortran3860

optional argument arg appears as an actual argument in a procedure call in a compute construct3861

or an accelerator routine, and the associated dummy argument subarg also has the optional3862

attribute, then PRESENT(subarg) returns the same value as PRESENT(subarg) would when3863

executed on the host.3864

2.17.2 Do Concurrent Construct3865

This section refers to the Fortran do concurrent construct that is a form of do construct. When3866

do concurrent appears without a loop construct in a kernels construct it is treated as if it is3867

annotated with loop auto. If it appears in a parallel construct or an accelerator routine then3868

it is treated as if it is annotated with loop independent.3869

103

The OpenACC® API Version 3.4 2.17. Fortran Specific Behavior

104

The OpenACC® API Version 3.4 3.1. Runtime Library Definitions

3. Runtime Library3870

This chapter describes the OpenACC runtime library routines that are available for use by program-3871

mers. Use of these routines may limit portability to systems that do not support the OpenACC API.3872

Conditional compilation using the _OPENACC preprocessor variable may preserve portability.3873

This chapter has two sections:3874

• Runtime library definitions3875

• Runtime library routines3876

There are four categories of runtime routines:3877

• Device management routines, to get the number of devices, set the current device, and so on.3878

• Asynchronous queue management, to synchronize until all activities on an async queue are3879

complete, for instance.3880

• Device test routine, to test whether this statement is executing on the device or not.3881

• Data and memory management, to manage memory allocation or copy data between memo-3882

ries.3883

3.1 Runtime Library Definitions3884

In C and C++, prototypes for the runtime library routines described in this chapter are provided in3885

a header file named openacc.h. All the library routines are extern functions with “C” linkage.3886

This file defines:3887

• The prototypes of all routines in the chapter.3888

• Any datatypes used in those prototypes, including an enumeration type to describe the sup-3889

ported device types.3890

• The values of acc_async_noval, acc_async_sync, and acc_async_default.3891

In Fortran, interface declarations are provided in a Fortran module named openacc. The openacc3892

module defines:3893

• The integer parameter openacc_versionwith a value yyyymm where yyyy and mm are the3894

year and month designations of the version of the Accelerator programming model supported.3895

This value matches the value of the preprocessor variable _OPENACC.3896

• Interfaces for all routines in the chapter.3897

• Integer parameters to define integer kinds for arguments to and return values for those rou-3898

tines.3899

• Integer parameters to describe the supported device types.3900

• Integer parameters to define the values of acc_async_noval, acc_async_sync, and3901

acc_async_default.3902

105

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Many of the routines accept or return a value corresponding to the type of device. In C and C++, the3903

datatype used for device type values is acc_device_t; in Fortran, the corresponding datatype3904

is integer(kind=acc_device_kind). The possible values for device type are implemen-3905

tation specific, and are defined in the C or C++ include file openacc.h and the Fortran module3906

openacc. Five values are always supported: acc_device_none, acc_device_default,3907

acc_device_host, acc_device_not_host, and acc_device_current. For other val-3908

ues, look at the appropriate files included with the implementation, or read the documentation for3909

the implementation. The value acc_device_default will never be returned by any function;3910

its use as an argument will tell the runtime library to use the default device type for that implemen-3911

tation.3912

3.2 Runtime Library Routines3913

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to desig-3914

nate a host memory address or device memory address, when these calls are executed on the host,3915

as if the following definitions were included:3916

#define h_void void3917

#define d_void void3918

Many Fortran API bindings defined in this section rely on types defined in Fortran’s iso_c_binding3919

module. It is implied that the iso_c_binding module is used in these bindings, even if not ex-3920

plicitly stated in the format section for that routine.3921

Restrictions3922

Except for acc_on_device, these routines are only available on the host.3923

3.2.1 acc get num devices3924

Summary3925

The acc_get_num_devices routine returns the number of available devices of the given type.3926

Format3927

C or C++:3928

int acc_get_num_devices(acc_device_t dev_type);3929

Fortran:3930

integer function acc_get_num_devices(dev_type)3931

integer(acc_device_kind) :: dev_type3932

Description3933

The acc_get_num_devices routine returns the number of available devices of device type3934

dev_type. If device type dev_type is not supported or no device of dev_type is available,3935

this routine returns zero.3936

3.2.2 acc set device type3937

Summary3938

The acc_set_device_type routine tells the runtime which type of device to use when exe-3939

cuting a compute region and sets the value of acc-current-device-type-var. This is useful when the3940

implementation allows the program to be compiled to use more than one type of device.3941

106

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Format3942

C or C++:3943

void acc_set_device_type(acc_device_t dev_type);3944

Fortran:3945

subroutine acc_set_device_type(dev_type)3946

integer(acc_device_kind) :: dev_type3947

Description3948

A call to acc_set_device_type is functionally equivalent to a set device_type(dev_type)3949

directive, as described in Section 2.14.3. This routine tells the runtime which type of device to use3950

among those available and sets the value of acc-current-device-type-var for the current thread to3951

dev_type.3952

Restrictions3953

• If some compute regions are compiled to only use one device type, the result of calling this3954

routine with a different device type may produce undefined behavior.3955

Errors3956

• An acc_error_device_type_unavailable error is issued if device type dev_type3957

is not supported or no device of dev_type is available.3958

See Section 5.2.2.3959

3.2.3 acc get device type3960

Summary3961

The acc_get_device_type routine returns the value of acc-current-device-type-var, which is3962

the device type of the current device. This is useful when the implementation allows the program to3963

be compiled to use more than one type of device.3964

Format3965

C or C++:3966

acc_device_t acc_get_device_type(void);3967

Fortran:3968

function acc_get_device_type()3969

integer(acc_device_kind) :: acc_get_device_type3970

Description3971

The acc_get_device_type routine returns the value of acc-current-device-type-var for the3972

current thread to tell the program what type of device will be used to run the next compute region, if3973

one has been selected. The device type may have been selected by the program with a runtime API3974

call or a directive, by an environment variable, or by the default behavior of the implementation; see3975

the table in Section 2.3.1.3976

Restrictions3977

• If the device type has not yet been selected, the value acc_device_none may be returned.3978

107

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

3.2.4 acc set device num3979

Summary3980

The acc_set_device_num routine tells the runtime which device to use and sets the value of3981

acc-current-device-num-var.3982

Format3983

C or C++:3984

void acc_set_device_num(int dev_num, acc_device_t dev_type);3985

Fortran:3986

subroutine acc_set_device_num(dev_num, dev_type)3987

integer :: dev_num3988

integer(acc_device_kind) :: dev_type3989

Description3990

A call to acc_set_device_num is functionally equivalent to a set device_type(dev_type)3991

device_num(dev_num) directive, as described in Section 2.14.3. This routine tells the runtime3992

which device to use among those available of the given type for compute or data regions in the cur-3993

rent thread and sets the value of acc-current-device-num-var to dev_num. If the value of dev_num3994

is negative, the runtime will revert to its default behavior, which is implementation-defined. If the3995

value of the dev_type is zero, the selected device number will be used for all device types. Calling3996

acc_set_device_num implies a call to acc_set_device_type(dev_type).3997

Errors3998

• An acc_error_device_type_unavailable error is issued if device type dev_type3999

is not supported or no device of dev_type is available.4000

• An acc_error_device_unavailable error is issued if the value of dev_num is not4001

a valid device number.4002

See Section 5.2.2.4003

3.2.5 acc get device num4004

Summary4005

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-4006

rent thread.4007

Format4008

C or C++:4009

int acc_get_device_num(acc_device_t dev_type);4010

Fortran:4011

integer function acc_get_device_num(dev_type)4012

integer(acc_device_kind) :: dev_type4013

Description4014

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-4015

rent thread. If there are no devices of device type dev_type or if device type dev_type is not4016

supported, this routine returns -1.4017

108

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

3.2.6 acc get property4018

Summary4019

The acc_get_property and acc_get_property_string routines return the value of a4020

device-property for the specified device.4021

Format4022

C or C++:

size_t acc_get_property(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);

const

char* acc_get_property_string(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);4023

Fortran:

function acc_get_property(dev_num, dev_type, property)

subroutine acc_get_property_string(dev_num, dev_type,&

property, string)4024

integer, value :: dev_num4025

integer(acc_device_kind), value :: dev_type4026

integer(acc_device_property_kind), value :: property4027

integer(c_size_t) :: acc_get_property4028

character*(*) :: string4029

Description4030

The acc_get_property and acc_get_property_string routines return the value of the4031

property. dev_num and dev_type specify the device being queried. If dev_type has the4032

value acc_device_current, then dev_num is ignored and the value of the property for the4033

current device is returned. property is an enumeration constant, defined in openacc.h, for4034

C or C++, or an integer parameter, defined in the openacc module, for Fortran. Integer-valued4035

properties are returned by acc_get_property, and string-valued properties are returned by4036

acc_get_property_string. In Fortran, acc_get_property_string returns the result4037

into the string argument.4038

The supported values of property are given in the following table.4039

property return type return value

acc_property_memory integer size of device memory in bytes

acc_property_free_memory integer free device memory in bytes

acc_property_shared_memory_support

integer nonzero if the specified device sup-

ports sharing memory with the local

thread

acc_property_name string device name

acc_property_vendor string device vendor

acc_property_driver string device driver version

4040

An implementation may support additional properties for some devices.4041

109

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Restrictions4042

• acc_get_propertywill return 0 and acc_get_property_stringwill return a null4043

pointer (in C or C++) or a blank string (in Fortran) in the following cases:4044

– If device type dev_type is not supported or no device of dev_type is available.4045

– If the value of dev_num is not a valid device number for device type dev_type.4046

– If the value of property is not one of the known values for that query routine, or that4047

property has no value for the specified device.4048

3.2.7 acc init4049

Summary4050

The acc_init and acc_init_device routines initialize the runtime for the specified device4051

type and device number. This can be used to isolate any initialization cost from the computational4052

cost, such as when collecting performance statistics.4053

Format4054

C or C++:4055

void acc_init(acc_device_t dev_type);4056

void acc_init_device(int dev_num, acc_device_t dev_type);4057

Fortran:4058

subroutine acc_init(dev_type)4059

subroutine acc_init_device(dev_num, dev_type)4060

integer :: dev_num4061

integer(acc_device_kind) :: dev_type4062

Description4063

A call to acc_init or acc_init_device is functionally equivalent to an init directive with4064

matching dev_type and dev_num arguments, as described in Section 2.14.1. dev_type must4065

be one of the defined accelerator types. dev_num must be a valid device number of the device type4066

dev_type. These routines also implicitly call acc_set_device_type(dev_type). In the4067

case of acc_init_device, acc_set_device_num(dev_num) is also called.4068

If a program initializes one or more devices without an intervening shutdown directive or4069

acc_shutdown call to shut down those same devices, no action is taken.4070

Errors4071

• An acc_error_device_type_unavailable error is issued if device type dev_type4072

is not supported or no device of dev_type is available.4073

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4074

number.4075

See Section 5.2.2.4076

3.2.8 acc shutdown4077

110

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Summary4078

The acc_shutdown and acc_shutdown_device routines shut down the connection to spec-4079

ified devices and free up any related resources in the runtime. This ends all data lifetimes in device4080

memory for the device or devices that are shut down, which effectively sets structured and dynamic4081

reference counters to zero.4082

Format4083

C or C++:4084

void acc_shutdown(acc_device_t dev_type);4085

void acc_shutdown_device(int dev_num, acc_device_t dev_type);4086

Fortran:4087

subroutine acc_shutdown(dev_type)4088

subroutine acc_shutdown_device(dev_num, dev_type)4089

integer :: dev_num4090

integer(acc_device_kind) :: dev_type4091

Description4092

A call to acc_shutdown or acc_shutdown_device is functionally equivalent to a shutdown4093

directive, with matching dev_type and dev_num arguments, as described in Section 2.14.2.4094

dev_type must be one of the defined accelerator types. dev_num must be a valid device number4095

of the device type dev_type. acc_shutdown routine disconnects the program from all devices4096

of device type dev_type. The acc_shutdown_device routine disconnects the program from4097

dev_num of type dev_type. Any data that is present in the memory of a device that is shut down4098

is immediately deallocated.4099

Restrictions4100

• This routine may not be called while a compute region is executing on a device of type4101

dev_type.4102

• If the program attempts to execute a compute region on a device or to access any data in the4103

memory of a device that was shut down, the behavior is undefined.4104

• If the program attempts to shut down the acc_device_host device type, the behavior is4105

undefined.4106

Errors4107

• An acc_error_device_type_unavailable error is issued if device type dev_type4108

is not supported or no device of dev_type is available.4109

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4110

number.4111

• An acc_error_device_shutdown error is issued if there is an error shutting down the4112

device.4113

See Section 5.2.2.4114

3.2.9 acc async test4115

Summary4116

The acc_async_test routines test for completion of all associated asynchronous operations for4117

a single specified async queue or for all async queues on the current device or on a specified device.4118

111

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Format4119

C or C++:4120

int acc_async_test(int wait_arg);4121

int acc_async_test_device(int wait_arg, int dev_num);4122

int acc_async_test_all(void);4123

int acc_async_test_all_device(int dev_num);4124

Fortran:4125

logical function acc_async_test(wait_arg)4126

logical function acc_async_test_device(wait_arg, dev_num)4127

logical function acc_async_test_all()4128

logical function acc_async_test_all_device(dev_num)4129

integer(acc_handle_kind) :: wait_arg4130

integer :: dev_num4131

Description4132

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num4133

must be a valid device number of the current device type.4134

The behavior of the acc_async_test routines is:4135

• If there is no dev_num argument, it is treated as if dev_num is the current device number.4136

• If any asynchronous operations initiated by this host thread on device dev_num either on4137

async queue wait_arg (if there is a wait_arg argument), or on any async queue (if there4138

is no wait_arg argument) have not completed, a call to the routine returns false.4139

• If all such asynchronous operations have completed, or there are no such asynchronous op-4140

erations, a call to the routine returns true. A return value of true is no guarantee that asyn-4141

chronous operations initiated by other host threads have completed.4142

Errors4143

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-4144

argument value.4145

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4146

number.4147

See Section 5.2.2.4148

3.2.10 acc wait4149

Summary4150

The acc_wait routines wait for completion of all associated asynchronous operations on a single4151

specified async queue or on all async queues on the current device or on a specified device.4152

Format4153

C or C++:4154

void acc_wait(int wait_arg);4155

void acc_wait_device(int wait_arg, int dev_num);4156

void acc_wait_all(void);4157

void acc_wait_all_device(int dev_num);4158

112

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Fortran:4159

subroutine acc_wait(wait_arg)4160

subroutine acc_wait_device(wait_arg, dev_num)4161

subroutine acc_wait_all()4162

subroutine acc_wait_all_device(dev_num)4163

integer(acc_handle_kind) :: wait_arg4164

integer :: dev_num4165

Description4166

A call to an acc_wait routine is functionally equivalent to a wait directive as follows, see Sec-4167

tion 2.16.3:4168

• acc_wait to a wait(wait_arg) directive.4169

• acc_wait_device to a wait(devnum:dev_num, queues:wait_arg) directive.4170

• acc_wait_all to a wait directive with no wait-argument.4171

• acc_wait_all_device to a wait(devnum:dev_num) directive.4172

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num4173

must be a valid device number of the current device type.4174

The behavior of the acc_wait routines is:4175

• If there is no dev_num argument, it is treated as if dev_num is the current device number.4176

• The routine will not return until all asynchronous operations initiated by this host thread on4177

device dev_num either on async queue wait_arg (if there is a wait_arg argument) or4178

on all async queues (if there is no wait_arg argument) have completed.4179

• If two or more threads share the same accelerator, there is no guarantee that matching asyn-4180

chronous operations initiated by other threads have completed.4181

For compatibility with OpenACC version 1.0, acc_waitmay also be spelled acc_async_wait,4182

and acc_wait_all may also be spelled acc_async_wait_all.4183

Errors4184

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-4185

argument value.4186

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4187

number.4188

See Section 5.2.2.4189

3.2.11 acc wait async4190

Summary4191

The acc_wait_async routines enqueue a wait operation on one async queue of the current4192

device or a specified device for the operations previously enqueued on a single specified async4193

queue or on all other async queues.4194

113

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Format4195

C or C++:

void acc_wait_async(int wait_arg, int async_arg);

void acc_wait_device_async(int wait_arg, int async_arg,

int dev_num);4196

void acc_wait_all_async(int async_arg);4197

void acc_wait_all_device_async(int async_arg, int dev_num);4198

Fortran:4199

subroutine acc_wait_async(wait_arg, async_arg)4200

subroutine acc_wait_device_async(wait_arg, async_arg, dev_num)4201

subroutine acc_wait_all_async(async_arg)4202

subroutine acc_wait_all_device_async(async_arg, dev_num)4203

integer(acc_handle_kind) :: wait_arg, async_arg4204

integer :: dev_num4205

Description4206

A call to an acc_wait_async routine is functionally equivalent to a wait async(async_arg)4207

directive as follows, see Section 2.16.3:4208

• A call to acc_wait_async is functionally equivalent to a wait(wait_arg)4209

async(async_arg) directive.4210

• A call to acc_wait_device_async is functionally equivalent to a wait(devnum:4211

dev_num, queues:wait_arg) async(async_arg) directive.4212

• A call to acc_wait_all_async is functionally equivalent to a wait async(async_arg)4213

directive with no wait-argument.4214

• A call to acc_wait_all_device_async is functionally equivalent to a4215

wait(devnum:dev_num) async(async_arg) directive.4216

async_arg and wait_arg must must be async-arguments, as defined in4217

Section 2.16 Asynchronous Behavior. dev_num must be a valid device number of the current4218

device type.4219

The behavior of the acc_wait_async routines is:4220

• If there is no dev_num argument, it is treated as if dev_num is the current device number.4221

