

OpenACC Course October 2017. Lecture 1 Q&As
 1

OpenACC Course October 2017.

Lecture 1 Q&As.

Question Response
I am currently working on accelerating
code compiled in gcc, in your
experience should I grab the gcc-7 or
try to compile the code with the pgi-c ?

The GCC compilers are lagging behind the PGI compilers in terms of
OpenACC feature implementations so I'd recommend that you use the PGI
compilers. PGI compilers provide community version which is free and you
can use it to compile OpenACC codes.

New to OpenACC. Other than the PGI
compiler, what other compilers support
OpenACC?

You can find all the supported compilers here,
https://www.openacc.org/tools

Is it supporting Nvidia GPU on TK1? I
think, it must be

Currently there isn't an OpenACC implementation that supports ARM
processors including TK1. PGI is considering adding this support sometime
in the future, but for now, you'll need to use CUDA.

OpenACC directives work with intel
xeon phi platform?

Xeon Phi is treated as a MultiCore x86 CPU. With PGI you can use the "-
ta=multicore" flag to target multicore CPUs when using OpenACC.

Does it have any application in field of
Software Engineering?

In my opinion OpenACC enables good software engineering practices by
enabling you to write a single source code, which is more maintainable than
having to maintain different code bases for CPUs, GPUs, whatever.

Does the CPU comparisons include
simd vectorizations?

I think that the CPU comparisons include standard vectorisation that the
PGI compiler applies, but no specific hand-coded vectorisation
optimisations or intrinsic work.

Does OpenMP also enable
parallelization on GPU?

OpenMP does have support for GPUs, but the compilers are just now
becoming available. There's work going on to support it in both CLANG and
GCC, but neither ship with it enabled by default. OpenACC and OpenMP
are very similar programming models, although OpenACC is a bit higher
level, which we believe makes it more portable and more scalable in the
long run.

Is the NVIDIA OpenACC toolkit
needed, or can I just use the CUDA
library?

You can download PGI Community Edition to get started with OpenACC

Will examples also be in FORTRAN? Yes, both C and Fortran will be available

Are there VMs to practice OpenACC
when we don't have access to HPC?

As part of this course you will have the opportunity to try out OpenACC in
our qwiklabs system, which runs on Amazon AWS instances. Unfortunately,
GPU passthrough isn't available with most VMs, but you can use it by
installing the compiler on any of the GPU-enabled cloud providers. If you
just want to learn the programming model, you can build OpenACC to
target multi-core CPUs, so any VM with Linux and the PGI compiler should
work.

And work with old Xeon phi
coprocessor?

No, we (PGI) did an unreleased Alpha compiler several which we demoed
several years ago at the Supercomputing conference. However, we did not
productize it since Intel was moving Phi away from the co-processor so it
didn't make sense to continue working on a product was going to be
discontinued.

Does OpenACC take advantage of
avx-512 on Xeon CPU or phi?

PGI is working on AVX-512 support but this support has not yet been
released.

OpenACC Course October 2017. Lecture 1 Q&As
 2

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
Can we do a hybrid approach,
OpenACC%2B MPI%2BOpenMP on
CPU%2BGPU nodes?

Yes, I presented some examples of this at the GPU Technology
Conference earlier this year. You can use OpenMP to control CPU
threading, OpenACC within those threads to accelerate on one or more
GPUs, and even mix in some MPI, CUDA, or GPU libraries. In the "Parallel
Programming with OpenACC" book you'll find several examples that should
get you going.

Are you saying we can mix OpenACC
& CUDA in a single program?

Correct

For a typical explicit FVM based CFD
code, how much more speed up can
one expect by re-writing it in CUDA,
compared to using OpenACC on the
old code?

The performance of the code many vary. On average OpenACC give about
80% of CUDA performance, and now with unified memory feature we see
matching performance of OpenACC and CUDA

Does OpenACC mix well with MPI? Absolutely! Not only that, but you can even use it with GPU-aware MPI.
Check out NVIDIA's parallel forall blog, I believe there are several blog
posts on this. https://devblogs.nvidia.com/parallelforall

Can you create libraries with PGI that
can be linked with VS?

