

OpenACC Course October 2017. Lecture 3 Q&As.
 1

OpenACC Course October 2017

Lecture 3 Q&As

 Question Response
If I have a 3D array in Fortran, how
is it mapped in the GPU?

In general, the layout of data structures on the host is matched on
the GPU. Specifically, for a 3D Fortran array you would have a
single block of memory with 3D indexing. The same structure would
be mirrored on the device and there would be no difference in how
you would access the array.

Can the pgi profiler be used to
profile the cpu and the gpu in the
same time to check if cpu and gpu
routines run asynchronously?

Yes, the profiler can profile both the CPU and GPU asynchronously.
Jeff won’t be covering the OpenACC "async" clause today, but will
include a link to a web presentation on the subject.

How would I apportion the gang
worker vector clauses on a 3D
nested stencil loop to map to 3D
cuda blocks on a 3d cuda grid? It
seems no matter what I try, the
compiler never uses 3d blocks
and/or grids.

Try using the "tile" clause with 3 arguments where the tile is on a
triply nested vector loop.

Is all this supported in gfortran? GNU does have support for OpenACC including gfortran. Most of
the OpenACC standard has been implemented in GNU, though they
do lack support for the "kernels" directive. You'll want to use
"parallel" if using GNU.

If I have a code that contains loops
that have a variable number of
iterations with OpenACC pragmas
be compiled as a library? and If this
library is called from another code,
would the compiler be smart
enough to optimize the
parallelization of those loops?

The launch configuration of the device kernels created from your
OpenACC loop is dynamic with the size being used based on the
iteration count. So yes, you can use a variable number of iterations.
OpenACC code can be put into a library and there'd be no difference
in how the loop is schedule between the version in a library and one
that is not.

May I access PC equipped with
GPU device with CUDA installed
on it? Thank you

The Labs do allow you access to a system with a GPU on it,
however we don't have systems for you to use outside the lab.

How should I parallelize two nested
loops, where I would like to
parallelize the top most loop, but
keep the inner loop sequential?

That would be dependent upon the loops. If the inner loop is
parallelizable and has a larger trip count (like > 128), then you'll
more likely what to add additional loop directive on the inner loop so
it will be parallelized as well.

Since there is no support for array
reductions yet, what is the optimal
way to do an array reduction? I
have tried serial sums in a parallel
loop, and atomic operations
(slower). Any other ways?

I'd use a serial sum in a parallel loop over an atomic. Unless the
inner loop is small in which case I'd run the inner loop sequentially.

OpenACC Course October 2017. Lecture 3 Q&As.
 2

OpenACC Course October 2017

Lecture 3 Q&As

 Question Response
I have encountered problems with
OpenACC when I tried to run some
examples in a laptop with Nvidia
920 M graphics card. The time was
never better than serial version. I
think that it is the Nvidia optimus
driver. Have you encounter similar
problems?

The 920M does not have very many compute resources available so
not expected be high performing. The good news is that you can
use it for development, but you should use a higher end or newer
architecture if you want to see better performance.

Sometimes I get “variable
dependence prevents
parallelization while using “acc
parallel loop”. Why do I get that if
I’m promising the compiler that it’s
safe parallelization?

It's probably occurring on an inner loop and not the loop where you
have the "parallel loop". The PGI compiler will still automatically
attempt to parallelize inner loops even if you haven't explicitly added
the loop directive.

How does OpenACC work with
C++ libraries such as Eigen?

Do you mean can you call Eigen library routines from OpenACC
code? The answer is yes, if you have added the "routine" directive
to the library which will create device callable code. However, you
cannot call host library routines from within device code.

Can you calculate prefix sum
(scan) with OpenACC?

No. The reduction operation must be commutative.

Can I use OpenACC in hybrid
code, e.g: inside of the node with
OpenACC and MPI between
nodes? if yes, which compiler can
support that?

Yes. Jeff will share some links at the end where you can find
additional training on using MPI OpenACC. It works very well and
most large applications that use OpenACC also use MPI. This
support is independent of the compiler so will work with PGI, GNU,
Cray, etc.