• The routine will enqueue a wait operation on the async queue associated with async_arg4222

for the current device which will wait for operations initiated on the async queue wait_arg4223

of device dev_num (if there is a wait_arg argument), or for each async queue of device4224

dev_num (if there is no wait_arg argument).4225

See Section 2.16 Asynchronous Behavior for more information.4226

Errors4227

• An acc_error_invalid_async error is issued if either async_arg or wait_arg is4228

not a valid async-argument value.4229

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4230

number.4231

See Section 5.2.2.4232

114

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

3.2.12 acc wait any4233

Summary4234

The acc_wait_any and acc_wait_any_device routines wait for any of the specified asyn-4235

chronous queues to complete all pending operations on the current device or the specified device4236

number, respectively. Both routines return the queue’s index in the provided array of asynchronous4237

queues.4238

Format4239

C or C++:4240

int acc_wait_any(int count, int wait_arg[]);4241

int acc_wait_any_device(int count, int wait_arg[], int dev_num);4242

Fortran:4243

integer function acc_wait_any(count, wait_arg)4244

integer function acc_wait_any_device(count, wait_arg, dev_num)4245

integer :: count, dev_num4246

integer(acc_handle_kind) :: wait_arg(count)4247

Description4248

wait_arg is an array of async-arguments as defined in Section 2.16 and count is a nonneg-4249

ative integer indicating the array length. If there is no dev_num argument, it is treated as if4250

dev_num is the current device number. Otherwise, dev_num must be a valid device number4251

of the current device type. A call to any of these routines returns an index i associated with4252

a wait_arg[i] that is not acc_async_sync and meets the conditions that would evalu-4253

ate acc_async_test_device(wait_arg[i], dev_num) to true. If all the elements in4254

wait_arg are equal to acc_async_sync or count is equal to 0, these routines return -1.4255

Otherwise, the return value is an integer in the range of 0 ≤ i < count in C or C++ and4256

1 ≤ i ≤ count in Fortran.4257

Errors4258

• An acc_error_invalid_argument error is issued if count is a negative number.4259

• An acc_error_invalid_async error is issued if any element encountered in wait_arg4260

is not a valid async-argument value.4261

• An acc_error_device_unavailable error is issued if dev_num is not a valid device4262

number.4263

See Section 5.2.2.4264

3.2.13 acc get default async4265

Summary4266

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-4267

rent thread.4268

Format4269

C or C++:4270

int acc_get_default_async(void);4271

115

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Fortran:4272

function acc_get_default_async()4273

integer(acc_handle_kind) :: acc_get_default_async4274

Description4275

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-4276

rent thread, which is the asynchronous queue used when an async clause appears without an4277

async-argument or with the value acc_async_noval.4278

3.2.14 acc set default async4279

Summary4280

The acc_set_default_async routine tells the runtime which asynchronous queue to use4281

when an async clause appears with no queue argument.4282

Format4283

C or C++:4284

void acc_set_default_async(int async_arg);4285

Fortran:4286

subroutine acc_set_default_async(async_arg)4287

integer(acc_handle_kind) :: async_arg4288

Description4289

A call to acc_set_default_async is functionally equivalent to a set default_async(async_arg)4290

directive, as described in Section 2.14.3. This acc_set_default_async routine tells the4291

runtime to place any directives with an async clause that does not have an async-argument or4292

with the special acc_async_noval value into the asynchronous activity queue associated with4293

async_arg instead of the default asynchronous activity queue for that device by setting the value4294

of acc-default-async-var for the current thread. The special argument acc_async_defaultwill4295

reset the default asynchronous activity queue to the initial value, which is implementation-defined.4296

Errors4297

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4298

argument value.4299

See Section 5.2.2.4300

3.2.15 acc on device4301

Summary4302

The acc_on_device routine tells the program whether it is executing on a particular device.4303

Format4304

C or C++:4305

int acc_on_device(acc_device_t dev_type);4306

Fortran:4307

logical function acc_on_device(dev_type)4308

integer(acc_device_kind) :: dev_type4309

116

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Description4310

The acc_on_device routine may be used to execute different paths depending on whether the4311

code is running on the host or on some accelerator. If the acc_on_device routine has a compile-4312

time constant argument, the call evaluates at compile time to a constant. dev_type must be one4313

of the defined accelerator types.4314

The behavior of the acc_on_device routine is:4315

• If dev_type is acc_device_host, then outside of a compute region or accelerator rou-4316

tine, or in a compute region or accelerator routine that is executed on the host CPU, a call to4317

this routine will evaluate to true; otherwise, it will evaluate to false.4318

• If dev_type is acc_device_not_host, the result is the negation of the result with4319

argument acc_device_host.4320

• If dev_type is an accelerator device type, then in a compute region or routine that is ex-4321

ecuted on a device of that type, a call to this routine will evaluate to true; otherwise, it will4322

evaluate to false.4323

• The result with argument acc_device_default is undefined.4324

3.2.16 acc malloc4325

Summary4326

The acc_malloc routine allocates space in the current device memory.4327

Format4328

C or C++:4329

d_void* acc_malloc(size_t bytes);4330

Fortran:4331

type(c_ptr) function acc_malloc(bytes)4332

integer(c_size_t), value :: bytes4333

Description4334

The acc_malloc routine may be used to allocate space in the current device memory. Pointers4335

assigned from this routine may be used in deviceptr clauses to tell the compiler that the pointer4336

target is resident on the device. In case of an allocation error or if bytes has the value zero,4337

acc_malloc returns a null pointer.4338

3.2.17 acc free4339

Summary4340

The acc_free routine frees memory on the current device.4341

Format4342

C or C++:4343

void acc_free(d_void* data_dev);4344

Fortran:4345

subroutine acc_free(data_dev)4346

type(c_ptr), value :: data_dev4347

117

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Description4348

Calling acc_free with a pointer in the current device memory that was previously allocated by4349

acc_malloc will free that memory. If data_dev is a null pointer, no operation is performed.4350

For all other pointers, the result is undefined.4351

Note: Calling acc_free on a pointer that was previously associated using acc_map_data and4352

not yet unassociated with acc_unmap_data may lead to undefined behavior.4353

3.2.18 acc copyin and acc create4354

Summary4355

The acc_copyin and acc_create routines test to see if the argument is in shared memory or4356

already present in device-accessible memory of the current device; if not, they allocate space in4357

device-accessible memory of the current device to correspond to the specified local memory, and4358

the acc_copyin routines copy the data to that device-accessible memory.4359

Format4360

C or C++:4361

d_void* acc_copyin(h_void* data_arg, size_t bytes);4362

d_void* acc_create(h_void* data_arg, size_t bytes);4363

4364

void acc_copyin_async(h_void* data_arg, size_t bytes,4365

int async_arg);4366

void acc_create_async(h_void* data_arg, size_t bytes,4367

int async_arg);4368

4369

Fortran:4370

subroutine acc_copyin(data_arg [, bytes])4371

subroutine acc_create(data_arg [, bytes])4372

4373

subroutine acc_copyin_async(data_arg [, bytes], async_arg)4374

subroutine acc_create_async(data_arg [, bytes], async_arg)4375

4376

type(*), dimension(..) :: data_arg4377

integer :: bytes4378

integer(acc_handle_kind) :: async_arg4379

Description4380

A call to an acc_copyin or acc_create routine is similar to an enter data directive with4381

a copyin or create clause, respectively, as described in Sections 2.7.8 and 2.7.10, except that4382

no attach pointer action is performed for a pointer reference. In C/C++, data_arg is a pointer4383

to the data, and bytes specifies the data size in bytes; the associated data section starts at the4384

address in data_arg and continues for bytes bytes. The synchronous routines return a pointer4385

to the allocated device memory, as with acc_malloc. In Fortran, two forms are supported. In4386

the first, data_arg is a variable or a contiguous array section; the associated data section starts at4387

the address of, and continues to the end of the variable or array section. In the second, data_arg4388

is a variable or array element and bytes is the length in bytes; the associated data section starts4389

at the address of the variable or array element and continues for bytes bytes. For the _async4390

118

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

versions of these routines, async_arg must be an async-argument as defined in Section 2.164391

Asynchronous Behavior.4392

The behavior of these routines for the associated data section is:4393

• If the data section is in shared memory and does not refers to a captured variable, no ac-4394

tion is taken. The C/C++ synchronous acc_copyin and acc_create routines return the4395

incoming pointer.4396

• If the data section is present in device-accessible memory of the current device, the routines4397

perform a increment counter action with the dynamic reference counter. The C/C++ syn-4398

chronous acc_copyin and acc_create routines return a pointer to the existing device-4399

accessible memory.4400

• Otherwise:4401

– The acc_copyin routines behave as follows:4402

1. An allocate memory action is performed.4403

2. A transfer in action is performed.4404

3. A increment counter action with the dynamic reference counter is performed.4405

– The acc_create routines behave as follows:4406

1. An allocate memory action is performed.4407

2. A increment counter action with the dynamic reference counter is performed.4408

The C/C++ synchronous acc_copyin and acc_create routines return a pointer to the4409

newly allocated device memory.4410

This data may be accessed using the present data clause. Pointers assigned from the C/C++4411

synchronous acc_copyin and acc_create routines may be used in deviceptr clauses to4412

tell the compiler that the pointer target is resident on the device.4413

The synchronous versions will not return until the memory has been allocated and any data transfers4414

are complete.4415

The _async versions of these routines will perform any data transfers asynchronously on the async4416

queue associated with async_arg. The routine may return before the data has been transferred;4417

see Section 2.16 Asynchronous Behavior for more details. The data will be treated as present in4418

device-accessible memory of the current device even if the data has not been allocated or transferred4419

before the routine returns.4420

For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are al-4421

ternate names for acc_copyin, and acc_present_or_create and acc_pcreate are al-4422

ternate names for acc_create.4423

Errors4424

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4425

bytes is nonzero.4426

• An acc_error_partly_present error is issued if part of the data section is already4427

present in device-accessible memory of the current device but all of the data section is not.4428

119

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4429

tion that is not contiguous (in Fortran).4430

• An acc_error_out_of_memory error is issued if the accelerator device does not have4431

enough memory for the data.4432

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4433

argument value.4434

See Section 5.2.2.4435

3.2.19 acc copyout and acc delete4436

Summary4437

The acc_copyout and acc_delete routines test to see if the argument is in shared memory4438

and does not refer to a captured variable; if not, the argument must be present in device-accessible4439

memory of the current device. The acc_copyout routines copy data from device-accessible4440

memory to the corresponding local memory, and both acc_copyout and acc_delete routines4441

deallocate that space from the device-accessible memory.4442

Format4443

C or C++:4444

void acc_copyout(h_void* data_arg, size_t bytes);4445

void acc_delete (h_void* data_arg, size_t bytes);4446

4447

void acc_copyout_finalize(h_void* data_arg, size_t bytes);4448

void acc_delete_finalize (h_void* data_arg, size_t bytes);4449

4450

void acc_copyout_async(h_void* data_arg, size_t bytes,4451

int async_arg);4452

void acc_delete_async (h_void* data_arg, size_t bytes,4453

int async_arg);4454

4455

void acc_copyout_finalize_async(h_void* data_arg, size_t bytes,4456

int async_arg);4457

void acc_delete_finalize_async (h_void* data_arg, size_t bytes,4458

int async_arg);4459

4460

Fortran:4461

subroutine acc_copyout(data_arg [, bytes])4462

subroutine acc_delete (data_arg [, bytes])4463

4464

subroutine acc_copyout_finalize(data_arg [, bytes])4465

subroutine acc_delete_finalize (data_arg [, bytes])4466

4467

subroutine acc_copyout_async(data_arg [, bytes], async_arg)4468

subroutine acc_delete_async (data_arg [, bytes], async_arg)4469

4470

subroutine acc_copyout_finalize_async(data_arg [, bytes], &4471

120

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

async_arg)4472

subroutine acc_delete_finalize_async (data_arg [, bytes], &4473

async_arg)4474

4475

type(*), dimension(..) :: data_arg4476

integer :: bytes4477

integer(acc_handle_kind) :: async_arg4478

Description4479

A call to an acc_copyout or acc_delete routine is similar to an exit data directive4480

with a copyout or delete clause, respectively, and a call to an acc_copyout_finalize4481

or acc_delete_finalize routine is similar to an exit data finalize directive with a4482

copyout or delete clause, respectively, as described in Section 2.7.9 and 2.7.12, except that no4483

detach pointer action is performed for a pointer reference. The arguments and the associated data4484

section are as for acc_copyin.4485

The behavior of these routines for the associated data section is:4486

• If the data section is in shared memory and does not refer to a captured variable, no action is4487

taken.4488

• If the dynamic reference counter for the data section is zero, no action is taken.4489

• Otherwise, the dynamic reference counter is updated:4490

– The acc_copyout and acc_delete) routines perform a decrement counter action4491

with the dynamic reference counter.4492

– The acc_copyout_finalize or acc_delete_finalize routines perform a4493

reset counter action with the dynamic reference counter.4494

If both reference counters are then zero:4495

– The acc_copyout routines perform a transfer out action followed by a deallocate memory4496

action.4497

– The acc_delete routines perform a deallocate memory action.4498

The synchronous versions will not return until the data has been completely transferred and the4499

memory has been deallocated.4500

The _async versions of these routines will perform any associated data transfers asynchronously4501

on the async queue associated with async_arg. The routine may return before the data has been4502

transferred or deallocated; see Section 2.16 Asynchronous Behavior for more details. Even if the4503

data has not been transferred or deallocated before the routine returns, the data will be treated as not4504

present in device-accessible memory of the current device if both reference counters are zero.4505

Errors4506

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4507

bytes is nonzero.4508

• An acc_error_not_present error is issued if the data section is not in shared memory4509

and is not present in the current device memory.4510

121

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4511

tion that is not contiguous (in Fortran).4512

• An acc_error_partly_present error is issued if part of the data section is already4513

present in device-accessible memory of the current device but all of the data section is not.4514

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4515

argument value.4516

See Section 5.2.2.4517

3.2.20 acc update device and acc update self4518

Summary4519

The acc_update_device and acc_update_self routines test to see if the argument is in4520

shared memory and it is not a captured variable; if not, the argument must be present in the device-4521

accessible memory of the current device, and the routines update the data in device memory from4522

the corresponding local memory (acc_update_device) or update the data in local memory4523

from the corresponding device-accessible memory (acc_update_self).4524

Format4525

C or C++:4526

void acc_update_device(h_void* data_arg, size_t bytes);4527

void acc_update_self (h_void* data_arg, size_t bytes);4528

4529

void acc_update_device_async(h_void* data_arg, size_t bytes,4530

int async_arg);4531

void acc_update_self_async (h_void* data_arg, size_t bytes,4532

int async_arg);4533

4534

Fortran:4535

subroutine acc_update_device(data_arg [, bytes])4536

subroutine acc_update_self (data_arg [, bytes])4537

4538

subroutine acc_update_device_async(data_arg [, bytes], async_arg)4539

subroutine acc_update_self_async (data_arg [, bytes], async_arg)4540

4541

type(*), dimension(..) :: data_arg4542

integer :: bytes4543

integer(acc_handle_kind) :: async_arg4544

Description4545

A call to an acc_update_device routine is functionally equivalent to an update device4546

directive. A call to an acc_update_self routine is functionally equivalent to an update self4547

directive. See Section 2.14.4. The arguments and the data section are as for acc_copyin.4548

The behavior of these routines for the associated data section is:4549

• If the data section is in shared memory and does not refer to a captured variable or bytes is4550

zero, no action is taken.4551

122

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

• Otherwise:4552

– A call to an acc_update_device routine performs a transfer in action with the4553

corresponding memory.4554

– A call to an acc_update_self routine performs a transfer out action with the cor-4555

responding memory.4556

The _async versions of these routines will perform the data transfers asynchronously on the async4557

queue associated with async_arg. The routine may return before the data has been transferred;4558

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4559

until the data has been completely transferred.4560

Errors4561

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4562

bytes is nonzero.4563

• An acc_error_not_present error is issued if the data section is not in shared memory4564

and is not present in the current device memory.4565

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4566

tion that is not contiguous (in Fortran).4567

• An acc_error_partly_present error is issued if part of the data section is already4568

present in device-accessible memory of the current device but all of the data section is not.4569