Yes. There are general issues with inter-language calling and you will need
to compile with "-ta=tesla:nordc" which disable so features such as device
routines and accessing global data, but we do have several large
customers that integrate PGI built OpenACC libraries with their larger
applications on Windows.

Any plan to support C++ in Windows
OS?

PGI does not currently have plans to support C on Windows.

Can OpenACC libraries be used with
Fortran and C++?

There are OpenACC Fortran and C compilers. OpenACC directives are
implemented by the compiler.

What are the flags with which the
program should be compiled assuming
OpenACC libraries are installed

If you're using the PGI compiler, you can use -acc to turn on building for
NVIDIA GPUs and the host CPU. You can also use the -ta flag to tell it
more about what machine you want to be able to run on. For GCC, I believe
the flag is -fopenacc.

How is it different than OpenMP? There are some major differences in the current versions of OpenACC and
OpenMP. You will hear about them during the presentation. I am listing
below what I find as the major differences. 1. OpenACC supports both
prescriptive and descriptive pragmas whereas OpenMP currently only
supports prescriptive pragmas. 2. The OpenACC have more features for
programming GPUs then OpenMP.

Can OpenACC be easily installed on a
local account on a cluster without
SUDO priviledges? If so, how do you
do so?

OpenACC is not a standalone library installation like MPI. It ships with the
compilers. So as long as you have one the compilers listed here,
https://www.openacc.org/tools, you can start using OpenACC in your code.
Installing compilers on a cluster without sudo privileges is not straight
forward. I'd recommend to talk with the system administrator with sudo
privileges to get one of the compilers installed.

Will OpenACC support python later? That's actually something we're exploring, but at the moment only C, C ,
and Fortran are supported. You should check out Numba though, because
it has capabilities very similar to OpenACC for supporting GPUs.

OpenACC Course October 2017. Lecture 1 Q&As
 3

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
Will ARM support ACC? At the moment I'm not aware of any ARM compilers for OpenACC. There

was previously support in the PathScale compiler for OpenACC on Cavium
ARM CPUs, but unfortunately the company behind that compiler went out
of business and I don't think anyone has picked up that effort.

Is there multi-gpu support with
OpenACC?

Yes, check out my talk on the subject: http://on-demand-
gtc.gputechconf.com/gtc-quicklink/9TEoXz

Is it still possible to fine level
optimizations with OpenACC?

OpenACC has a "loop" directive where you can tell the compiler how you
want it decomposed and really tune the code for the best performance.
Usually the compiler's guess will get pretty close to full performance, but
there are knobs to turn for improved performance. Come to the November 2
lecture, I'll be talking about this then.

The Intel Phi work with the older
generation or only the new ones

Only the KNL with the caveat that PGI does not officially support KNL and
have not yet released AVX-512 support.

What does OpenACC use under the
hood?

It depends on the target architecture you specify during compilation. For
e.g. NVIDIA GPUs the code will be translated into CUDA kernels.

Will OpenACC use both CPUs? The PGI compiler supports building OpenACC codes for multicore CPUs. In
the hands-on lab that will be available at the end of this lecture you will see
such an example.

Is GCC support for OpenACC at a
mature level?

It's improving, but the performance still usually lags behind the PGI and
Cray compilers. There's exceptions where GCC wins, but most of the time
you have to be much more explicit with GCC in telling it how you want your
loops parallelized. There's ongoing work to improve GCC's automatic
parallelization capabilities and performance.

Is the GCC 7 implementation on the
same level as the PGI one?

In general, you really have to hold GCC's hands a lot. PGI will often make
smarter decisions on how to optimize the OpenACC code automatically, but
GCC often requires you to tell the compiler exactly how to optimize your
code. There's work ongoing to improve GCC's performance and on
occasion I've see GCC even beat PGI, but most of the time PGI will beat
GCC by a wide margin, at least when building for NVIDIA GPUs.

