

OpenACC Course October 2017. Lecture 2 Q&As.
 1

OpenACC Course October 2017

Lecture 2 Q&As

 Question Response
Is there any plan to support Intel
integrated GPUs?

OpenACC itself works fine for Intel iGPUS, but I'm not aware of any
compilers that currently support it. It's possible that GCC does or will
support this, but I'm not certain.

For what kind of problems is CUDA
better than OpenACC?

CUDA exposes the low-level details of the GPU architecture, so you can
often tune a CUDA kernel more than you can an OpenACC loop. Codes
that rely a lot on the GPU's shared memory or registers to communicate
among threads often work better with CUDA, because OpenACC doesn't
expose those low-level details. Frequently when you have loops with a lot
of code in them, a CUDA programmer may be able to better manage how
that code is used on the GPU and will be able to outperform OpenACC. My
usual guidance is to start with OpenACC, get on the GPU quickly, and then
when you find a particular part of the code isn't performance as well as
you'd like, you can write that part in CUDA and leave the rest in OpenACC.

A couple of question related with the
first lab: 1) why the code runs slower
when using 8 cores compared with 4
cores execution. 2) Why the code run
faster in C than in Fortran?

The CPU on the lab system only had 4 physical cores with 2 hyper threads
per core. Hence when moving to 8 OpenACC cores, you over saturated
the CPU cores so didn't see any additional speed-up and even can slow
down the code.

In OpenMP there are different
parameters such as PRIVATE,
SHARED, etc, do we need to do
anything similar with OpenACC?

In OpenACC you may need to use private sometimes, but everything is
assumed shared by default. Privatization is sometimes required in order to
get correct results. If you're using OpenACC's PARALLEL directive, as
opposed to the KERNELS that John has been teaching, then you may need
to look at the REDUCTION clause as well.

Is there any disadvantage using
OpenACC with CPU (vs OpenMP)?
What do data clause do for CPU?

What we've seen in that most of the time the OpenACC compiler will do just
as well as OpenMP on the CPU, but there's exceptions. OpenACC has no
way to control which threads run on which CPU cores (thread affinity) like
OpenMP does. So in cases where you're on a machine where thread or
memory affinity really matters, OpenMP has a way to handle that and
OpenACC does not. OpenMP also gives you a bit more control about how
to map your loop iterations to the threads by using specific schedules, so
for very load-imbalanced loops OpenMP will allow you to do better. For the
average loop where all of the iterations are doing the same thing and are
really parallel, the two should perform comparably.

Using OpenACC with multicore mode
is identical as using OpenMP?

Very close, yes. With OpenMP you're taking a lot of control and telling the
compiler how to parallelize the loop to threads. With OpenACC you give the
compiler the opportunity to try to use its smarts to do better. But, the
directives are very similar. The advantage with OpenACC is you can write
the directives, get good performance on the multicore CPU and then take
the exact same directives and it'll run well on a GPU as well. With OpenMP
you need different directives if you're running on a CPU or GPU (or
something else altogether).

Why isn't there an almost linear
speedup for the 2000X2000 case
using 4 cores?

I haven't explored exactly why the 2000x2000 case doesn't scale as well as
the 1000x1000 case. However, the 1000 case does fit in the L2 cache
while the 2000 case does not. I believe the lack of scaling in the 2000 case
has a similar cause.

What kind of gpu card you have on
your system?

The Lab system has an older Kepler (compute capability 3.0) card.

OpenACC Course October 2017. Lecture 2 Q&As.
 2

OpenACC Course October 2017

Lecture 2 Q&As

 Question Response
Was total 40 seconds here? Yes, the initial port of the OpenACC when moving to the GPU is quite slow.

As John explained, the vast majority of time here is being spent managing
the data between the discrete CPU and GPU memories. This is why we
need to add data regions.

it seems you still haven't answered
question 2. Oftentimes that is because
a C compiler ca apply optimizations.
Could be that the Fortran compiler
doesn't apply optimizations

That's generally not true. Compilers can usually apply more optimizations to
a Fortran code than a C code because of the rules the language imposes
on the programmer. Sometimes a C compiler can do better, but usually not.
In this case I think there's an error in timing or building that resulted in
worse performance on the Fortran version. Based on experience with this
code and others like it, the performance should be virtually identical.

yes, compiler flags. That's what I mean
with "optimizations"

Right, I think a compiler option was probably missed. The preferred option
with PGI is '-fast', which goes above and beyond something like -O2 or -O3
and picks what PGI thinks is the best flags for your machine.

How do you identify if your problem
does or does not fit within the L2
cache?

By the array size. In the 1000x1000 case the arrays are about 16MB, and
64MB in the 2000x2000 case. The L2 cache size on the Lab system is
20MB (as seen by "cat /proc/cpuinfo").

On the slide for Exercise 1: C Solution,
why does the second kernel require an
extra set of braces, while the first
doesn't?

Both are correct. The first kernel will use the structured block of the for loop
while the second defines it's own structured block. If you want the kernels
region to span multiple loops, then you will need to use the secondd
method of defining a structured block.

Any plans to support OpenACC in
Julia?

Good question. We had a discussion recently on the OpenACC technical
committee about what other languages we may be able to support. Right
now I'm unsure of whether Julia has a notion of pragmas or directives like
C/C and Fortran do, but it's on my list of things to look into.

From which compute capability can
you use your nvidia GPU?

I believe the PGI compiler supports as far back as cc 2.0 and supports up
to the latest GPUs, which is cc7.0. At some point that will probably change
to 3.0 and beyond.