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4570

argument value.4571

See Section 5.2.2.4572

3.2.21 acc map data4573

Summary4574

The acc_map_data routine maps previously allocated space in the current device memory to the4575

specified host data.4576

Format4577

C or C++:

void acc_map_data(h_void* data_arg, d_void* data_dev,

size_t bytes);4578

Fortran:4579

subroutine acc_map_data(data_arg, data_dev, bytes)4580

type(*),dimension(*) :: data_arg4581

type(c_ptr), value :: data_dev4582

integer(c_size_t), value :: bytes4583

Description4584

A call to the acc_map_data routine is similar to a call to acc_create, except that instead of4585

allocating new device memory to start a data lifetime, the device address to use for the data lifetime4586

is specified as an argument. data_arg is a host address, data_dev is the corresponding device4587

address, and bytes is the length in bytes. data_dev may be the result of a call to acc_malloc,4588

123

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

or may come from some other device-specific API routine. The associated data section is as for4589

acc_copyin.4590

The behavior of the acc_map_data routine is:4591

• If the data section is in shared memory, the behavior is undefined.4592

• If any of the data referred to by data_dev is already mapped to any host memory address,4593

the behavior is undefined.4594

• Otherwise, after this call, when data_arg appears in a data clause, the data_dev address4595

will be used. The dynamic reference count for the data referred to by data_arg is set to4596

one, but no data movement will occur.4597

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-4598

mented to zero, except by a call to acc_unmap_data. See Section 2.6.7 Reference Counters.4599

Errors4600

• An acc_invalid_null_pointer error is issued if either data_arg or data_dev is4601

a null pointer.4602

• An acc_invalid_argument error is issued if bytes is zero.4603

• An acc_error_present error is issued if any part of the data section is already present4604

in the current device memory.4605

See Section 5.2.2.4606

3.2.22 acc unmap data4607

Summary4608

The acc_unmap_data routine unmaps device data from the specified host data.4609

Format4610

C or C++:4611

void acc_unmap_data(h_void* data_arg);4612

Fortran:4613

subroutine acc_unmap_data(data_arg)4614

type(*),dimension(*) :: data_arg4615

Description4616

A call to the acc_unmap_data routine is similar to a call to acc_delete, except the device4617

memory is not deallocated. data_arg is a host address.4618

The behavior of the acc_unmap_data routine is:4619

• If data_argwas not previously mapped to some device address via a call to acc_map_data,4620

the behavior is undefined.4621

• Otherwise, the data lifetime for data_arg is ended. The dynamic reference count for4622

data_arg is set to zero, but no data movement will occur and the corresponding device4623

memory is not deallocated. See Section 2.6.7 Reference Counters.4624

124

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Errors4625

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer.4626

• An acc_error_present error is issued if the structured reference count for the any part4627

of the data is not zero.4628

See Section 5.2.2.4629

3.2.23 acc deviceptr4630

Summary4631

The acc_deviceptr routine returns the device pointer associated with a specific host address.4632

Format4633

C or C++:4634

d_void* acc_deviceptr(h_void* data_arg);4635

Fortran:4636

type(c_ptr) function acc_deviceptr(data_arg)4637

type(*),dimension(*) :: data_arg4638

Description4639

The acc_deviceptr routine returns the device pointer associated with a host address. data_arg4640

is the address of a host variable or array that may have an active lifetime on the current device.4641

The behavior of the acc_deviceptr routine for the data referred to by data_arg is:4642

• If the data is in shared memory or data_arg is a null pointer, acc_deviceptr returns4643

the incoming address.4644

• If the data is not present in the current device memory, acc_deviceptr returns a null4645

pointer.4646

• Otherwise, acc_deviceptr returns the address in the current device memory that corre-4647

sponds to the address data_arg.4648

3.2.24 acc hostptr4649

Summary4650

The acc_hostptr routine returns the host pointer associated with a specific device address.4651

Format4652

C or C++:4653

h_void* acc_hostptr(d_void* data_dev);4654

Fortran:4655

type(c_ptr) function acc_hostptr(data_dev)4656

type(c_ptr), value :: data_dev4657

125

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Description4658

The acc_hostptr routine returns the host pointer associated with a device address. data_dev4659

is the address of a device variable or array, such as that returned from acc_deviceptr, acc_create4660

or acc_copyin.4661

The behavior of the acc_hostptr routine for the data referred to by data_dev is:4662

• If the data is in shared memory or data_dev is a null pointer, acc_hostptr returns the4663

incoming address.4664

• If the data corresponds to a host address which is present in the current device memory,4665

acc_hostptr returns the host address.4666

• Otherwise, acc_hostptr returns a null pointer.4667

3.2.25 acc is present4668

Summary4669

The acc_is_present routine tests whether a variable or array region is accessible from the4670

current device.4671

Format4672

C or C++:4673

int acc_is_present(h_void* data_arg, size_t bytes);4674

Fortran:4675

logical function acc_is_present(data_arg)4676

logical function acc_is_present(data_arg, bytes)4677

type(*), dimension(..) :: data_arg4678

integer :: bytes4679

Description4680

The acc_is_present routine tests whether the specified host data is accessible from the current4681

device. In C/C++, data_arg is a pointer to the data, and bytes specifies the data size in bytes. In4682

Fortran, two forms are supported. In the first, data_arg is a variable or contiguous array section.4683

In the second, data_arg is a variable or array element and bytes is the length in bytes. A4684

bytes value of zero is treated as a value of one if data_arg is not a null pointer.4685

The behavior of the acc_is_present routines for the data referred to by data_arg is:4686

• If the data is in shared memory, a call to acc_is_present will evaluate to true.4687

• If the data is present in the current device memory, a call to acc_is_present will evaluate4688

to true.4689

• Otherwise, a call to acc_is_present will evaluate to false.4690

Errors4691

• An acc_error_invalid_argument error is issued if bytes is negative (in Fortran).4692

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4693

tion that is not contiguous (in Fortran).4694

See Section 5.2.2.4695

126

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

3.2.26 acc memcpy to device4696

Summary4697

The acc_memcpy_to_device routine copies data from local memory to device memory.4698

Format4699

C or C++:

void acc_memcpy_to_device(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes);

void acc_memcpy_to_device_async(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes,

int async_arg);4700

Fortran:

subroutine acc_memcpy_to_device(data_dev_dest,

data_host_src, bytes)

subroutine acc_memcpy_to_device_async(data_dev_dest,

data_host_src, bytes, async_arg)4701

type(c_ptr), value :: data_dev_dest4702

type(*),dimension(*) :: data_host_src4703

integer(c_size_t), value :: bytes4704

integer(acc_handle_kind), value :: async_arg4705

Description4706

The acc_memcpy_to_device routine copies bytes bytes of data from the local address in4707

data_host_src to the device address in data_dev_dest. data_dev_dest must be an4708

address accessible from the current device, such as an address returned from acc_malloc or4709

acc_deviceptr, or an address in shared memory.4710

The behavior of the acc_memcpy_to_device routines is:4711

• If bytes is zero, no action is taken.4712

• If data_dev_dest and data_host_src both refer to shared memory and have the same4713

value, no action is taken.4714

• If data_dev_dest and data_host_src both refer to shared memory and the memory4715

regions overlap, the behavior is undefined.4716

• If the data referred to by data_dev_dest is not accessible by the current device, the be-4717

havior is undefined.4718

• If the data referred to by data_host_src is not accessible by the local thread, the behavior4719

is undefined.4720

• Otherwise, bytes bytes of data at data_host_src in local memory are copied to4721

data_dev_dest in the current device memory.4722

The _async version of this routine will perform the data transfers asynchronously on the async4723

queue associated with async_arg. The routine may return before the data has been transferred;4724

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4725

until the data has been completely transferred.4726

127

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Errors4727

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or4728

data_host_src is a null pointer and bytes is nonzero.4729

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4730

argument value.4731

See Section 5.2.2.4732

3.2.27 acc memcpy from device4733

Summary4734

The acc_memcpy_from_device routine copies data from device memory to local memory.4735

Format4736

C or C++:

void acc_memcpy_from_device(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_from_device_async(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes,4737

int async_arg);4738

Fortran:

subroutine acc_memcpy_from_device(data_host_dest,

data_dev_src, bytes)

subroutine acc_memcpy_from_device_async(data_host_dest,

data_dev_src, bytes, async_arg)4739

type(*),dimension(*) :: data_host_dest4740

type(c_ptr), value :: data_dev_src4741

integer(c_size_t), value :: bytes4742

integer(acc_handle_kind), value :: async_arg4743

Description4744

The acc_memcpy_from_device routine copies bytes bytes of data from the device address4745

in data_dev_src to the local address in data_host_dest. data_dev_src must be an4746

address accessible from the current device, such as an address returned from acc_malloc or4747

acc_deviceptr, or an address in shared memory.4748

The behavior of the acc_memcpy_from_device routines is:4749

• If bytes is zero, no action is taken.4750

• If data_host_dest and data_dev_src both refer to shared memory and have the same4751

value, no action is taken.4752

• If data_host_dest and data_dev_src both refer to shared memory and the memory4753

regions overlap, the behavior is undefined.4754

• If the data referred to by data_dev_src is not accessible by the current device, the behav-4755

ior is undefined.4756

• If the data referred to by data_host_dest is not accessible by the local thread, the behav-4757

ior is undefined.4758

128

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied4759

to data_host_dest in local memory.4760

The _async version of this routine will perform the data transfers asynchronously on the async4761

queue associated with async_arg. The routine may return before the data has been transferred;4762

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4763

until the data has been completely transferred.4764

Errors4765

• An acc_error_invalid_null_pointer error is issued if data_host_dest or4766

data_dev_src is a null pointer and bytes is nonzero.4767

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4768

argument value.4769

See Section 5.2.2.4770

3.2.28 acc memcpy device4771

Summary4772

The acc_memcpy_device routine copies data from one memory location to another memory4773

location on the current device.4774

Format4775

C or C++:

void acc_memcpy_device(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_device_async(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes,4776

int async_arg);4777

Fortran:

subroutine acc_memcpy_device(data_dev_dest,

data_dev_src, bytes);

subroutine acc_memcpy_device_async(data_dev_dest,

data_dev_src, bytes,

async_arg);4778

type(c_ptr), value :: data_dev_dest4779

type(c_ptr), value :: data_dev_src4780

integer(c_size_t), value :: bytes4781

integer(acc_handle_kind), value :: async_arg4782

Description4783

The acc_memcpy_device routine copies bytes bytes of data from the device address in4784

data_dev_src to the device address in data_dev_dest. Both addresses must be addresses in4785

the current device memory, such as would be returned from acc_malloc or acc_deviceptr.4786

The behavior of the acc_memcpy_device routines is:4787

• If bytes is zero, no action is taken.4788

• If data_dev_dest and data_dev_src have the same value, no action is taken.4789

129

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

• If the memory regions referred to by data_dev_dest and data_dev_src overlap, the4790

behavior is undefined.4791

• If the data referred to by data_dev_src or data_dev_dest is not accessible by the4792

current device, the behavior is undefined.4793

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied4794

to data_dev_dest in the current device memory.4795

The _async version of this routine will perform the data transfers asynchronously on the async4796

queue associated with async_arg. The routine may return before the data has been transferred;4797

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4798

until the data has been completely transferred.4799

Errors4800

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or4801

data_dev_src is a null pointer and bytes is nonzero.4802

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4803

argument value.4804

See Section 5.2.2.4805

3.2.29 acc attach and acc detach4806

Summary4807

The acc_attach routines update a pointer in device-accessible memory to point to the corre-4808

sponding copy of the host pointer target. The acc_detach routines restore a pointer in device-4809

accessible memory to point to the host pointer target.4810

Format4811

C or C++:4812

void acc_attach(h_void** ptr_addr);4813

void acc_attach_async(h_void** ptr_addr, int async_arg);4814

4815

void acc_detach(h_void** ptr_addr);4816

void acc_detach_async(h_void** ptr_addr, int async_arg);4817

void acc_detach_finalize(h_void** ptr_addr);4818

void acc_detach_finalize_async(h_void** ptr_addr,4819

int async_arg);4820

Fortran:4821

subroutine acc_attach(ptr_addr)4822

subroutine acc_attach_async(ptr_addr, async_arg)4823

type(*),dimension(..) :: ptr_addr4824

integer(acc_handle_kind),value :: async_arg4825

4826

subroutine acc_detach(ptr_addr)4827

subroutine acc_detach_async(ptr_addr, async_arg)4828

subroutine acc_detach_finalize(ptr_addr)4829

subroutine acc_detach_finalize_async(ptr_addr,4830

async_arg)4831

130

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

type(*),dimension(..) :: ptr_addr4832

integer(acc_handle_kind),value :: async_arg4833

Description4834

A call to an acc_attach routine is functionally equivalent to an enter data attach direc-4835

tive, as described in Section 2.7.13. A call to an acc_detach routine is functionally equivalent to4836

an exit data detach directive, and a call to an acc_detach_finalize routine is function-4837

ally equivalent to an exit data finalize detach directive, as described in Section 2.7.14.4838

ptr_addr must be the address of a host pointer. async_arg must be an async-argument as4839

defined in Section 2.16.4840

The behavior of these routines is:4841

• If ptr_addr refers to shared memory and does not refer to a captured variable, no action is4842

taken.4843

• If the pointer referred to by ptr_addr is not present in device-accessible memory of the4844

current device, no action is taken.4845

• Otherwise:4846

– The acc_attach routines behave as follows,4847

1. an increment counter action is performed on the associated attachment counter,4848

2. if the associated attachment counter is now one, an attach pointer action is per-4849

formed on the pointer referred to by ptr_addr; see Section 2.7.2.4850

– The acc_detach routines behave as follows4851

1. an decrement counter action is performed on the associated attachment counter,4852

2. if the associated attachment counter is now zero, an detach pointer action is per-4853

formed on the pointer referred to by ptr_addr; see Section 2.7.2.4854

See Section 2.7.2.4855

– The acc_detach_finalize routines behave as follows, perform a detach pointer4856

action on the pointer referred to by ptr_addr followed by a reset counter action on4857

the associated attachment counter; see Section 2.7.2.4858

These routines may issue a data transfer from local memory to device-accessible memory. The4859

_async versions of these routines will perform the data transfers asynchronously on the async4860

queue associated with async_arg. These routines may return before the data has been transferred;4861

see Section 2.16 for more details. The synchronous versions will not return until the data has been4862

completely transferred.4863

Errors4864

• An acc_error_invalid_null_pointer error is issued if ptr_addr is a null pointer.4865

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4866

argument value.4867

See Section 5.2.2.4868

131

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

3.2.30 acc memcpy d2d4869

Summary4870

The acc_memcpy_d2d routines copy the contents of an array on one device to an array on the4871

same or a different device without updating the value on the host.4872

Format4873

C or C++:

void acc_memcpy_d2d(h_void* data_arg_dest,

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src);

void acc_memcpy_d2d_async(h_void* data_arg_dest,

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src,

int async_arg_src);4874

4875

Fortran:

subroutine acc_memcpy_d2d(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src)

subroutine acc_memcpy_d2d_async(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src,&

async_arg_src)4876

type(*), dimension(..) :: data_arg_dest4877

type(*), dimension(..) :: data_arg_src4878

integer :: bytes4879

integer :: dev_num_dest4880

integer :: dev_num_src4881

integer :: async_arg_src4882

4883

Description4884

The acc_memcpy_d2d routines are passed the address of destination and source host data as well4885

as integer device numbers for the destination and source devices, which must both be of the current4886

device type.4887

The behavior of the acc_memcpy_d2d routines is:4888

• If bytes is zero, no action is taken.4889

• If both pointers have the same value and either the two device numbers are the same or the4890

addresses are in shared memory, then no action is taken.4891

• Otherwise, bytes bytes of data at the device address corresponding to data_arg_src on4892

device dev_num_src are copied to the device address corresponding to data_arg_dest4893

on device dev_num_dest.4894

For acc_memcpy_d2d_async the value of async_arg_src is the number of an async queue4895

on the source device. This routine will perform the data transfers asynchronously on the async queue4896

associated with async_arg_src for device dev_num_src; see Section 2.16 Asynchronous Behavior4897

for more details.4898

132

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

Errors4899

• An acc_error_device_unavailable error is issued if dev_num_dest or dev_num_src4900

is not a valid device number.4901

• An acc_error_invalid_null_pointer error is issued if either data_arg_dest4902

or data_arg_src is a null pointer and bytes is nonzero.4903

• An acc_error_not_present error is issued if the data at either address is not in shared4904

memory and is not present in the respective device memory.4905

• An acc_error_partly_present error is issued if part of the data is already present in4906

the current device memory but all of the data is not.4907

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4908

argument value.4909

See Section 5.2.2.4910

133

The OpenACC® API Version 3.4 3.2. Runtime Library Routines

134

The OpenACC® API Version 3.4 4.1. ACC DEVICE TYPE

4. Environment Variables4911

This chapter describes the environment variables that modify the behavior of accelerator regions.4912