OpenACC use both CPU and GPU? Yes, but it cannot currently automatically divide your loops across both at
the same time. That's a pretty significant challenge for the compiler. I know
of some research institutions looking at whether that would be possible.
You can certainly use OpenACC on your loops and build for the CPU or
GPU and choose which one based on what's available on your machine.

How the performance is improved in
medical imaging with PowerGrid?

you can read the complete story on openacc.org:
https://www.openacc.org/success-stories/powergrid

Does the Intel compiler have any
support for OpenACC?

Not currently, the list of compilers with support is at:
https://www.openacc.org/tools

Can the PGI compiler take advantage
of the dedicated TPU on Nvidia Volta
based GPU's?

Not at this time. The tensor cores are so specialized that they're only really
useful in very specific situations. I'm not aware of any work to detect these
specific situations and automatically use them. Your best bet for using the
Tensor Cores is via cuBLAS, cuDNN, and several common deep learning
frameworks, such as caffe2, tensorflow, pytorch, etc.

OpenACC Course October 2017. Lecture 1 Q&As
 4

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
Can OpenACC benefit CPU-only
setting? If there is no GPU, OpenACC
will only generate serial code?

Yes, actually in the first lab, which will become available after this lecture,
you will be taking a small code and parallelizing it on an 8-core CPU using
only OpenACC.

so if I want to make simple loop
parallel with pragma, I can use
#pragma acc kernels, but I can also
use openmp #pragma parallel. I am a
bit confused about pros and cons of
those two methods and how to choose
openmp vs OpenACC. (my initial
understanding was that OpenACC was
for GPUs and openmp for CPUS)

OpenMP was originally designed for shared memory machines and later
extended to support other types of parallelism, including support for
offloading to GPUs. With OpenMP, you the programmer are telling the
compiler how to parallelize your loops and certain legacy limitations can
sometimes limit the scalability. OpenACC wasn't explicitly designed for
GPUs, but it was designed from the beginning to work on GPU-like
machines. It forces you to write your code in a parallel way. When I talk to
users who have tried both with the same codes, I often hear that the
developers feel like OpenACC is simpler to use, because the compiler is
doing the analysis and planning the parallelism for you, where OpenMP
requires you to do more work.

Can you have race-conditions or
deadlocks with OpenACC?

OpenACC is designed to force the developers to remove any potential race
conditions or conditions that could cause deadlock.

Does C++ have a standard restrict
keyword yet?

No, though PGI does support restrict in C as an extension.

Which flag should I use with gcc? I haven't used GCC 7.0 so this may have changed, but with GCC 6.3 I used
"-foffload=-lm -lm -fopenacc -fopenacc-dim=1024:1" You may not need to
set the "dim" option since I believe 7.0 has gotten a lot better with loop
scheduling.

Which generation(s) of Tesla
accelerators does `-ta=tesla` target?
I've had all manners of fun supporting
CUDA code across multiple
microarchitecture generations.

By default with PGI 17.4 Community edition, "-ta=tesla" supports Fermi,
Kepler, and Maxwell since by default we use CUDA 7.5. Using "-
ta=tesla:cuda8.0" will also add Pascal. With PGI 17.7, we also added
support for Volta. You can also select which devices to compile for using "-
ta=tesla:cc35,c60,..etc" or for a single target device using "-ta=tesla:cc35".
See "pgcc -help -ta" for a full list of options and target devices.

Is there support for heterogeneous
hardware i.e. parallelisation over cpu +
gpu?

Yes. PGI's implementation of OpenACC does support both multicore CPU
as well as NVIDIA GPUs.

What is the approach for multi-GPU
computers? Any difference or the
procedure is the same.

I actually did a talk on this a few months ago. Take a look at http://on-
demand-gtc.gputechconf.com/gtc-quicklink/9TEoXz.

How does hyper-threading affect
OpenACC optimization?