Did I understand correctly that
OpenACC's explicit strategy is to focus
on offload (as opposed to shared
memory)?

OpenACC's strategy is to give the programmer the ability to parallelize their
code for any parallel machine, shared memory, multicore, GPU, whatever,
using the same set of directives. OpenACC doesn't care if it's an offloading
machine or not, although your code will be more portable if you assume it
may be run on a offloading machine because it's easier for the compiler to
ignore your data directives than to implicitly figure them out for you.

Is it possible to get the same info that
it's showing in pgprof from gprof (or
any other GNU-based tool)?

For the CPU side, gprof can get you similar information as pgprof. Though
unless something has changed recently, I don't believe gprof has been
updated to include GPU profiling support.

I think there's an error on the slide
titled "ARRAY SHAPING". Shouldn't
the C pragma have copyout(b[s/4:s/2])
instead of s/4:3*s/4? Either that or the
Fortran one ought to be
copyout(b(s/4:s)), right? Thanks.

Not necessarily. In C, (start:count) is used. So "copyout(s/4:3*s/4)" is
saying start at element "s/4" and copy "3*s/4" elements. If s=12, then this
would be start at element 3 and copy 9 elements . In the Fortran case,
(start:end) is used so this would be start at element 3 and end at element 9.

Are AMD GPUs supported by
OpenACC?

At one point in time both the PGI and PathScale compilers supported AMD
GPUs, but I don't believe they do now. I've spoken with someone at AMD in
the past and I think they're hoping to begin supporting OpenACC again
soon.

OpenACC Course October 2017. Lecture 2 Q&As.
 3

OpenACC Course October 2017

Lecture 2 Q&As

 Question Response
Can you give us a fast comparison
between what you can get from pgprof
and scorep/scalasca/vampir? (I'm a
score-p suite user)

PGPROF is based on NVIDIA's Visual Profiler, so it will give you more
GPU-specific details then the alternatives you listed. These alternatives do
a much better job of showing the big picture though, particularly MPI
communication and how it interacts with the GPU.

Last week I did all the thinking before
the lab...I'm happy with that because
there were hints in the profiler that
wold have told me without thinking.
Should I do a lot of thinking before
opening the lab again or is the lab set
up so I will iteratively trial-and-error
solutions? Hope the question makes
sense

The intent is that Lab2 is set-up to lead you through the process of profiling
your code to understand where the performance problem is (data
movement) and what directives you need to add where. We did include a
final solution this time if you get stuck.

Trailing my previous question: is is
possible to download the info from the
execution and analyze it locally on the
server using pgprof?

Yes. In Lab2, this is the method we use. You first save the profile by using
the command line profiler (pgprof -o myprofile.prof) and then import the
profile into the GUI profiler. I often will profile on a remote system, copy the
profile to my local workstation for visualization.

what if I am working in a large code
where most of the time the data needs
to be in the gpu... can I create a data
region from which I call subroutines
that are written with openacc kernels?

$acc data (x,y) {
call subroutine1(x,y)
call subroutine2(x,y)
call subrountine3(x,y)
}

Yes, absolutely and this is very common. Many codes have the KERNELS
regions inside of function calls and the data region way up in the main
program.

Will the PGI Community Edition always
remain free?

Yes, it is free for everyone.

In FORTRAN 90, I want to
communicate a subset of an array
between separate subroutines, in a
complicated code. The subset of the
array data will not change during the
kernel region. I don't want to explicitly
communicate it through subroutine
input, as parts of it are used in different
places. Can modules be used for that?
What is the best approach for
OpenACC in this situation? I am very
familiar with OpenMP or OpenACC.

In this case, it sounds like you may wish to use module data and use the
ACC DECLARE directive to make that data remain resident on the GPU for
the extent of your run.

Does the openacc kernels that run in
the GPU allow to run something
simultaneously in the CPU?

You can run on both the CPU and GPU simultaneously, but KERNELS
won't do that automatically for you. You can use the ASYC clause to send
work to the GPU, do other work on the CPU, and the use the WAIT
directive to get them back in sync.

OpenACC Course October 2017. Lecture 2 Q&As.
 4

OpenACC Course October 2017

Lecture 2 Q&As

 Question Response
What would happen in runtime if the
data needed to move into GPU is
larger than the memory it could offer?
Any error handling mechanism?

Ultimately, data all device management translates to the CUDA API. If you
need more memory than the GPU has, cudaMalloc will thow an error.

How does OpenACC deals with
memory transfers between devices
within the same node? Does it follows
a scheme Device1->Host->Device2 ?
or directly like Device1 -> Device2?

OpenACC itself does not manage memory between multiple devices.
Though if you are using a CUDA Aware MPI then you can use this transfer
directly between devices.

Could you comment on what would
happen in the lab if we removed from
laplace_kernels.final.c the kernels
directive in the initialize function? (I
would like to try it, but can't seem to
obtain a python kernel for my
notebook)

That would be fine depending on where you put the data directive. If it's
before the initialize routine, be sure to use the "update" directive to set the
values in the device copy of the array. Or move the data region after the
initialize routine and use a "copyin" clause.

If I'm using P100 GPU, do I use the
same "tesla" option or a different one?

With PGI 2017, we default to using CUDA 7.5 so don't target P100 with "-
ta=tesla" since P100 requires CUDA 8.0. For P100, use "-
ta=tesla:cuda8.0" or "-ta=tesla:cc60".

where can I find your Tshirts? :-)
Thanks for the tutorial

come to SC17 User Group meeting :)

In the pgprof GUI section, where is the
profile file sitting?

It's under "File System" the the "notebooks" directory.