The names of the environment variables must be upper case. The values assigned environment4913

variables are case-insensitive and may have leading and trailing whitespace. If the values of the4914

environment variables change after the program has started, even if the program itself modifies the4915

values, the behavior is implementation-defined.4916

4.1 ACC DEVICE TYPE4917

The ACC_DEVICE_TYPE environment variable controls the default device type to use when ex-4918

ecuting parallel, serial, and kernels regions, if the program has been compiled to use more than4919

one different type of device. The allowed values of this environment variable are implementation-4920

defined. See the release notes for currently-supported values of this environment variable.4921

Example:4922

setenv ACC_DEVICE_TYPE NVIDIA4923

export ACC_DEVICE_TYPE=NVIDIA4924

4.2 ACC DEVICE NUM4925

The ACC_DEVICE_NUM environment variable controls the default device number to use when4926

executing accelerator regions. The value of this environment variable must be a nonnegative integer4927

between zero and the number of devices of the desired type attached to the host. If the value is4928

greater than or equal to the number of devices attached, the behavior is implementation-defined.4929

Example:4930

setenv ACC_DEVICE_NUM 14931

export ACC_DEVICE_NUM=14932

4.3 ACC PROFLIB4933

The ACC_PROFLIB environment variable specifies the profiling library. More details about the4934

evaluation at runtime is given in section 5.3.3 Runtime Dynamic Library Loading.4935

Example:4936

setenv ACC_PROFLIB /path/to/proflib/libaccprof.so4937

export ACC_PROFLIB=/path/to/proflib/libaccprof.so4938

135

The OpenACC® API Version 3.4 4.3. ACC PROFLIB

136

The OpenACC® API Version 3.4 5.1. Events

5. Profiling and Error Callback Interface4939

This chapter describes the OpenACC interface for runtime callback routines. These routines may be4940

provided by the programmer or by a tool or library developer. Calls to these routines are triggered4941

during the application execution at specific OpenACC events. There are two classes of events,4942

profiling events and error events. Profiling events can be used by tools for profile or trace data4943

collection. Currently, this interface does not support tools that employ asynchronous sampling.4944

Error events can be used to release resources or cleanly shut down a large parallel application when4945

the OpenACC runtime detects an error condition from which it cannot recover. This is specifically4946

for error handling, not for error recovery. There is no support provided for restarting or retrying4947

an OpenACC program, construct, or API routine after an error condition has been detected and an4948

error callback routine has been called.4949

In this chapter, the term runtime refers to the OpenACC runtime library. The term library refers to4950

the routines invoked at specified events by the OpenACC runtime.4951

There are three steps for interfacing a library to the runtime. The first step is to write the library4952

callback routines. Section 5.1 Events describes the supported runtime events and the order in which4953

callbacks to the callback routines will occur. Section 5.2 Callbacks Signature describes the signature4954

of the callback routines for all events.4955

The second step is to load the library at runtime. The library may be statically linked to the appli-4956

cation or dynamically loaded by the application, a library, or a tool. This is described in Section 5.34957

Loading the Library.4958

The third step is to register the desired callbacks with the events. This may be done explicitly by the4959

application, if the library is statically linked with the application, implicitly by including a call to a4960

registration routine in a .init section, or by including an initialization routine in the library if it is4961

dynamically loaded by the runtime. This is described in Section 5.4 Registering Event Callbacks.4962

5.1 Events4963

This section describes the events that are recognized by the runtime. Most profiling events have a4964

start and end callback routine, that is, a routine that is called just before the runtime code to handle4965

the event starts and another routine that is called just after the event is handled. The event names4966

and routine prototypes are available in the header file acc_callback.h, which is delivered with4967

the OpenACC implementation. For backward compatibility with previous versions of OpenACC,4968

the implementation also delivers the same information in acc_prof.h. Event names are prefixed4969

with acc_ev_.4970

The ordering of events must reflect the order in which the OpenACC runtime actually executes them,4971

i.e. if a runtime moves the enqueuing of data transfers or kernel launches outside the originating4972

clauses/constructs, it needs to issue the corresponding launch callbacks when they really occur. A4973

callback for a start event must always precede the matching end callback. No callbacks will be4974

issued after a runtime shutdown event.4975

The events that the runtime supports can be registered with a callback and are defined in the enu-4976

meration type acc_event_t.4977

137

The OpenACC® API Version 3.4 5.1. Events

typedef enum acc_event_t{4978

acc_ev_none = 0,4979

acc_ev_device_init_start = 1,4980

acc_ev_device_init_end = 2,4981

acc_ev_device_shutdown_start = 3,4982

acc_ev_device_shutdown_end = 4,4983

acc_ev_runtime_shutdown = 5,4984

acc_ev_create = 6,4985

acc_ev_delete = 7,4986

acc_ev_alloc = 8,4987

acc_ev_free = 9,4988

acc_ev_enter_data_start = 10,4989

acc_ev_enter_data_end = 11,4990

acc_ev_exit_data_start = 12,4991

acc_ev_exit_data_end = 13,4992

acc_ev_update_start = 14,4993

acc_ev_update_end = 15,4994

acc_ev_compute_construct_start = 16,4995

acc_ev_compute_construct_end = 17,4996

acc_ev_enqueue_launch_start = 18,4997

acc_ev_enqueue_launch_end = 19,4998

acc_ev_enqueue_upload_start = 20,4999

acc_ev_enqueue_upload_end = 21,5000

acc_ev_enqueue_download_start = 22,5001

acc_ev_enqueue_download_end = 23,5002

acc_ev_wait_start = 24,5003

acc_ev_wait_end = 25,5004

acc_ev_error = 100,5005

acc_ev_last = 1015006

}acc_event_t;5007

The value of acc_ev_last will change if new events are added to the enumeration, so a library5008

must not depend on that value.5009

5.1.1 Runtime Initialization and Shutdown5010

No callbacks can be registered for the runtime initialization. Instead the initialization of the tool is5011

handled as described in Section 5.3 Loading the Library.5012

The runtime shutdown profiling event name is5013

acc_ev_runtime_shutdown5014

This event is triggered before the OpenACC runtime shuts down, either because all devices have5015

been shutdown by calls to the acc_shutdown API routine, or at the end of the program.5016

5.1.2 Device Initialization and Shutdown5017

The device initialization profiling event names are5018

138

The OpenACC® API Version 3.4 5.1. Events

acc_ev_device_init_start5019

acc_ev_device_init_end5020

These events are triggered when a device is being initialized by the OpenACC runtime. This may be5021

when the program starts, or may be later during execution when the program reaches an acc_init5022

call or an OpenACC construct. The acc_ev_device_init_start is triggered before device5023

initialization starts and acc_ev_device_init_end after initialization is complete.5024

The device shutdown profiling event names are5025

acc_ev_device_shutdown_start5026

acc_ev_device_shutdown_end5027

These events are triggered when a device is shut down, most likely by a call to the OpenACC5028

acc_shutdown API routine. The acc_ev_device_shutdown_start is triggered before5029

the device shutdown process starts and acc_ev_device_shutdown_end after the device shut-5030

down is complete.5031

5.1.3 Enter Data and Exit Data5032

The enter data profiling event names are5033

acc_ev_enter_data_start5034

acc_ev_enter_data_end5035

These events are triggered at enter data directives, entry to data constructs, and entry to implicit5036

data regions such as those generated by compute constructs. The acc_ev_enter_data_start5037

event is triggered before any data allocation, data update, or wait events that are associated with5038

that directive or region entry, and the acc_ev_enter_data_end is triggered after those events.5039

The exit data profiling event names are5040

acc_ev_exit_data_start5041

acc_ev_exit_data_end5042

These events are triggered at exit data directives, exit from data constructs, and exit from5043

implicit data regions. The acc_ev_exit_data_start event is triggered before any data5044

deallocation, data update, or wait events associated with that directive or region exit, and the5045

acc_ev_exit_data_end event is triggered after those events.5046

When the construct that triggers an enter data or exit data event was generated implicitly by the5047

compiler the implicit field in the event structure will be set to 1. When the construct that5048

triggers these events was specified explicitly by the application code the implicit field in the5049

event structure will be set to 0.5050

5.1.4 Data Allocation5051

The data allocation profiling event names are5052

acc_ev_create5053

acc_ev_delete5054

acc_ev_alloc5055

acc_ev_free5056

139

The OpenACC® API Version 3.4 5.1. Events

An acc_ev_alloc event is triggered when the OpenACC runtime allocates memory from the de-5057

vice memory pool, and an acc_ev_free event is triggered when the runtime frees that memory.5058

An acc_ev_create event is triggered when the OpenACC runtime associates device memory5059

with local memory, such as for a data clause (create, copyin, copy, copyout) at entry to5060

a data construct, compute construct, at an enter data directive, or in a call to a data API rou-5061

tine (acc_copyin, acc_create, . . .). An acc_ev_create event may be preceded by an5062

acc_ev_alloc event, if newly allocated memory is used for this device data, or it may not, if5063

the runtime manages its own memory pool. An acc_ev_delete event is triggered when the5064

OpenACC runtime disassociates device memory from local memory, such as for a data clause at5065

exit from a data construct, compute construct, at an exit data directive, or in a call to a data API5066

routine (acc_copyout, acc_delete, . . .). An acc_ev_delete event may be followed by5067

an acc_ev_free event, if the disassociated device memory is freed, or it may not, if the runtime5068

manages its own memory pool.5069

When the action that generates a data allocation event was generated explicitly by the application5070

code the implicit field in the event structure will be set to 0. When the data allocation event5071

is triggered because of a variable or array with implicitly-determined data attributes or otherwise5072

implicitly by the compiler the implicit field in the event structure will be set to 1.5073

5.1.5 Data Construct5074

The profiling events for entering and leaving data constructs are mapped to enter data and exit data5075

events as described in Section 5.1.3 Enter Data and Exit Data.5076

5.1.6 Update Directive5077

The update directive profiling event names are5078

acc_ev_update_start5079

acc_ev_update_end5080

The acc_ev_update_start event will be triggered at an update directive, before any data5081

update or wait events that are associated with the update directive are carried out, and the corre-5082

sponding acc_ev_update_end event will be triggered after any of the associated events.5083

5.1.7 Compute Construct5084

The compute construct profiling event names are5085

acc_ev_compute_construct_start5086

acc_ev_compute_construct_end5087

The acc_ev_compute_construct_start event is triggered at entry to a compute construct,5088

before any launch events that are associated with entry to the compute construct. The5089

acc_ev_compute_construct_end event is triggered at the exit of the compute construct,5090

after any launch events associated with exit from the compute construct. If there are data clauses5091

on the compute construct, those data clauses may be treated as part of the compute construct, or as5092

part of a data construct containing the compute construct. The callbacks for data clauses must use5093

the same line numbers as for the compute construct events.5094

140

The OpenACC® API Version 3.4 5.1. Events

5.1.8 Enqueue Kernel Launch5095

The launch profiling event names are5096

acc_ev_enqueue_launch_start5097

acc_ev_enqueue_launch_end5098

The acc_ev_enqueue_launch_start event is triggered just before an accelerator compu-5099

tation is enqueued for execution on a device, and acc_ev_enqueue_launch_end is trig-5100

gered just after the computation is enqueued. Note that these events are synchronous with the5101

local thread enqueueing the computation to a device, not with the device executing the compu-5102

tation. The acc_ev_enqueue_launch_start event callback routine is invoked just before5103

the computation is enqueued, not just before the computation starts execution. More importantly,5104

the acc_ev_enqueue_launch_end event callback routine is invoked after the computation is5105

enqueued, not after the computation finished executing.5106

Note: Measuring the time between the start and end launch callbacks is often unlikely to be useful,5107

since it will only measure the time to manage the launch queue, not the time to execute the code on5108

the device.5109

5.1.9 Enqueue Data Update (Upload and Download)5110

The data update profiling event names are5111

acc_ev_enqueue_upload_start5112

acc_ev_enqueue_upload_end5113

acc_ev_enqueue_download_start5114

acc_ev_enqueue_download_end5115

The _start events are triggered just before each upload (data copy from local memory to device5116

memory) operation is or download (data copy from device memory to local memory) operation is5117

enqueued for execution on a device. The corresponding _end events are triggered just after each5118

upload or download operation is enqueued.5119

Note: Measuring the time between the start and end update callbacks is often unlikely to be useful,5120

since it will only measure the time to manage the enqueue operation, not the time to perform the5121

actual upload or download.5122

When the action that generates a data update event was generated explicitly by the application5123

code the implicit field in the event structure will be set to 0. When the data allocation event5124

is triggered because of a variable or array with implicitly-determined data attributes or otherwise5125

implicitly by the compiler the implicit field in the event structure will be set to 1.5126

5.1.10 Wait5127

The wait profiling event names are5128

acc_ev_wait_start5129

acc_ev_wait_end5130

5131

An acc_ev_wait_start event will be triggered for each relevant queue before the local thread5132

waits for that queue to be empty. A acc_ev_wait_end event will be triggered for each relevant5133

141

The OpenACC® API Version 3.4 5.2. Callbacks Signature

queue after the local thread has determined that the queue is empty.5134

Wait events occur when the local thread and a device synchronize, either due to a wait directive5135

or by a wait clause on a synchronous data construct, compute construct, or enter data, exit5136

data, or update directive. For wait events triggered by an explicit synchronous wait directive5137

or wait clause, the implicit field in the event structure will be 0. For all other wait events, the5138

implicit field in the event structure will be 1.5139

The OpenACC runtime need not trigger wait events for queues that have not been used in the5140

program, and need not trigger wait events for queues that have not been used by this thread since5141

the last wait operation. For instance, an acc wait directive with no arguments is defined to wait on5142

all queues. If the program only uses the default (synchronous) queue and the queue associated with5143

async(1) and async(2) then an acc wait directive may trigger wait events only for those5144

three queues. If the implementation knows that no activities have been enqueued on the async(2)5145

queue since the last wait operation, then the acc wait directive may trigger wait events only for5146

the default queue and the async(1) queue.5147

5.1.11 Error Event5148

The only error event is5149

acc_ev_error5150

An acc_ev_error event is triggered when the OpenACC program detects a runtime error con-5151

dition. The default runtime error callback routine may print an error message and halt program5152

execution. An application can register additional error event callback routines, to allow a failing5153

application to release resources or to cleanly shut down a large parallel runtime with many threads5154

and processes, for instance.5155

The application can register multiple alternate error callbacks. As described in Section5156

5.4.1 Multiple Callbacks, the callbacks will be invoked in the order in which they are registered.5157

If all the error callbacks return, the default error callback will be invoked. The error callback5158

routine must not execute any OpenACC compute or data constructs. The only OpenACC API5159

routines that can be safely invoked from an error callback routine are acc_get_property,5160

acc_get_property_string, and acc_shutdown.5161

5.2 Callbacks Signature5162

This section describes the signature of event callbacks. All event callbacks have the same signature.5163

The routine prototypes are available in the header file acc_callback.h, which is delivered with5164

the OpenACC implementation.5165

All callback routines have three arguments. The first argument is a pointer to a struct containing5166

general information; the same struct type is used for all callback events. The second argument is5167

a pointer to a struct containing information specific to that callback event; there is one struct type5168

containing information for data events, another struct type containing information for kernel launch5169

events, and a third struct type for other events, containing essentially no information. The third5170

argument is a pointer to a struct containing information about the application programming interface5171

(API) being used for the specific device. For NVIDIA CUDA devices, this contains CUDA-specific5172

information; for OpenCL devices, this contains OpenCL-specific information. Other interfaces can5173

be supported as they are added by implementations. The prototype for a callback routine is:5174

142

The OpenACC® API Version 3.4 5.2. Callbacks Signature

typedef void (*acc_callback)5175

(acc_callback_info*, acc_event_info*, acc_api_info*);5176

typedef acc_callback acc_prof_callback;5177

In the descriptions, the datatype ssize_t means a signed 32-bit integer for a 32-bit binary and5178

a 64-bit integer for a 64-bit binary, the datatype size_t means an unsigned 32-bit integer for a5179

32-bit binary and a 64-bit integer for a 64-bit binary, and the datatype int means a 32-bit integer5180

for both 32-bit and 64-bit binaries.5181

5.2.1 First Argument: General Information5182

The first argument is a pointer to the acc_callback_info struct type:5183

typedef struct acc_prof_info{5184

acc_event_t event_type;5185

int valid_bytes;5186

int version;5187

acc_device_t device_type;5188

int device_number;5189

int thread_id;5190

ssize_t async;5191

ssize_t async_queue;5192

const char* src_file;5193

const char* func_name;5194

int line_no, end_line_no;5195

int func_line_no, func_end_line_no;5196

}acc_callback_info;5197

typedef struct acc_prof_info acc_prof_info;5198

The name acc_prof_info is preserved for backward compatibility with previous versions of5199