Very interesting question. I'll answer based on my experience on Linux, but
I'm not certain if you try on other architectures. On a Linux machine hyper-
threading will show up as 2 CPUs, so an 8-core hyperthreaded CPU will be
presented by the OS as 16 CPUs and by default the OpenACC runtime will
try to run across all of them. Depending on the specifics of your application,
it's not uncommon to get better performance running only 1 thread per
physical CPU or disabling hyperthreading altogether.

Does OpenACC work with SSE
vectorization?

When targeting x86 multicore CPUs with OpenACC, the PGI will use SSE
vectorization.

OpenACC Course October 2017. Lecture 1 Q&As
 5

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
How does -ta=multicore compare with
OpenMP

We have tested against a range of applications that have both OpenACC
and OpenMP and the performance is usually quite close, with OpenACC
winning sometimes and OpenMP other. Usually they're essentially the
same performance. OpenMP supports thread affinity and OpenACC does
not, so that's one place where OpenMP can sometimes take the lead.

What happens when there are
underlying hardware changes post-
compilation of OpenACC enabled
codes? Specifically, if a different type
of GPU (AMD instead of NVIDIA, or
vice-versa) is added to the system or
removed? Will the code just grab
whatever is available?

Depending upon how you built the code, it's possible that you need to
recompile for the new target. By default, PGI does create multiple targets
within a single binary for multiple NVIDIA GPUs (Kepler, Fermi, Maxwell),
but also supports Pascal and Volta. If you compiled targeting the new
device, no need to recompile. If not, then you just need to recompile. We
(PGI) do not currently support AMD devices.

Will the course talk about "kernels" vs.
"parallel" directives, one being a
"suggestion" and one being an
instruction for how to compile
something?

I'm going to be the instructor on the 3rd week. If it's not covered by that
point, I'll make sure it's covered. You've got the gist of it though: with
kernels the compiler is in control and must figure out what it can and can't
parallelize and with parallel the programmer takes more control and gives
stronger guarantees to the compiler.

OpenACC seems wonderful! Any
plans to add OpenACC support to
GPUs from other vendors besides
NVIDIA?

PGI has no plans on supporting non-NVIDIA GPU, though other compilers
certainly can. We (PGI) focus on HPC where NVIDIA is the dominate
company for acceleration and we haven't found a business case to support
other GPUs.

Does opencc allow distributed parallel
programming or just shared parallel
programs?

OpenACC is strictly single-node. For multi-node programs you'll usually see
OpenACC MPI.

Does OpenACC have a mechanism to
send data from one GPU to another?

Yes. There are data and update directives. These will be discussed in the
next lecture.

Can I mix NVIDIA and AMD GPU
using OpenACC? Since you explained
that you don't need specific hardware
instructions like CUDA programming, I
guess OpenACC can handle the
hardware behind scenes.

Yes, the target architecture will be handled behind the scenes. For the PGI
compiler you can specify the target architecture using the -ta compiler
option. Like this, you can e.g target an NVIDIA or AMD GPU, or also a
multicore CPU. In the following link you can also find some information
about nvidia and radeon targets:
https://www.pgroup.com/lit/presentations/ieee_webinar_dec2013_slides.pdf

Is there a way to limit the resources of
CPUs targeted (e.g., use only half of
available memory/cores etc)

Yes. With the PGI compiler you can use the environment variable
ACC_NUM_CORES to say how many cores to use. There's an example of
this in the hands-on lab associated with today's lecture.

Can we use the CPU and GPU at the
same time

The compiler won’t automatically parallelize over both multiple cores of a
CPU and a GPU. The difficulty being the managing the data between the
discrete memories. Typically, users with use MPI OpenACC to parallelize
across multiple CPU cores and GPUs.

Can the host code on an OpenACC
application be written in C++ and the
OpenACC in ANSI C?

OpenACC can be used in ANSI C as well as C code. Both is possible.

OpenACC Course October 2017. Lecture 1 Q&As
 6

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
Will OpenACC be integrated into
OpenMP?