Should tile(n1,n2,n3) have the
property of
n1*n2*n3<max_threads_per_SM?

Yes. So you want to make sure that the product isn't greater than
1024. Better to use literal values than variables so the block size is
fixed.

Does collapse() work with a nested
loop where there are some
calculations outside the inner loop
but inside the outer loop?

The loops need to be tightly nested in order to collapse them.

Reduction is needed on each
loop?? I have been putting it on
my parallel clause and not on the
loop clauses within the parallel
region - is this incorrect?

Technically, yes. If you want the reduction to go across multiple loop
levels, you need to add the reduction clause on each of those loops.
PGI does not require this however.

Is it possible to use two or more
GPUs within the same server?
Does the compiler disseminate
jobs to more than one GPU?

Yes. You can toggle between GPUs from within an OpenACC code,
though it can be cumbersome and not automatic. It recommended
to use MPI OpenACC when using multiple devices.

OpenACC Course October 2017. Lecture 3 Q&As.
 3

OpenACC Course October 2017

Lecture 3 Q&As

 Question Response
Is the -ta=tesla option used for all
others nvidia architectures (kepler,
pascal, ...)?

The default targets will depend on the compiler version you are
using. The current PGI 2017 compilers use CUDA 7.5 by default so
"-ta=tesla" will created device code for Kepler and Maxwell. For
Pascal, you need to use "-ta=tesla:cc60" and/or "-ta=telsa:cuda8.0".
Once we move to using CUDA 8.0 by default, then Pascal will be
included in the default list. For Volta, you'd use "-ta=tesla:cc70" or "-
ta=tesla:cuda9.0"

AMD GPU has equivalent of CUDA
managed memory; can OpenACC
use it?

It would be up to the OpenACC implementation on whether to take
advantage of this support. The OpenACC standard does make data
management optional so there's no reason why an implementation
couldn't use it, but that's not part of OpenACC itself.

Where to find information on multi-
GPU support for OpenACC?

Here is the link to the talk covering multi-GPU support: http://on-
demand-gtc.gputechconf.com/gtc-quicklink/hhZdn

Is there a free compiler that
support OpenACC?

Yes, there is a GCC compiler and PGI Community Edition compilers
that are available for free

Are there any publications/studies
that compare the performance of
OpenACC code compiled with PGI
vs. GCC compiler? I suppose PGI
will perform better, but it also
comes at a price in a production
code using GCC as you have to
port the code to a different compiler
that could have hick ups in certain
3rd party libs (e.g. boost library). In
other words, such a comparison
would help weighing performance
vs. developer effort.

I don't know of any studies that did this. The GNU folks have shown
me some benchmark results where they were able to match PGI,
which is good. The major caveat with GNU is that they don't support
the "kernels" directive, so you are limited to using "parallel". So
provided that you can put in the extra effort to guide the GNU
compiler on how to parallelize your loop, you should be able to get
decent performance from GNU.

I am trying to optimize a 3D stencil
triple loop for GPU. I have been
playing with gang, worker, vector,
tile, etc and so far the fastest is just
using "loop,loop,loop". Is there a
standard stencil example that has
been tested on Psacal GPUs to
give some hint on what the optimal
clauses should be?

I do have some stencil examples but not sure if it would apply to your
program. Do you mind post this question on the PGI User Forum
including a code example of what you're trying to do? It will easier to
answer there.

Is the cache directive supported in
PGI 17.9? I put in in a parallel
region but do not see anything in
the compiler output recognizing it...

Yes, it's supported though still tricky to use. Also, the compiler
doesn't emit a feedback message for the cache directive, so it may
be using it but just not telling you.

How can one in OpenACC
parallelize across GPU devices?

The easiest way is to use MPI OpenACC with one MPI rank per
GPU.

OpenACC Course October 2017. Lecture 3 Q&As.
 4

OpenACC Course October 2017

Lecture 3 Q&As

 Question Response
would I see the cache working in
the pgprof output? it would be in
the shared memory per block?

Look at the output form "-ta=tesla:ptxinfo" for the amount of shared
memory used or review the generated device code (.gpu file) via "-
ta=tesla:nollvm,keep".