OpenACC. The fields are described below.5200

• acc_event_t event_type - The event type that triggered this callback. The datatype5201

is the enumeration type acc_event_t, described in the previous section. This allows the5202

same callback routine to be used for different events.5203

• int valid_bytes - The number of valid bytes in this struct. This allows a library to inter-5204

face with newer runtimes that may add new fields to the struct at the end while retaining com-5205

patibility with older runtimes. A runtime must fill in the event_type and valid_bytes5206

fields, and must fill in values for all fields with offset less than valid_bytes. The value of5207

valid_bytes for a struct is recursively defined as:5208

valid_bytes(struct) = offset(lastfield) + valid_bytes(lastfield)5209

valid_bytes(type[n]) = (n-1)*sizeof(type) + valid_bytes(type)5210

valid_bytes(basictype) = sizeof(basictype)5211

• int version - A version number; the value of _OPENACC.5212

• acc_device_t device_type - The device type corresponding to this event. The datatype5213

is acc_device_t, an enumeration type of all the supported device types, defined in openacc.h.5214

• int device_number - The device number. Each device is numbered, typically starting at5215

143

The OpenACC® API Version 3.4 5.2. Callbacks Signature

device zero. For applications that use more than one device type, the device numbers may be5216

unique across all devices or may be unique only across all devices of the same device type.5217

• int thread_id - The host thread ID making the callback. Host threads are given unique5218

thread ID numbers typically starting at zero. This is not necessarily the same as the OpenMP5219

thread number.5220

• ssize_t async - The async-value used for operations associated with this event; see Sec-5221

tion 2.16 Asynchronous Behavior.5222

• ssize_t async_queue - The actual activity queue onto which the async field gets5223

mapped; see Section 2.16 Asynchronous Behavior.5224

• const char* src_file - A pointer to null-terminated string containing the name of or5225

path to the source file, if known, or a null pointer if not. If the library wants to save the source5226

file name, it must allocate memory and copy the string.5227

• const char* func_name - A pointer to a null-terminated string containing the name of5228

the function in which the event occurred, if known, or a null pointer if not. If the library wants5229

to save the function name, it must allocate memory and copy the string.5230

• int line_no - The line number of the directive or program construct or the starting line5231

number of the OpenACC construct corresponding to the event. A negative or zero value5232

means the line number is not known.5233

• int end_line_no - For an OpenACC construct, this contains the line number of the end5234

of the construct. A negative or zero value means the line number is not known.5235

• int func_line_no - The line number of the first line of the function named in func_name.5236

A negative or zero value means the line number is not known.5237

• int func_end_line_no - The last line number of the function named in func_name.5238

A negative or zero value means the line number is not known.5239

5.2.2 Second Argument: Event-Specific Information5240

The second argument is a pointer to the acc_event_info union type.5241

typedef union acc_event_info{5242

acc_event_t event_type;5243

acc_data_event_info data_event;5244

acc_launch_event_info launch_event;5245

acc_other_event_info other_event;5246

}acc_event_info;5247

The event_type field selects which union member to use. The first five members of each union5248

member are identical. The second through fifth members of each union member (valid_bytes,5249

parent_construct, implicit, and tool_info) have the same semantics for all event5250

types:5251

• int valid_bytes - The number of valid bytes in the respective struct. (This field is similar5252

used as discussed in Section 5.2.1 First Argument: General Information.)5253

144

The OpenACC® API Version 3.4 5.2. Callbacks Signature

• acc_construct_t parent_construct - This field describes the type of construct5254

that caused the event to be emitted. The possible values for this field are defined by the5255

acc_construct_t enum, described at the end of this section.5256

• int implicit - This field is set to 1 for any implicit event, such as an implicit wait at5257

a synchronous data construct or synchronous enter data, exit data or update directive. This5258

field is set to zero when the event is triggered by an explicit directive or call to a runtime API5259

routine.5260

• void* tool_info - This field is used to pass tool-specific information from a _start5261

event to the matching _end event. For a _start event callback, this field will be initialized5262

to a null pointer. The value of this field for a _end event will be the value returned by the5263

library in this field from the matching _start event callback, if there was one, or a null5264

pointer otherwise. For events that are neither _start or _end events, this field will be a5265

null pointer.5266

Data Events5267

For a data event, as noted in the event descriptions, the second argument will be a pointer to the5268

acc_data_event_info struct.5269

typedef struct acc_data_event_info{5270

acc_event_t event_type;5271

int valid_bytes;5272

acc_construct_t parent_construct;5273

int implicit;5274

void* tool_info;5275

const char* var_name;5276

size_t bytes;5277

const void* host_ptr;5278

const void* device_ptr;5279

}acc_data_event_info;5280

The fields specific for a data event are:5281

• acc_event_t event_type - The event type that triggered this callback. The events that5282

use the acc_data_event_info struct are:5283

acc_ev_enqueue_upload_start5284

acc_ev_enqueue_upload_end5285

acc_ev_enqueue_download_start5286

acc_ev_enqueue_download_end5287

acc_ev_create5288

acc_ev_delete5289

acc_ev_alloc5290

acc_ev_free5291

• const char* var_name - A pointer to null-terminated string containing the name of the5292

variable for which this event is triggered, if known, or a null pointer if not. If the library wants5293

to save the variable name, it must allocate memory and copy the string.5294

• size_t bytes - The number of bytes for the data event.5295

145

The OpenACC® API Version 3.4 5.2. Callbacks Signature

• const void* host_ptr - If available and appropriate for this event, this is a pointer to5296

the host data.5297

• const void* device_ptr - If available and appropriate for this event, this is a pointer5298

to the corresponding device data.5299

Launch Events5300

For a launch event, as noted in the event descriptions, the second argument will be a pointer to the5301

acc_launch_event_info struct.5302

typedef struct acc_launch_event_info{5303

acc_event_t event_type;5304

int valid_bytes;5305

acc_construct_t parent_construct;5306

int implicit;5307

void* tool_info;5308

const char* kernel_name;5309

size_t num_gangs, num_workers, vector_length;5310

size_t* num_gangs_per_dim;5311

}acc_launch_event_info;5312

The fields specific for a launch event are:5313

• acc_event_t event_type - The event type that triggered this callback. The events that5314

use the acc_launch_event_info struct are:5315

acc_ev_enqueue_launch_start5316

acc_ev_enqueue_launch_end5317

• const char* kernel_name - A pointer to null-terminated string containing the name of5318

the kernel being launched, if known, or a null pointer if not. If the library wants to save the5319

kernel name, it must allocate memory and copy the string.5320

• size_t num_gangs, num_workers, vector_length - The number of gangs, work-5321

ers, and vector lanes created for this kernel launch.5322

• size_t* num_gangs_per_dim - An array of size_t whose first element indicates the5323

number of dimensions of gang parallelism and each subsequent element gives the number of5324

gangs along each dimension starting with dimension 1. The product of the values of elements5325

1 through num_gangs_per_dim[0] is num_gangs.5326

Error Events5327

For an error event, as noted in the event descriptions, the second argument will be a pointer to the5328

acc_error_event_info struct.5329

typedef struct acc_error_event_info{5330

acc_event_t event_type;5331

int valid_bytes;5332

acc_construct_t parent_construct;5333

int implicit;5334

void* tool_info;5335

146

The OpenACC® API Version 3.4 5.2. Callbacks Signature

acc_error_t error_code;5336

const char* error_message;5337

size_t runtime_info;5338

}acc_error_event_info;5339

The enumeration type for the error code is5340

typedef enum acc_error_t{5341

acc_error_none = 0,5342

acc_error_other = 1,5343

acc_error_system = 2,5344

acc_error_execution = 3,5345

acc_error_device_init = 4,5346

acc_error_device_shutdown = 5,5347

acc_error_device_unavailable = 6,5348

acc_error_device_type_unavailable = 7,5349

acc_error_wrong_device_type = 8,5350

acc_error_out_of_memory = 9,5351

acc_error_not_present = 10,5352

acc_error_partly_present = 11,5353

acc_error_present = 12,5354

acc_error_invalid_argument = 13,5355

acc_error_invalid_async = 14,5356

acc_error_invalid_null_pointer = 15,5357

acc_error_invalid_data_section = 16,5358

acc_error_implementation_defined = 1005359

}acc_error_t;5360

The fields specific for an error event are:5361

• acc_event_t event_type - The event type that triggered this callback. The only event5362

that uses the acc_error_event_info struct is:5363

acc_ev_error5364

• int implicit - This will be set to 1.5365

• acc_error_t error_code - The error codes used are:5366

– acc_error_other is used for error conditions other than those described below.5367

– acc_error_system is used when there is a system error condition.5368

– acc_error_execution is used when there is an error condition issued from code5369

executing on the device.5370

– acc_error_device_init is used for any error initializing a device.5371

– acc_error_device_shutdown is used for any error shutting down a device.5372

– acc_error_device_unavailable is used when there is an error where the se-5373

lected device is unavailable.5374

– acc_error_device_type_unavailable is used when there is an error where5375

no device of the selected device type is available or is supported.5376

147

The OpenACC® API Version 3.4 5.2. Callbacks Signature

– acc_error_wrong_device_type is used when there is an error related to the5377

device type, such as a mismatch between the device type for which a compute construct5378

was compiled and the device available at runtime.5379

– acc_error_out_of_memory is used when the program tries to allocate more mem-5380

ory on the device than is available.5381

– acc_error_not_present is used for an error related to data not being present at5382

runtime.5383

– acc_error_partly_present is used for an error related to part of the data being5384

present but not being completely present at runtime.5385

– acc_error_present is used for an error related to data being unexpectedly present5386

at runtime.5387

– acc_error_invalid_argument is used when an API routine is called with a5388

invalid argument value, other than those described above.5389

– acc_error_invalid_async is used when an API routine is called with an invalid5390

async-argument, or when a directive is used with an invalid async-argument.5391

– acc_error_invalid_null_pointer is used when an API routine is called with5392

a null pointer argument where it is invalid, or when a directive is used with a null pointer5393

in a context where it is invalid.5394

– acc_error_invalid_data_section is used when an invalid array section ap-5395

pears in a directive data clause, or an invalid array section appears as a runtime API call5396

argument.5397

– acc_error_implementation_defined: any value greater or equal to this value5398

may be used for an implementation-defined error code.5399

• const char* error_message - A pointer to null-terminated string containing an error5400

message from the OpenACC runtime describing the error, or a null pointer.5401

• size_t runtime_info - A value, such as an error code, from the underlying device5402

runtime or driver, if one is available and appropriate.5403

Other Events5404

For any event that does not use the acc_data_event_info, acc_launch_event_info, or5405

acc_error_event_info struct, the second argument to the callback routine will be a pointer5406

to acc_other_event_info struct.5407

typedef struct acc_other_event_info{5408

acc_event_t event_type;5409

int valid_bytes;5410

acc_construct_t parent_construct;5411

int implicit;5412

void* tool_info;5413

}acc_other_event_info;5414

148

The OpenACC® API Version 3.4 5.2. Callbacks Signature

Parent Construct Enumeration5415

All event structures contain a parent_construct member that describes the type of construct5416

that caused the event to be emitted. The purpose of this field is to provide a means to identify5417

the type of construct emitting the event in the cases where an event may be emitted by multi-5418

ple contruct types, such as is the case with data and wait events. The possible values for the5419

parent_construct field are defined in the enumeration type acc_construct_t. In the5420

case of combined directives, the outermost construct of the combined construct is specified as the5421

parent_construct. If the event was emitted as the result of the application making a call to5422

the runtime api, the value will be acc_construct_runtime_api.5423

typedef enum acc_construct_t{5424

acc_construct_parallel = 0,5425

acc_construct_serial = 165426

acc_construct_kernels = 1,5427

acc_construct_loop = 2,5428

acc_construct_data = 3,5429

acc_construct_enter_data = 4,5430

acc_construct_exit_data = 5,5431

acc_construct_host_data = 6,5432

acc_construct_atomic = 7,5433

acc_construct_declare = 8,5434

acc_construct_init = 9,5435

acc_construct_shutdown = 10,5436

acc_construct_set = 11,5437

acc_construct_update = 12,5438

acc_construct_routine = 13,5439

acc_construct_wait = 14,5440

acc_construct_runtime_api = 15,5441

}acc_construct_t;5442

5.2.3 Third Argument: API-Specific Information5443

The third argument is a pointer to the acc_api_info struct type, shown here.5444

typedef struct acc_api_info{5445

acc_device_api device_api;5446

int valid_bytes;5447

acc_device_t device_type;5448

int vendor;5449

const void* device_handle;5450

const void* context_handle;5451

const void* async_handle;5452

}acc_api_info;5453

The fields are described below:5454

• acc_device_api device_api - The API in use for this device. The data type is the5455

enumeration acc_device_api, which is described later in this section.5456

• int valid_bytes - The number of valid bytes in this struct. See the discussion above in5457

149

The OpenACC® API Version 3.4 5.3. Loading the Library

Section 5.2.1 First Argument: General Information.5458

• acc_device_t device_type - The device type; the datatype is acc_device_t, de-5459

fined in openacc.h.5460

• int vendor - An identifier to identify the OpenACC vendor; contact your vendor to deter-5461

mine the value used by that vendor’s runtime.5462

• const void* device_handle - If applicable, this will be a pointer to the API-specific5463

device information.5464

• const void* context_handle - If applicable, this will be a pointer to the API-specific5465

context information.5466

• const void* async_handle - If applicable, this will be a pointer to the API-specific5467

async queue information.5468

According to the value of device_api a library can cast the pointers of the fields device_handle,5469

context_handle and async_handle to the respective device API type. The following device5470

APIs are defined in the interface below. Any implementation-defined device API type must have a5471

value greater than acc_device_api_implementation_defined.5472

typedef enum acc_device_api{
acc_device_api_none = 0, /* no device API */

acc_device_api_cuda = 1, /* CUDA driver API */

acc_device_api_opencl = 2, /* OpenCL API */

acc_device_api_other = 4, /* other device API */

acc_device_api_implementation_defined = 1000 /* other device API */5473

}acc_device_api;5474

5.3 Loading the Library5475

This section describes how a tools library is loaded when the program is run. Four methods are5476

described.5477

• A tools library may be linked with the program, as any other library is linked, either as a5478

static library or a dynamic library, and the runtime will call a predefined library initialization5479

routine that will register the event callbacks.5480

• The OpenACC runtime implementation may support a dynamic tools library, such as a shared5481

object for Linux or OS/X, or a DLL for Windows, which is then dynamically loaded at runtime5482

under control of the environment variable ACC_PROFLIB.5483

• Some implementations where the OpenACC runtime is itself implemented as a dynamic li-5484

brary may support adding a tools library using the LD_PRELOAD feature in Linux.5485

• A tools library may be linked with the program, as in the first option, and the application itself5486

may directly register event callback routines, or may invoke a library initialization routine that5487

will register the event callbacks.5488

Callbacks are registered with the runtime by calling acc_callback_register for each event5489

as described in Section 5.4 Registering Event Callbacks. The prototype for acc_callback_register5490

is:5491

150

The OpenACC® API Version 3.4 5.3. Loading the Library

extern void acc_callback_register5492

(acc_event_t event_type, acc_callback cb,5493

acc_register_t info);5494

The first argument to acc_callback_register is the event for which a callback is being5495

registered (compare Section 5.1 Events). The second argument is a pointer to the callback routine:5496

typedef void (*acc_callback)5497

(acc_callback_info*,acc_event_info*,acc_api_info*);5498

The third argument is an enum type:5499

typedef enum acc_register_t{5500

acc_reg = 0,5501

acc_toggle = 1,5502

acc_toggle_per_thread = 25503

}acc_register_t;5504

This is usually acc_reg, but see Section 5.4.2 Disabling and Enabling Callbacks for cases where5505

different values are used.5506

An example of registering callbacks for launch, upload, and download events is:5507

acc_callback_register(acc_ev_enqueue_launch_start,5508

prof_launch, acc_reg);5509

acc_callback_register(acc_ev_enqueue_upload_start,5510

prof_data, acc_reg);5511

acc_callback_register(acc_ev_enqueue_download_start,5512

prof_data, acc_reg);5513

As shown in this example, the same routine (prof_data) can be registered for multiple events.5514

The routine can use the event_type field in the acc_callback_info structure to determine5515

for what event it was invoked.5516

The names acc_prof_register and acc_prof_unregister are preserved for backward5517

compatibility with previous versions of OpenACC.5518

5.3.1 Library Registration5519

The OpenACC runtime will invoke acc_register_library, passing the addresses of the reg-5520

istration routines acc_callback_register and acc_callback_unregister, in case5521

that routine comes from a dynamic library. In the third argument it passes the address of the lookup5522

routine acc_prof_lookup to obtain the addresses of inquiry functions. No inquiry functions5523

are defined in this profiling interface, but we preserve this argument for future support of sampling-5524

based tools.5525

Typically, the OpenACC runtime will include a weak definition of acc_register_library,5526

which does nothing and which will be called when there is no tools library. In this case, the library5527

can save the addresses of these routines and/or make registration calls to register any appropriate5528

callbacks. The prototype for acc_register_library is:5529

extern void acc_register_library5530

(acc_prof_reg reg, acc_prof_reg unreg,5531

151

The OpenACC® API Version 3.4 5.3. Loading the Library

acc_prof_lookup_func lookup);5532

The first two arguments of this routine are of type:5533

typedef void (*acc_prof_reg)5534

(acc_event_t event_type, acc_callback cb,5535

acc_register_t info);5536

The third argument passes the address to the lookup function acc_prof_lookup to obtain the5537

address of interface functions. It is of type:5538

typedef void (*acc_query_fn)();5539

typedef acc_query_fn (*acc_prof_lookup_func)5540

(const char* acc_query_fn_name);5541

The argument of the lookup function is a string with the name of the inquiry function. There are no5542

inquiry functions defined for this interface.5543

5.3.2 Statically-Linked Library Initialization5544

A tools library can be compiled and linked directly into the application. If the library provides an5545

external routine acc_register_library as specified in Section 5.3.1Library Registration, the5546

runtime will invoke that routine to initialize the library.5547

The sequence of events is:5548

1. The runtime invokes the acc_register_library routine from the library.5549

2. The acc_register_library routine calls acc_callback_register for each event5550

to be monitored.5551

3. acc_callback_register records the callback routines.5552

4. The program runs, and your callback routines are invoked at the appropriate events.5553

In this mode, only one tool library is supported.5554

5.3.3 Runtime Dynamic Library Loading5555

A common case is to build the tools library as a dynamic library (shared object for Linux or OS/X,5556