This is a very politically charged subject. At this point in time, however, the
two standards have moved their own directions long enough that it's very
unlikely they'll ever become a single group. I work on both standards bodies
and try to keep them from doing things that are fundamentally incompatible
with the other, but I don't expect that there will ever be a single group again.

Could OpenMP and OpenACC be
used together to achieve greater
performance?

Absolutely, but not on the same loop. I show an example of how to use
OpenMP and OpenACC to manage multiple GPUs in http://on-demand-
gtc.gputechconf.com/gtc-quicklink/9TEoXz.

Does OpenACC support AMD GPUs? Keep in mind that OpenACC is a standard with individual compiler
implementations targeting particular device. OpenACC can work on AMD
GPUs, but the PGI compiler does not currently support AMD. We dropped
support after the 16.10 compiler since we couldn't make a business case
for continuing this support.

Does OpenACC work well with
FFTW/cuFFT?

Yes. You can use OpenACC's `host_data` directive to send data to any
GPU-aware library. There's an example in one of the OpenACC books
showing how to interface an OpenACC kernel with cuFFT to do an image
filter.

Can OpenACC partition a loop
between both the CPU and the GPU? I
do not mean either or, but run on both
at the same time.

No. There's some research into this capability, but it's only research at this
point. Not only is there a load balancing problem, but you need to worry
about in which memory the data lives. With NVIDIA's unified memory on
recent architectures, this may become easier, but it's still a ways off.

Can I use OpenMP and OpenACC
together? For example, inside an
OpenMP loop, there is anther loop,
can I use OpenACC to parallelize the
inner loop?

Yes, OpenMP and OpenACC can be used together. Using a combination of
OpenMP and OpenACC, e.g. multiple GPUs can be used.

Does OpenACC have a mechanism to
use heterogeneous clusters
automatically?

With OpenACC you can compile your code for different target architectures
like GPUs or also multi-core CPU. When compiling your code, you can
specify different target architectures using the -ta option (PGI compiler).
Like this you can have one source and can compile your code for
heterogeneous architectures.

is it possible to run simultaneously in
the CPU and the GPU using
OpenACC?

Yes, but you cannot currently automatically split the same loop across both.
You can manually break up operations and put some on the GPU and leave
some on the CPU though. There's research into making this automatic, but
it's just research at this point in time.

OpenMP supports GPU offloading
since version 4.0. How does it
compare with OpenACC ?

You can write GPU code now using OpenMP and I've had some success
doing so. The GPU compilers for OpenMP are less mature than OpenACC,
so the performance often lags. What's more important though is that when
you write code with OpenMP you'll be writing very explicitly what you want
the compiler to do, but with OpenACC you rely a lot on the smarts of the
compiler. This means that with OpenMP you will need different directives
for each distinct type of machine but with OpenACC we rely on the compiler
to take the same code and optimize it for any machine you may wish to run
on.

Does OpenACC programs runs on
heterogeneous computing
platforms(mixed GPU and CPU

Yes. Support for NVIDIA GPUs is very mature. PGI has also announced
that they're working on supporting Xeon Phi.

OpenACC Course October 2017. Lecture 1 Q&As
 7

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
accelerators - Nvidia Tesla K20 and
Intel Xeon Phi)?

If I set openacc directive for a loop
which contains a part which involves
data dependency and other which is
embarrassingly parallel, will it
selectively parallelize the part which
has no data dependency, or should i
put the directives at better location?

If you use the OpenACC kernels directive around this code, the compiler is
required to analyze the code and decide whether it can be parallelized. If
the compiler sees a data dependency (or even the threat of one) it will
leave that section of the code unparallelized and only parallelize the part
that it knows is safe to do so. If you *know* that something is unsafe to
parallelize, you can use 'acc loop seq` to tell the compiler "please run this
loop sequentially".

Does PGI support OpenCL devices? If
yes, is OpenCL 2.x supported as
targets?