DLL for Windows). In that case, you can have the OpenACC runtime load the library during initial-5557

ization. This allows you to enable runtime profiling without rebuilding or even relinking your ap-5558

plication. The dynamic library must implement a registration routine acc_register_library5559

as specified in Section 5.3.1 Library Registration.5560

The user may set the environment variable ACC_PROFLIB to the path to the library will tell the5561

OpenACC runtime to load your dynamic library at initialization time:5562

Bash:5563

export ACC_PROFLIB=/home/user/lib/myprof.so5564

./myapp5565

or5566

ACC_PROFLIB=/home/user/lib/myprof.so ./myapp5567

152

The OpenACC® API Version 3.4 5.3. Loading the Library

C-shell:5568

setenv ACC_PROFLIB /home/user/lib/myprof.so5569

./myapp5570

When the OpenACC runtime initializes, it will read the ACC_PROFLIB environment variable (with5571

getenv). The runtime will open the dynamic library (using dlopen or LoadLibraryA); if5572

the library cannot be opened, the runtime may cause the program to halt execution and return an5573

error status, or may continue execution with or without an error message. If the library is success-5574

fully opened, the runtime will get the address of the acc_register_library routine (using5575

dlsym or GetProcAddress). If this routine is resolved in the library, it will be invoked pass-5576

ing in the addresses of the registration routine acc_callback_register, the deregistration5577

routine acc_callback_unregister, and the lookup routine acc_prof_lookup. The reg-5578

istration routine in your library, acc_register_library, registers the callbacks by calling the5579

register argument, and must save the addresses of the arguments (register, unregister,5580

and lookup) for later use, if needed.5581

The sequence of events is:5582

1. Initialization of the OpenACC runtime.5583

2. OpenACC runtime reads ACC_PROFLIB.5584

3. OpenACC runtime loads the library.5585

4. OpenACC runtime calls the acc_register_library routine in that library.5586

5. Your acc_register_library routine calls acc_callback_register for each event5587

to be monitored.5588

6. acc_callback_register records the callback routines.5589

7. The program runs, and your callback routines are invoked at the appropriate events.5590

If supported, paths to multiple dynamic libraries may be specified in the ACC_PROFLIB environ-5591

ment variable, separated by semicolons (;). The OpenACC runtime will open these libraries and in-5592

voke the acc_register_library routine for each, in the order they appear in ACC_PROFLIB.5593

5.3.4 Preloading with LD PRELOAD5594

The implementation may also support dynamic loading of a tools library using the LD_PRELOAD5595

feature available in some systems. In such an implementation, you need only specify your tools5596

library path in the LD_PRELOAD environment variable before executing your program. The Open-5597

ACC runtime will invoke the acc_register_library routine in your tools library at initial-5598

ization time. This requires that the OpenACC runtime include a dynamic library with a default5599

(empty) implementation of acc_register_library that will be invoked in the normal case5600

where there is no LD_PRELOAD setting. If an implementation only supports static linking, or if the5601

application is linked without dynamic library support, this feature will not be available.5602

Bash:5603

export LD_PRELOAD=/home/user/lib/myprof.so5604

./myapp5605

or5606

LD_PRELOAD=/home/user/lib/myprof.so ./myapp5607

153

The OpenACC® API Version 3.4 5.4. Registering Event Callbacks

C-shell:5608

setenv LD_PRELOAD /home/user/lib/myprof.so5609

./myapp5610

The sequence of events is:5611

1. The operating system loader loads the library specified in LD_PRELOAD.5612

2. The call to acc_register_library in the OpenACC runtime is resolved to the routine5613

in the loaded tools library.5614

3. OpenACC runtime calls the acc_register_library routine in that library.5615

4. Your acc_register_library routine calls acc_callback_register for each event5616

to be monitored.5617

5. acc_callback_register records the callback routines.5618

6. The program runs, and your callback routines are invoked at the appropriate events.5619

In this mode, only a single tools library is supported, since only one acc_register_library5620

initialization routine will get resolved by the dynamic loader.5621

5.3.5 Application-Controlled Initialization5622

An alternative to default initialization is to have the application itself call the library initialization5623

routine, which then calls acc_callback_register for each appropriate event. The library5624

may be statically linked to the application or your application may dynamically load the library.5625

The sequence of events is:5626

1. Your application calls the library initialization routine.5627

2. The library initialization routine calls acc_callback_register for each event to be5628

monitored.5629

3. acc_callback_register records the callback routines.5630

4. The program runs, and your callback routines are invoked at the appropriate events.5631

In this mode, multiple tools libraries can be supported, with each library initialization routine in-5632

voked by the application.5633

5.4 Registering Event Callbacks5634

This section describes how to register and unregister callbacks, temporarily disabling and enabling5635

callbacks, the behavior of dynamic registration and unregistration, and requirements on an Open-5636

ACC implementation to correctly support the interface.5637

5.4.1 Event Registration and Unregistration5638

The library must call the registration routine acc_callback_register to register each call-5639

back with the runtime. A simple example:5640

extern void prof_data(acc_callback_info* profinfo,5641

acc_event_info* eventinfo, acc_api_info* apiinfo);5642

154

The OpenACC® API Version 3.4 5.4. Registering Event Callbacks

extern void prof_launch(acc_callback_info* profinfo,5643

acc_event_info* eventinfo, acc_api_info* apiinfo);5644

. . .5645

void acc_register_library(acc_prof_reg reg,5646

acc_prof_reg unreg, acc_prof_lookup_func lookup){5647

reg(acc_ev_enqueue_upload_start, prof_data, acc_reg);5648

reg(acc_ev_enqueue_download_start, prof_data, acc_reg);5649

reg(acc_ev_enqueue_launch_start, prof_launch, acc_reg);5650

}5651

In this example the prof_data routine will be invoked for each data upload and download event,5652

and the prof_launch routine will be invoked for each launch event. The prof_data routine5653

might start out with:5654

void prof_data(acc_callback_info* profinfo,5655

acc_event_info* eventinfo, acc_api_info* apiinfo){5656

acc_data_event_info* datainfo;5657

datainfo = (acc_data_event_info*)eventinfo;5658

switch(datainfo->event_type){5659

case acc_ev_enqueue_upload_start :5660

. . .5661

}5662

}5663

Multiple Callbacks5664

Multiple callback routines can be registered on the same event:5665

acc_callback_register(acc_ev_enqueue_upload_start,5666

prof_data, acc_reg);5667

acc_callback_register(acc_ev_enqueue_upload_start,5668

prof_up, acc_reg);5669

For most events, the callbacks will be invoked in the order in which they are registered. However,5670

end events, named acc_ev_..._end, invoke callbacks in the reverse order. Essentially, each5671

event has an ordered list of callback routines. A new callback routine is appended to the tail of the5672

list for that event. For most events, that list is traversed from the head to the tail, but for end events,5673

the list is traversed from the tail to the head.5674

If a callback is registered, then later unregistered, then later still registered again, the second regis-5675

tration is considered to be a new callback, and the callback routine will then be appended to the tail5676

of the callback list for that event.5677

Unregistering5678

A matching call to acc_callback_unregister will remove that routine from the list of call-5679

back routines for that event.5680

acc_callback_register(acc_ev_enqueue_upload_start,5681

prof_data, acc_reg);5682

// prof_data is on the callback list for acc_ev_enqueue_upload_start5683

155

The OpenACC® API Version 3.4 5.4. Registering Event Callbacks

. . .5684

acc_callback_unregister(acc_ev_enqueue_upload_start,5685

prof_data, acc_reg);5686

// prof_data is removed from the callback list5687

// for acc_ev_enqueue_upload_start5688

Each entry on the callback list must also have a ref count. This keeps track of how many times5689

this routine was added to this event’s callback list. If a routine is registered n times, it must be5690

unregistered n times before it is removed from the list. Note that if a routine is registered multiple5691

times for the same event, its ref count will be incremented with each registration, but it will only be5692

invoked once for each event instance.5693

5.4.2 Disabling and Enabling Callbacks5694

A callback routine may be temporarily disabled on the callback list for an event, then later re-5695

enabled. The behavior is slightly different than unregistering and later re-registering that event.5696

When a routine is disabled and later re-enabled, the routine’s position on the callback list for that5697

event is preserved. When a routine is unregistered and later re-registered, the routine’s position on5698

the callback list for that event will move to the tail of the list. Also, unregistering a callback must be5699

done n times if the callback routine was registered n times. In contrast, disabling, and enabling an5700

event sets a toggle. Disabling a callback will immediately reset the toggle and disable calls to that5701

routine for that event, even if it was enabled multiple times. Enabling a callback will immediately5702

set the toggle and enable calls to that routine for that event, even if it was disabled multiple times.5703

Registering a new callback initially sets the toggle.5704

A call to acc_callback_unregister with a value of acc_toggle as the third argument5705

will disable callbacks to the given routine. A call to acc_callback_register with a value of5706

acc_toggle as the third argument will enable those callbacks.5707

acc_callback_unregister(acc_ev_enqueue_upload_start,5708

prof_data, acc_toggle);5709

// prof_data is disabled5710

. . .5711

acc_callback_register(acc_ev_enqueue_upload_start,5712

prof_data, acc_toggle);5713

// prof_data is re-enabled5714

A call to either acc_callback_unregister or acc_callback_register to disable or5715

enable a callback when that callback is not currently registered for that event will be ignored with5716

no error.5717

All callbacks for an event may be disabled (and re-enabled) by passing NULL to the second argument5718

and acc_toggle to the third argument of acc_callback_unregister (and5719

acc_callback_register). This sets a toggle for that event, which is distinct from the toggle5720

for each callback for that event. While the event is disabled, no callbacks for that event will be5721

invoked. Callbacks for that event can be registered, unregistered, enabled, and disabled while that5722

event is disabled, but no callbacks will be invoked for that event until the event itself is enabled.5723

Initially, all events are enabled.5724

acc_callback_unregister(acc_ev_enqueue_upload_start,5725

prof_data, acc_toggle);5726

156

The OpenACC® API Version 3.4 5.5. Advanced Topics

// prof_data is disabled5727

. . .5728

acc_callback_unregister(acc_ev_enqueue_upload_start,5729

NULL, acc_toggle);5730

// acc_ev_enqueue_upload_start callbacks are disabled5731

. . .5732

acc_callback_register(acc_ev_enqueue_upload_start,5733

prof_data, acc_toggle);5734

// prof_data is re-enabled, but5735

// acc_ev_enqueue_upload_start callbacks still disabled5736

. . .5737

acc_callback_register(acc_ev_enqueue_upload_start,5738

prof_up, acc_reg);5739

// prof_up is registered and initially enabled, but5740

// acc_ev_enqueue_upload_start callbacks still disabled5741

. . .5742

acc_callback_register(acc_ev_enqueue_upload_start,5743

NULL, acc_toggle);5744

// acc_ev_enqueue_upload_start callbacks are enabled5745

5746

Finally, all callbacks can be disabled (and enabled) by passing the argument list (acc_ev_none,5747

NULL, acc_toggle) to acc_callback_unregister (and acc_callback_register).5748

This sets a global toggle disabling all callbacks, which is distinct from the toggle enabling callbacks5749

for each event and the toggle enabling each callback routine.5750

The behavior of passing acc_ev_none as the first argument and a non-NULL value as the second5751

argument to acc_callback_unregister or acc_callback_register is not defined,5752

and may be ignored by the runtime without error.5753

All callbacks can be disabled (or enabled) for just the current thread by passing the argument list5754

(acc_ev_none, NULL, acc_toggle_per_thread) to acc_callback_unregister5755

(and acc_callback_register). This is the only thread-specific interface to5756

acc_callback_register and acc_callback_unregister, all other calls to register,5757

unregister, enable, or disable callbacks affect all threads in the application.5758

5.5 Advanced Topics5759

This section describes advanced topics such as dynamic registration and changes of the execution5760

state for callback routines as well as the runtime and tool behavior for multiple host threads.5761

5.5.1 Dynamic Behavior5762

Callback routines may be registered or unregistered, enabled or disabled at any point in the execution5763

of the program. Calls may appear in the library itself, during the processing of an event. The5764

OpenACC runtime must allow for this case, where the callback list for an event is modified while5765

that event is being processed.5766

157

The OpenACC® API Version 3.4 5.5. Advanced Topics

Dynamic Registration and Unregistration5767

Calls to acc_register and acc_unregister may occur at any point in the application. A5768

callback routine can be registered or unregistered from a callback routine, either the same routine5769

or another routine, for a different event or the same event for which the callback was invoked. If a5770

callback routine is registered for an event while that event is being processed, then the new callback5771

routine will be added to the tail of the list of callback routines for this event. Some events (the5772

_end) events process the callback routines in reverse order, from the tail to the head. For those5773

events, adding a new callback routine will not cause the new routine to be invoked for this instance5774

of the event. The other events process the callback routines in registration order, from the head5775

to the tail. Adding a new callback routine for such an event will cause the runtime to invoke that5776

newly registered callback routine for this instance of the event. Both the runtime and the library5777

must implement and expect this behavior.5778

If an existing callback routine is unregistered for an event while that event is being processed, that5779

callback routine is removed from the list of callbacks for this event. For any event, if that callback5780

routine had not yet been invoked for this instance of the event, it will not be invoked.5781

Registering and unregistering a callback routine is a global operation and affects all threads, in a5782

multithreaded application. See Section 5.4.1 Multiple Callbacks.5783

Dynamic Enabling and Disabling5784

Calls to acc_register and acc_unregister to enable and disable a specific callback for5785

an event, enable or disable all callbacks for an event, or enable or disable all callbacks may occur5786

at any point in the application. A callback routine can be enabled or disabled from a callback5787

routine, either the same routine or another routine, for a different event or the same event for which5788

the callback was invoked. If a callback routine is enabled for an event while that event is being5789

processed, then the new callback routine will be immediately enabled. If it appears on the list of5790

callback routines closer to the head (for _end events) or closer to the tail (for other events), that5791

newly-enabled callback routine will be invoked for this instance of this event, unless it is disabled5792

or unregistered before that callback is reached.5793

If a callback routine is disabled for an event while that event is being processed, that callback routine5794

is immediately disabled. For any event, if that callback routine had not yet been invoked for this in-5795

stance of the event, it will not be invoked, unless it is enabled before that callback routine is reached5796

in the list of callbacks for this event. If all callbacks for an event are disabled while that event is5797

being processed, or all callbacks are disabled for all events while an event is being processed, then5798

when this callback routine returns, no more callbacks will be invoked for this instance of the event.5799

Registering and unregistering a callback routine is a global operation and affects all threads, in a5800

multithreaded application. See Section 5.4.1 Multiple Callbacks.5801

5.5.2 OpenACC Events During Event Processing5802

OpenACC events may occur during event processing. This may be because of OpenACC API rou-5803

tine calls or OpenACC constructs being reached during event processing, or because of multiple host5804

threads executing asynchronously. Both the OpenACC runtime and the tool library must implement5805

the proper behavior.5806

158

The OpenACC® API Version 3.4 5.5. Advanced Topics

5.5.3 Multiple Host Threads5807

Many programs that use OpenACC also use multiple host threads, such as programs using the5808

OpenMP API. The appearance of multiple host threads affects both the OpenACC runtime and the5809

tools library.5810

Runtime Support for Multiple Threads5811

The OpenACC runtime must be thread-safe, and the OpenACC runtime implementation of this5812

tools interface must also be thread-safe. All threads use the same set of callbacks for all events, so5813

registering a callback from one thread will cause all threads to execute that callback. This means that5814

managing the callback lists for each event must be protected from multiple simultaneous updates.5815

This includes adding a callback to the tail of the callback list for an event, removing a callback from5816

the list for an event, and incrementing or decrementing the ref count for a callback routine for an5817

event.5818

In addition, one thread may register, unregister, enable, or disable a callback for an event while5819

another thread is processing the callback list for that event asynchronously. The exact behavior may5820

be dependent on the implementation, but some behaviors are expected and others are disallowed.5821

In the following examples, there are three callbacks, A, B, and C, registered for event E in that5822

order, where callbacks A and B are enabled and callback C is temporarily disabled. Thread T1 is5823

dynamically modifying the callbacks for event E while thread T2 is processing an instance of event5824

E.5825

• Suppose thread T1 unregisters or disables callback A for event E. Thread T2 may or may not5826

invoke callback A for this event instance, but it must invoke callback B; if it invokes callback5827

A, that must precede the invocation of callback B.5828

• Suppose thread T1 unregisters or disables callback B for event E. Thread T2 may or may not5829

invoke callback B for this event instance, but it must invoke callback A; if it invokes callback5830

B, that must follow the invocation of callback A.5831

• Suppose thread T1 unregisters or disables callback A and then unregisters or disables callback5832

B for event E. Thread T2 may or may not invoke callback A and may or may not invoke5833

callback B for this event instance, but if it invokes both callbacks, it must invoke callback A5834

before it invokes callback B.5835

• Suppose thread T1 unregisters or disables callback B and then unregisters or disables callback5836

A for event E. Thread T2 may or may not invoke callback A and may or may not invoke5837

callback B for this event instance, but if it invokes callback B, it must have invoked callback5838

A for this event instance.5839

• Suppose thread T1 is registering a new callback D for event E. Thread T2 may or may not5840

invoke callback D for this event instance, but it must invoke both callbacks A and B. If it5841

invokes callback D, that must follow the invocations of A and B.5842

• Suppose thread T1 is enabling callback C for event E. Thread T2 may or may not invoke5843

callback C for this event instance, but it must invoke both callbacks A and B. If it invokes5844

callback C, that must follow the invocations of A and B.5845

The acc_callback_info struct has a thread_id field, which the runtime must set to a5846

unique value for each host thread, though it need not be the same as the OpenMP threadnum value.5847

159

The OpenACC® API Version 3.4 5.5. Advanced Topics

Library Support for Multiple Threads5848

The tool library must also be thread-safe. The callback routine will be invoked in the context of the5849

thread that reaches the event. The library may receive a callback from a thread T2 while it’s still5850

processing a callback, from the same event type or from a different event type, from another thread5851

T1. The acc_callback_info struct has a thread_id field, which the runtime must set to a5852

unique value for each host thread.5853

If the tool library uses dynamic callback registration and unregistration, or callback disabling and5854

enabling, recall that unregistering or disabling an event callback from one thread will unregister or5855

disable that callback for all threads, and registering or enabling an event callback from any thread5856

will register or enable it for all threads. If two or more threads register the same callback for the5857

same event, the behavior is the same as if one thread registered that callback multiple times; see5858

Section 5.4.1 Multiple Callbacks. The acc_unregister routine must be called as many times5859

as acc_register for that callback/event pair in order to totally unregister it. If two threads5860

register two different callback routines for the same event, unless the order of the registration calls5861

is guaranteed by some sychronization method, the order in which the runtime sees the registration5862

may differ for multiple runs, meaning the order in which the callbacks occur will differ as well.5863

160

The OpenACC® API Version 3.4 6. Glossary

6. Glossary5864

Clear and consistent terminology is important in describing any programming model. We define5865

here the terms you must understand in order to make effective use of this document and the asso-5866

ciated programming model. In particular, some terms used in this specification conflict with their5867

usage in the base language specifications. When there is potential confusion, the term will appear5868

here.5869

Accelerator – a device attached to a CPU and to which the CPU can offload data and compute5870

kernels to perform compute-intensive calculations.5871

Accelerator routine – a procedure compiled for the accelerator with the routine directive.5872

Accelerator thread – a thread of execution that executes on the accelerator; a single vector lane of5873

a single worker of a single gang.5874

Aggregate datatype – any non-scalar datatype such as array and composite datatypes. In Fortran,5875

aggregate datatypes include arrays, derived types, character types. In C, aggregate datatypes include5876

arrays, targets of pointers, structs, and unions. In C++, aggregate datatypes include arrays, targets5877

of pointers, classes, structs, and unions.5878

Aggregate variables – a variable of any non-scalar datatype, including array or composite variables.5879

In Fortran, this includes any variable with allocatable or pointer attribute and character variables.5880

Async-argument – an async-argument is a nonnegative scalar integer expression (int for C or C++,5881

integer for Fortran), or one of the special values acc_async_noval or acc_async_sync.5882

Barrier – a type of synchronization where all parallel execution units or threads must reach the5883

barrier before any execution unit or thread is allowed to proceed beyond the barrier; modeled after5884

the starting barrier on a horse race track.5885

Block construct – a block-construct, as specified by the Fortran language.5886

Captured variable – a variable for which a discrete copy from its original variable exists in the5887

device-accessible memory. Such variable is only captured from the time its copy is created and5888

until such a copy is deleted.5889

Composite datatype – a derived type in Fortran, or a struct or union type in C, or a class,5890

struct, or union type in C++. (This is different from the use of the term composite data type in5891

the C and C++ languages.)5892

Composite variable – a variable of composite datatype. In Fortran, a composite variable must not5893

have allocatable or pointer attributes.5894

Compute construct – a parallel construct, serial construct, or kernels construct.5895

Compute intensity – for a given loop, region, or program unit, the ratio of the number of arithmetic5896

operations performed on computed data divided by the number of memory transfers required to5897

move that data between two levels of a memory hierarchy.5898

Compute region – a parallel region, serial region, or kernels region.5899

161

The OpenACC® API Version 3.4 6. Glossary

Condition – a condition is an expression that evalautes to true or false according to the rules of the5900

respective language. In Fortran, this is a scalar logical expression. In C, a condition is an expression5901

of scalar type. In C++, a condition is an expression that is contextually convertible to bool.5902

Construct – a directive and the associated statement, loop, or structured block, if any.5903

CUDA – the CUDA environment from NVIDIA, a C-like programming environment used to ex-5904

plicitly control and program an NVIDIA GPU.5905

Current device – the device represented by the acc-current-device-type-var and acc-current-device-5906

num-var ICVs5907

Current device type – the device type represented by the acc-current-device-type-var ICV5908

Data lifetime – the lifetime of a data object in device memory, which may begin at the entry to5909

a data region, or at an enter data directive, or at a data API call such as acc_copyin or5910

acc_create, and which may end at the exit from a data region, or at an exit data directive,5911

or at a data API call such as acc_delete, acc_copyout, or acc_shutdown, or at the end of5912

the program execution.5913

Data region – a region defined by a data construct, or an implicit data region for a function or5914

subroutine containing OpenACC directives. Data constructs typically allocate device memory and5915

copy data from host to device memory upon entry, and copy data from device to local memory and5916

deallocate device memory upon exit. Data regions may contain other data regions and compute5917

regions.5918

Default asynchronous queue – the asynchronous activity queue represented in the acc-default-5919

async-var ICV5920

Device – a general reference to an accelerator or a multicore CPU.5921

Device-accessible memory – any memory which can be accessed from the device.5922

Device memory – memory attached to a device, logically and physically separate from the host5923

memory.5924

Device thread – a thread of execution that executes on any device.5925

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment statement, that5926

is interpreted by a compiler to augment information about or specify the behavior of the program.5927

Discrete memory – memory accessible from the local thread that is not accessible from the current5928

device, or memory accessible from the current device that is not accessible from the local thread.5929

DMA – Direct Memory Access, a method to move data between physically separate memories;5930

this is typically performed by a DMA engine, separate from the host CPU, that can access the host5931

physical memory as well as an IO device or other physical memory.5932

Exposed variable access – with respect to a compute construct, any access to the data or address5933

of a variable at a point within the compute construct where the variable is not private to a scope5934

lexically enclosed within the compute construct. See Section 2.6.2.5935

false – a condition that evaluates to zero in C or C++, or .false. in Fortran.5936

GPU – a Graphics Processing Unit; one type of accelerator.5937

GPGPU – General Purpose computation on Graphics Processing Units.5938

162

The OpenACC® API Version 3.4 6. Glossary

Host – the main CPU that in this context may have one or more attached accelerators. The host5939

CPU controls the program regions and data loaded into and executed on one or more devices.5940

Host thread – a thread of execution that executes on the host.5941

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C5942

function. A call to a subprogram or function enters the implicit data region, and a return from the5943

subprogram or function exits the implicit data region.5944

integral-constant-expression – a compile time constant expression of integral or integer type,5945

equivalent to integral constant expression in C and C++, and equivalent to constant expression5946

of integer type in Fortran.5947

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are divided into5948

a parallel domain, and the body of the loop becomes the body of the kernel.5949

Kernels region – a region defined by a kernels construct. A kernels region is a structured block5950

which is compiled for the accelerator. The code in the kernels region will be divided by the compiler5951

into a sequence of kernels; typically each loop nest will become a single kernel. A kernels region5952

may require space in device memory to be allocated and data to be copied from local memory to5953

device memory upon region entry, and data to be copied from device memory to local memory and5954

space in device memory to be deallocated upon exit.5955

Level of parallelism – one of the following, which are arranged from the highest to the lowest level:5956

gang dimension three, gang dimension two, gang dimension one, worker, vector, or sequential.5957

One or more of gang, worker, and vector parallelism may appear on a loop construct. Sequential5958

execution corresponds to no parallelism. The gang, worker, vector, and seq clauses specify5959

the level of parallelism for a loop.5960

Local device – the device where the local thread executes.5961

Local memory – the memory associated with the local thread.5962

Local thread – the host thread or the accelerator thread that executes an OpenACC directive or5963

construct.5964

Loop trip count – the number of times a particular loop executes.5965

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different exe-5966

cution units or threads execute different instruction streams asynchronously with each other.5967

null pointer – a C or C++ pointer variable with the value zero, NULL, or (in C++) nullptr, or a5968

Fortran pointer variable that is not associated, or a Fortran allocatable variable that is not5969

allocated.5970

OpenCL – short for Open Compute Language, a developing, portable standard C-like programming5971

environment that enables low-level general-purpose programming on GPUs and other accelerators.5972

Orphaned loop construct – a loop construct that has no parent compute construct.5973

Parallel region – a region defined by a parallel construct. A parallel region is a structured block5974

which is compiled for the accelerator. A parallel region typically contains one or more work-sharing5975

loops. A parallel region may require space in device memory to be allocated and data to be copied5976

from local memory to device memory upon region entry, and data to be copied from device memory5977

to local memory and space in device memory to be deallocated upon exit.5978

163

The OpenACC® API Version 3.4 6. Glossary

Parent compute construct – for any point in the program, the nearest lexically enclosing compute5979

construct that has the same parent procedure.5980

Parent compute scope – for any point in the program, the parent compute construct or, if none, the5981

parent procedure.5982

Parent procedure – for any point in the program, the nearest lexically enclosing procedure such5983

that expressions at this point are not evaluated until the procedure is called.5984

Partly present data – a section of data for which some of the data is present in a single device5985

memory section, but part of the data is either not present or is present in a different device memory5986

section. For instance, if a subarray of an array is present, the array is partly present.5987

Present data – data for which the sum of the structured and dynamic reference counters is greater5988

than zero in a single device memory section; see Section 2.6.7. A null pointer is defined as always5989

present with a length of zero bytes.5990

Private data – with respect to an iterative loop, data which is used only during a particular loop5991

iteration. With respect to a more general region of code, data which is used within the region but is5992

not initialized prior to the region and is re-initialized prior to any use after the region.5993

Procedure – in C or C++, a function or C++ lambda; in Fortran, a subroutine or function.5994

Region – all the code encountered during an instance of execution of a construct. A region includes5995

any code in called routines, and may be thought of as the dynamic extent of a construct. This may5996

be a parallel region, serial region, kernels region, data region, or implicit data region.5997

Scalar – a variable of scalar datatype. In Fortran, scalars must not have allocatable or pointer5998

attributes.5999

Scalar datatype – an intrinsic or built-in datatype that is not an array or aggregate datatype. In For-6000

tran, scalar datatypes are integer, real, double precision, complex, or logical. In C, scalar datatypes6001

are char (signed or unsigned), int (signed or unsigned, with optional short, long or long long at-6002

tribute), enum, float, double, long double, Complex (with optional float or long attribute), or any6003

pointer datatype. In C++, scalar datatypes are char (signed or unsigned), wchar t, int (signed or6004

unsigned, with optional short, long or long long attribute), enum, bool, float, double, long double,6005

or any pointer datatype. Not all implementations or targets will support all of these datatypes.6006

Serial region – a region defined by a serial construct. A serial region is a structured block which6007

is compiled for the accelerator. A serial region contains code that is executed by a single gang of a6008

single worker with a vector length of one. A serial region may require space in device memory to be6009

allocated and data to be copied from local memory to device memory upon region entry, and data6010

to be copied from device memory to local memory and space in device memory to be deallocated6011

upon exit.6012

Shared memory – memory that is accessible from both the local thread and the current device.6013

SIMD – a method of parallel execution (single-instruction, multiple-data) where the same instruc-6014

tion is applied to multiple data elements simultaneously.6015

SIMD operation – a vector operation implemented with SIMD instructions.6016

Structured block – in C or C++, an executable statement, possibly compound, with a single entry6017

at the top and a single exit at the bottom. In Fortran, a block of executable statements with a single6018

entry at the top and a single exit at the bottom.6019

164

The OpenACC® API Version 3.4 6. Glossary

Thread – a host CPU thread or an accelerator thread. On a host CPU, a thread is defined by a6020

program counter and stack location; several host threads may comprise a process and share host6021

memory. On an accelerator, a thread is any one vector lane of one worker of one gang.6022

Tightly nested loops – two or more nested loops such that only the innermost loop contains state-6023

ments or directives other than a single loop statement. In other words, between any two loops in the6024

loop nest there is no intervening code.6025

true – a condition that evaluates to nonzero in C or C++, or .true. in Fortran.6026

var – the name of a variable (scalar, array, or composite variable), or a subarray specification, or an6027

array element, or a composite variable member, or the name of a Fortran common block between6028

slashes.6029

Vector operation – a single operation or sequence of operations applied uniformly to each element6030

of an array.6031

Visible data clause – with respect to a compute construct, any data clause on the compute con-6032

struct, on a lexically enclosing data construct that has the same parent procedure, or on a visible6033

declare directive. See Section 2.6.2.6034

Visible default clause – with respect to a compute construct, the nearest default clause ap-6035

pearing on the compute construct or on a lexically enclosing data construct that has the same6036

parent procedure. See Section 2.6.2.6037

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that is6038

visible to the program unit being compiled.6039

165

The OpenACC® API Version 3.4 6. Glossary

166

The OpenACC® API Version 3.4 A.1. Target Devices

A. Recommendations for Implementers6040

This section gives recommendations for standard names and extensions to use for implementations6041

for specific targets and target platforms, to promote portability across such implementations, and6042

recommended options that programmers find useful. While this appendix is not part of the Open-6043

ACC specification, implementations that provide the functionality specified herein are strongly rec-6044

ommended to use the names in this section. The first subsection describes devices, such as NVIDIA6045

GPUs. The second subsection describes additional API routines for target platforms, such as CUDA6046

and OpenCL. The third subsection lists several recommended options for implementations.6047

A.1 Target Devices6048

A.1.1 NVIDIA GPU Targets6049

This section gives recommendations for implementations that target NVIDIA GPU devices.6050

Accelerator Device Type6051

These implementations should use the name acc_device_nvidia for the acc_device_t6052

type or return values from OpenACC Runtime API routines.6053

ACC DEVICE TYPE6054

An implementation should use the case-insensitive name nvidia for the environment variable6055

ACC_DEVICE_TYPE.6056

device type clause argument6057

An implementation should use the case-insensitive name nvidia as the argument to the device_type6058

clause.6059

A.1.2 AMD GPU Targets6060

This section gives recommendations for implementations that target AMD GPUs.6061

Accelerator Device Type6062

These implementations should use the name acc_device_radeon for the acc_device_t6063

type or return values from OpenACC Runtime API routines.6064

ACC DEVICE TYPE6065

These implementations should use the case-insensitive name radeon for the environment variable6066

ACC_DEVICE_TYPE.6067

device type clause argument6068

An implementation should use the case-insensitive name radeon as the argument to the device_type6069

clause.6070

167

The OpenACC® API Version 3.4 A.2. API Routines for Target Platforms

A.1.3 Multicore Host CPU Target6071

This section gives recommendations for implementations that target the multicore host CPU.6072

Accelerator Device Type6073

These implementations should use the name acc_device_host for the acc_device_t type6074

or return values from OpenACC Runtime API routines.6075

ACC DEVICE TYPE6076

These implementations should use the case-insensitive name host for the environment variable6077

ACC_DEVICE_TYPE.6078

device type clause argument6079

An implementation should use the case-insensitive name host as the argument to the device_type6080

clause.6081

routine directive6082

Given a routine directive for a procedure, an implementation should:6083

• Suppress the procedure’s compilation for the multicore host CPU if a nohost clause appears.6084

• Ignore any bind clause when compiling the procedure for the multicore host CPU.6085