We (PGI) have used OpenCL in the past, but is not needed for our current
targets. We've been moving to using LLVM code device generation instead
of targeting either OpenCL or CUDA.

Does OpenACC support any FPGA
models leveraged within accelerator
scenarios?

I'm not aware of any OpenACC compilers for FPGAs. It's possible that
some of the research compilers, such as OpenARC or OpenUH have
support though.

How can I specify the stream number
that the parallel section runs into?
(kernel <<< grid, block, 0, stream >>> (
…, dev2, …))

You'd use the "async(id)" clause with a queue id where each queue
mapping to a CUDA stream. This should be covered in the third lecture.

Also, if you need to map a queue to a particular CUDA stream, then you
can use the API "acc_get_cuda_stream (int async)" to get the stream the
async queue is using or "acc_set_cuda_stream(int async, void * stream) to
set a queue to a particular stream

Are slides available for download? Yes, go here: https://www.openacc.org/sites/default/files/inline-
files/OpenACC_Day1.pptx

Can OpenACC utilise memcopies
concurrently with compute?

Yes. OpenACC uses the 'async' clause to make work happen on both the
CPU and GPU simultaneously, including data movements. Search on
http://on-demand-gtc.gputechconf.com for OpenACC talks, I've given
several that show this feature, but I'm not sure I can point you to a specific
one right this moment.

Is there any BLAS library using
OpenACC?

I'm not aware of any BLAS libraries using OpenACC internally, although it
could certainly be added to something like OpenBLAS. On GPU machines
you can use cuBLAS with OpenACC to get the best possible performance.

About the example, do we abandon
Gauss-Seidel and prefer Jacobi with
parallel programming?

I'm not familiar with Gauss-Seidel, but if it's can be parallelized then there
shouldn't be any reason why you could use it with OpenACC.

Can I watch this webinar and read the
resources later again? where is the
link?

The slides are posted at https://www.openacc.org/sites/default/files/inline-
files/OpenACC_Day1.pptx. Check back on the course webpage later today,
and probably the OpenACC youtube channel, for the videos.

Can I use a GTX 1060 to try this or is
there an specific NVIDIA GPU for this.

Yes, you're good to go!

OpenMP 4.5 can target GPUs. Should
we expect that OpenMP would
eventually absorb OpenACC?

That's a very politically charged question. They both have offloading
support, but for a variety of reasons I think momentum will continue to push
both forward as two separate specs.

Intel compilers, then I understand are
not supported.

Correct, Intel has not announced any support for OpenACC directives. It
will, however, ignore directives it doesn't understand, so you can still build a
code that has OpenACC pragmas in it.

OpenACC Course October 2017. Lecture 1 Q&As
 8

OpenACC Course October 2017.

Lecture 1 Q&As.

 Question Response
What embedded SOCs work with
OpenACC?

Sunway's compiler targets their SOC.

Does OpenACC supports dynamic
parallel programming from GPU

Yes and no. OpenACC supports nesting parallelism within parallelism.
Unfortunately, I'm not sure if any of the compilers actually do anything
useful with that. =(

what’s the lab URL again? You can find the lab here: https://nvlabs.qwiklab.com/

Does OpenACC have an open
interoperability?

Please see https://github.com/jefflarkin/openacc-interoperability

What is the max cores we can go to in
the lab?

The lab systems have 8 physical cores. You can have the runtime over-
saturate the cores by setting ACC_NUM_CORES to larger values, but may
not see any additional speed-up to contention on the cores.

What site does the discount code for
the OpenACC book apply?

only informit site that mentioned on the slide

Any compatibility with Apple's Xcode Not that I'm aware.

Could you comment on the implicit
reduction in the lab? I suppose the
'max' is done via a reduction, but there
is another line in the loop. Is there a
parallel loop running alongside the
reduction?

When you get a little farther along to the point that it's running on the GPU
when you'll find out is that the compiler usually reorganizes the code a bit to
handle the parallel reduction, even generating a specific GPU kernel just for
that operation.