• Disallow a bind clause to appear after a device_type(host) clause.6086

A.2 API Routines for Target Platforms6087

These runtime routines allow access to the interface between the OpenACC runtime API and the6088

underlying target platform. An implementation may not implement all these routines, but if it6089

provides this functionality, it should use these function names.6090

A.2.1 NVIDIA CUDA Platform6091

This section gives runtime API routines for implementations that target the NVIDIA CUDA Run-6092

time or Driver API.6093

acc get current cuda device6094

Summary6095

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device handle for6096

the current device.6097

Format6098

C or C++:6099

void* acc_get_current_cuda_device ();6100

168

The OpenACC® API Version 3.4 A.2. API Routines for Target Platforms

acc get current cuda context6101

Summary6102

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context handle6103

in use for the current device.6104

Format6105

C or C++:6106

void* acc_get_current_cuda_context ();6107

acc get cuda stream6108

Summary6109

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for the6110

current device for the asynchronous activity queue associated with the async argument. This6111

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.6112

Format6113

C or C++:6114

void* acc_get_cuda_stream (int async);6115

acc set cuda stream6116

Summary6117

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current device6118

for the asynchronous activity queue associated with the async argument. This argument must be6119

an async-argument as defined in Section 2.16 Asynchronous Behavior.6120

Format6121

C or C++:6122

void acc_set_cuda_stream (int async, void* stream);6123

A.2.2 OpenCL Target Platform6124

This section gives runtime API routines for implementations that target the OpenCL API on any6125

device.6126

acc get current opencl device6127

Summary6128

The acc_get_current_opencl_device routine returns the OpenCL device handle for the6129

current device.6130

Format6131

C or C++:6132

void* acc_get_current_opencl_device ();6133

acc get current opencl context6134

Summary6135

The acc_get_current_opencl_context routine returns the OpenCL context handle in use6136

for the current device.6137

169

The OpenACC® API Version 3.4 A.3. Recommended Options and Diagnostics

Format6138

C or C++:6139

void* acc_get_current_opencl_context ();6140

acc get opencl queue6141

Summary6142

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use for6143

the current device for the asynchronous activity queue associated with the async argument. This6144

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.6145

Format6146

C or C++:6147

cl_command_queue acc_get_opencl_queue (int async);6148

acc set opencl queue6149

Summary6150

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use for6151

the current device for the asynchronous activity queue associated with the async argument. This6152

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.6153

Format6154

C or C++:6155

void acc_set_opencl_queue (int async, cl_command_queue cmdqueue6156

);6157

A.3 Recommended Options and Diagnostics6158

This section recommends options and diagnostics for implementations. Possible ways to implement6159

the options include command-line options to a compiler or settings in an IDE.6160

A.3.1 C Pointer in Present clause6161

This revision of OpenACC clarifies the construct:6162

void test(int n){6163

float* p;6164

. . .6165

#pragma acc data present(p)6166

{6167

// code here. . .6168

}6169

This example tests whether the pointer p itself is present in the current device memory. Implemen-6170

tations before this revision commonly implemented this by testing whether the pointer target p[0]6171

was present in the current device memory, and this appears in many programs assuming such. Until6172

such programs are modified to comply with this revision, an option to implement present(p) as6173

present(p[0]) for C pointers may be helpful to users.6174

170

The OpenACC® API Version 3.4 A.3. Recommended Options and Diagnostics

A.3.2 Nonconforming Applications and Implementations6175

Where feasible, implementations should diagnose OpenACC applications that do not conform with6176

this specification’s syntactic or semantic restrictions. Many but not all of these restrictions appear6177

in lists entitled “Restrictions.”6178

While compile-time diagnostics are preferable (e.g., invalid clauses on a directive), some cases of6179

nonconformity are more feasible to diagnose at run time (e.g., see Section 1.5). Where implemen-6180

tations are not able to diagnose nonconformity reliably (e.g., an independent clause on a loop6181

with data-dependent loop iterations), they might offer no diagnostics, or they might diagnose only6182

subcases.6183

In order to support OpenACC extensions, some implementations intentionally accept nonconform-6184

ing OpenACC applications without issuing diagnostics by default, and some implementations accept6185

conforming OpenACC applications but interpret their semantics differently than as detailed in this6186

specification. To promote program portability across implementations, implementations should pro-6187

vide an option to disable or report uses of these extensions. Some such extensions and diagnostics6188

are described in detail in the remainder of this section.6189

A.3.3 Automatic Data Attributes6190

Some implementations provide autoscoping or other analysis to automatically determine a variable’s6191

data attributes, including the addition of reduction, private, and firstprivate clauses. To promote6192

program portability across implementations, it would be helpful to provide an option to disable6193

the automatic determination of data attributes or report which variables’ data attributes are not as6194

defined in Section 2.6.6195

A.3.4 Routine Directive with a Name6196

In C and C++, if a routine directive with a name appears immediately before a procedure dec-6197

laration or definition with that name, it does not necessarily apply to that procedure according to6198

Section 2.15.1 and C and C++ name resolution. Implementations should issue diagnostics in the6199

following two cases:6200

1. When no procedure with that name is already in scope, the directive is nonconforming, so6201

implementations should issue a compile-time error diagnostic regardless of the following6202

procedure. For example:6203

#pragma acc routine(f) seq // compile-time error6204

void f();6205

2. When a procedure with that name is in scope and it is not the same procedure as the immedi-6206

ately following procedure declaration or definition, the resolution of the name can be confus-6207

ing. Implementations should then issue a compile-time warning diagnostic even though the6208

application is conforming. For example:6209

void g(); // routine directive applies6210

namespace NS {6211

#pragma acc routine(g) seq // compile-time warning6212

void g(); // routine directive does not apply6213

}6214

171

The OpenACC® API Version 3.4 A.4. Implementation-Defined Clauses

The diagnostic in this case should suggest the programmer either (1) relocate the routine6215

directive so that it more clearly applies to the procedure that is in scope or (2) remove the6216

name from the routine directive so that it applies to the following procedure.6217

A.4 Implementation-Defined Clauses6218

Implementations may choose to support additional clauses that are not listed in this specification.6219

These clauses are useful for providing additional information to the implementation that can be used6220

to optimize the execution of the application for a specific target accelerator or expose functional-6221

ity that is unique to the implementation. The specification recommends that these extensions be6222

prefixed with two consecutive underscores (__).6223

Additionally, implementations are strongly encouraged to namespace their extensions using a ven-6224

dor prefix. For example, the Foo compiler might use __foo_ as a prefix.6225

Implementations should document these additional clauses sufficiently that other implementations6226

may choose to support them or that they may eventually be added to the specification.6227

172

Index
_OPENACC, 31, 1436228

acc-current-device-num-var, 316229

acc-current-device-type-var, 316230

acc-default-async-var, 31, 1006231

acc_async_default, 996232

acc_async_noval, 996233

acc_async_sync, 996234

acc_device_host, 1686235

ACC_DEVICE_NUM, 31, 1356236

acc_device_nvidia, 1676237

acc_device_radeon, 1676238

ACC_DEVICE_TYPE, 31, 135, 167, 1686239

ACC_PROFLIB, 1356240

accelerator routine, 916241

action6242

allocate memory, 516243

attach, 476244

attach pointer, 516245

detach, 476246

detach pointer, 526247

allocate memory action, 516248

AMD GPU target, 1676249

async clause, 44, 46, 89, 1016250

async queue, 116251

async-argument, 1016252

asynchronous execution, 11, 996253

atomic construct, 776254

attach action, 476255

attach clause, 596256

attach pointer action, 516257

attachment counter, 476258

auto clause, 67, 69, 976259

portability, 686260

autoscoping, 1716261

barrier synchronization, 11, 34, 36, 1616262

bind clause, 936263

block construct, 1616264

cache directive, 756265

capture clause, 806266

collapse clause, 656267

common block, 48, 82, 996268

compiler options, 1706269

compute construct, 1616270

parent, 336271

compute region, 1616272

construct, 1626273

atomic, 776274

compute, 1616275

data, 43, 486276

host_data, 626277

kernels, 35, 486278

kernels loop, 756279

parallel, 33, 486280

parallel loop, 756281

serial, 35, 486282

serial loop, 756283

copy clause, 41, 546284

copyin clause, 556285

copyout clause, 566286

create clause, 57, 836287

CUDA, 12, 162, 167, 1686288

data attribute6289

explicitly determined, 406290

implicitly determined, 406291

predetermined, 406292

data clause, 486293

visible, 41, 1656294

data construct, 43, 486295

data lifetime, 1626296

data region, 42, 1626297

implicit, 426298

data-independent loop construct, 646299

declare directive, 816300

default clause, 40, 456301

visible, 41, 1656302

default(none) clause, 416303

default(present), 416304

delete clause, 586305

detach action, 476306

detach clause, 596307

detach pointer action, 526308

device clause, 896309

device_resident clause, 826310

device_type clause, 31, 48, 167, 1686311

deviceptr clause, 48, 536312

diagnostics, 1706313

direct memory access, 11, 1626314

DMA, 11, 1626315

173

The OpenACC® API Version 3.4 Index

enter data directive, 45, 486316

environment variable6317

_OPENACC, 316318

ACC_DEVICE_NUM, 31, 1356319

ACC_DEVICE_TYPE, 31, 135, 167, 1686320

ACC_PROFLIB, 1356321

exit data directive, 45, 486322

explicitly determined data attribute, 406323

exposed variable access, 41, 1626324

extensions, 1716325

firstprivate clause, 38, 416326

gang, 346327

gang clause, 66, 926328

implicit, 67, 976329

portability, 686330

gang parallelism, 106331

gang-arg, 646332

gang-partitioned mode, 106333

optimizations, 676334

gang-redundant mode, 10, 346335

GR mode, 106336

host, 1686337

host clause, 896338

host_data construct, 626339

ICV, 316340

if clause6341

compute construct, 376342

data construct, 446343

enter data directive, 466344

exit data directive, 466345

host_data construct, 636346

init directive, 856347

set directive, 876348

shutdown directive, 866349

update directive, 896350

wait directive, 1026351

implicit data region, 426352

implicit gang clause, 67, 976353

implicit routine directive, 67, 926354

implicitly determined data attribute, 406355

independent clause, 696356

init directive, 846357

internal control variable, 316358

kernels construct, 35, 486359

kernels loop construct, 756360

level of parallelism, 10, 1636361

link clause, 48, 846362

local device, 116363

local memory, 116364

local thread, 116365

loop construct, 646366

data-independent, 646367

orphaned, 646368

sequential, 646369

no_create clause, 576370

nohost clause, 936371

nonconformity, 1716372

num_gangs clause, 386373

num_workers clause, 386374

nvidia, 1676375

NVIDIA GPU target, 1676376

OpenCL, 12, 163, 167, 1696377

optimizations6378

gang-partitioned mode, 676379

routine directive, 986380

orphaned loop construct, 646381

parallel construct, 33, 486382

parallel loop construct, 756383

parallelism6384

level, 10, 1636385

parent compute construct, 336386

parent compute scope, 336387

parent procedure, 336388

pointer in present clause, 1706389

portability6390

auto and gang clauses, 686391

predetermined data attribute, 406392

present clause, 41, 48, 536393

pointer, 1706394

private clause, 38, 706395

procedure6396

parent, 336397

radeon, 1676398

read clause, 806399

reduction clause, 39, 716400

reference counter, 476401

region6402

compute, 1616403

174

The OpenACC® API Version 3.4 Index

data, 42, 1626404

implicit data, 426405

routine directive, 91, 1716406

implicit, 67, 926407

optimizations, 986408

self clause, 896409

compute construct, 376410

update directive, 896411

sentinel, 296412

seq clause, 68, 936413

sequential loop construct, 646414

serial construct, 35, 486415

serial loop construct, 756416

set directive, 876417

shutdown directive, 866418

size-expr, 646419

structured-block, 1646420

thread, 1656421

tightly nested loops, 1656422

tile clause, 696423

update clause, 806424

update directive, 886425

use_device clause, 636426

vector clause, 68, 936427

vector lane, 346428

vector parallelism, 106429

vector-partitioned mode, 106430

vector-single mode, 106431

vector_length clause, 386432

visible data clause, 41, 1656433

visible default clause, 41, 1656434

visible device copy, 1656435

VP mode, 106436

VS mode, 106437

wait clause, 44, 46, 89, 1016438

wait directive, 1026439

worker, 346440

worker clause, 68, 936441

worker parallelism, 106442

worker-partitioned mode, 106443

worker-single mode, 106444

WP mode, 106445

WS mode, 106446

175

	Introduction
	Scope
	Execution Model
	Memory Model
	Language Interoperability
	Runtime Errors
	Conventions used in this document
	Organization of this document
	References
	Changes from Version 1.0 to 2.0
	Corrections in the August 2013 document
	Changes from Version 2.0 to 2.5
	Changes from Version 2.5 to 2.6
	Changes from Version 2.6 to 2.7
	Changes from Version 2.7 to 3.0
	Changes from Version 3.0 to 3.1
	Changes from Version 3.1 to 3.2
	Changes from Version 3.2 to 3.3
	Changes from Version 3.3 to 3.4
	Corrections in the October 2025 document
	Topics Deferred For a Future Revision

	Directives
	Directive Format
	Conditional Compilation
	Internal Control Variables
	Modifying and Retrieving ICV Values

	Device-Specific Clauses
	Compute Constructs
	Parallel Construct
	Serial Construct
	Kernels Construct
	Compute Construct Restrictions
	Compute Construct Errors
	if clause
	self clause
	async clause
	wait clause
	num_gangs clause
	num_workers clause
	vector_length clause
	private clause
	firstprivate clause
	reduction clause
	default clause

	Data Environment
	Variables with Predetermined Data Attributes
	Variables with Implicitly Determined Data Attributes
	Data Regions and Data Lifetimes
	Data Structures with Pointers
	Data Construct
	Enter Data and Exit Data Directives
	Reference Counters
	Attachment Counter

	Data Clauses
	Data Specification in Data Clauses
	Data Clause Actions
	Data Clause Errors
	Data Clause Modifiers
	deviceptr clause
	present clause
	copy clause
	copyin clause
	copyout clause
	create clause
	no_create clause
	delete clause
	attach clause
	detach clause

	Host_Data Construct
	use_device clause
	if clause
	if_present clause

	Loop Construct
	collapse clause
	gang clause
	worker clause
	vector clause
	seq clause
	independent clause
	auto clause
	tile clause
	device_type clause
	private clause
	reduction clause

	Cache Directive
	Combined Constructs
	Atomic Construct
	Declare Directive
	device_resident clause
	create clause
	link clause

	Executable Directives
	Init Directive
	Shutdown Directive
	Set Directive
	Update Directive
	Wait Directive
	Enter Data Directive
	Exit Data Directive

	Procedure Calls in Compute Regions
	Routine Directive
	Global Data Access

	Asynchronous Behavior
	async clause
	wait clause
	Wait Directive

	Fortran Specific Behavior
	Optional Arguments
	Do Concurrent Construct

	Runtime Library
	Runtime Library Definitions
	Runtime Library Routines
	acc_get_num_devices
	acc_set_device_type
	acc_get_device_type
	acc_set_device_num
	acc_get_device_num
	acc_get_property
	acc_init
	acc_shutdown
	acc_async_test
	acc_wait
	acc_wait_async
	acc_wait_any
	acc_get_default_async
	acc_set_default_async
	acc_on_device
	acc_malloc
	acc_free
	acc_copyin and acc_create
	acc_copyout and acc_delete
	acc_update_device and acc_update_self
	acc_map_data
	acc_unmap_data
	acc_deviceptr
	acc_hostptr
	acc_is_present
	acc_memcpy_to_device
	acc_memcpy_from_device
	acc_memcpy_device
	acc_attach and acc_detach
	acc_memcpy_d2d

	Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	Profiling and Error Callback Interface
	Events
	Runtime Initialization and Shutdown
	Device Initialization and Shutdown
	Enter Data and Exit Data
	Data Allocation
	Data Construct
	Update Directive
	Compute Construct
	Enqueue Kernel Launch
	Enqueue Data Update (Upload and Download)
	Wait
	Error Event

	Callbacks Signature
	First Argument: General Information
	Second Argument: Event-Specific Information
	Third Argument: API-Specific Information

	Loading the Library
	Library Registration
	Statically-Linked Library Initialization
	Runtime Dynamic Library Loading
	Preloading with LD_PRELOAD
	Application-Controlled Initialization

	Registering Event Callbacks
	Event Registration and Unregistration
	Disabling and Enabling Callbacks

	Advanced Topics
	Dynamic Behavior
	OpenACC Events During Event Processing
	Multiple Host Threads

	Glossary
	Recommendations for Implementers
	Target Devices
	NVIDIA GPU Targets
	AMD GPU Targets
	Multicore Host CPU Target

	API Routines for Target Platforms
	NVIDIA CUDA Platform
	OpenCL Target Platform

	Recommended Options and Diagnostics
	C Pointer in Present clause
	Nonconforming Applications and Implementations
	Automatic Data Attributes
	Routine Directive with a Name

	Implementation-Defined Clauses

	Index

