

OpenACC Course October 2018. Lecture 1 Q&As.
 1

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
Which operating system works with OpenACC: OS,
Windows or Linux?

Linux or Windows. PGI doesn't include GPU support on iOS but
you can target multicore CPUs.

OpenACC vs. CUDA, which should I use for my
computational fluid code?

OpenACC is going to easier to start with since it's a simpler model
and requires less rewriting of code. Though, OpenACC is inter-
operable with CUDA so later, if you want to use CUDA for some
performance critical loops that you want to hand-tune, you can
intermix the two.

What is the difference between OpenACC and
CUDA?

OpenACC is a directives-based model that is designed to simply
onboarding to accelerators and parallel programming in general.
CUDA is a low-level programming language that allows for full
customization of the code, but requires more development time.

Is there a way to use OpenACC together with the
AVX 2 extensions? Or does OpenACC use AVX 2
under the hood?

That will depend on the target accelerator and the compiler you're
using. When targeting a NVIDIA GPU, then no, it would not use
AVX-2. For the PGI compiler when targeting a multicore CPU,
then the compiler will auto-vectorize the code and use AVX-2
depending on the target CPU. It wouldn't be recommended to use
AVX-2 intrinsic directly since it would limit the portability of your
code.

Does OpenACC support KNL (may it rest in piece)? PGI does support using OpenACC on a KNL by targeting the
multicore CPU (-ta=multicore). The caveat being that PGI didn't
tune for performance on KNL, instead focusing on Skylake.

What about ARM CPU support for OpenACC? It is possible for OpenACC to run on ARM. However, I don't
believe that there is a current compiler implementation that
supports it.

I see "AMD GPU" on the list. Is there a current
compiler that will compile OpenACC to an AMD
GPU? GNU?

GNU does support AMD, though I don't know the current state.

Is Intel Many Integrated Core architecture
supported?

Yes, OpenACC runs on multicore. Jeff will cover it in a bit.

Does OpenACC C++ use CUDA internally? Under the hood, compilers will generate CUDA kernels using the
same PTX instructions that the nvcc compiler from the CUDA
toolkit would generate, and compilers will generally also take
advantage of the CUDA runtime API for things such as memory
transfers. You can use the NVIDIA profiler tool, nvprof, at the
command line to see the CUDA runtime API calls and kernel
launches that are generated by OpenACC.

My code wraps C++ core code in Lua language,
can I do similar thing to OpenACC code?

Currently supported languages are C, C , and Fortran. Though if
Lua can import shared objects built by one of these languages,
then you can include OpenACC in the shared object. We've had
many users do similar things with Python and R.

Which compilers support OpenACC directives? Is it
only PGI?

OpenACC is supported by PGI and GCC in addition to a few
research compilers. Complete information is available on
www.openacc.org/tools

Can OpenACC use the Volta and Turing tensor
cores?

This is not available currently.

OpenACC Course October 2018. Lecture 1 Q&As.
 2

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
Does it support both shared memory and
distributed memory parallelism?

OpenACC supports shared memory style parallelism but does not
handle distributed memory parallelism -- the programmer is still
required to use a model such as MPI to handle this.

What is the difference between OpenACC and
OpenMP for the incremental example, parallelizing
the for loop?

If you include OpenMP 4.5 target regions, OpenACC and
OpenMP can both generate code to parallelize a for loop for both
CPU cores and GPU cores. The difference is mainly in
performance details on various architectures and compilers, and
in the fact that OpenMP is generally more prescriptive, relying on
the programmer to give details about how the loop iterations
should be mapped to the hardware, whereas OpenACC can be
more descriptive and can generate parallel code without as much
specification by the programmer.

How do I know what device I am using, gpu or cpu
when I write those scripts? thx

You can specify your target architecture when compiling your
code. If you follow along the labs after the lecture, you will see the
difference in compiling for serial CPU, multicore CPU, and
NVIDIA GPU. For a quick reference though, when compiling
OpenACC code there is a flag called "-ta" which stands for target
accelerator. The flag for multicore is -ta=multicore, and the flag for
NVIDIA GPU -ta=tesla. You can also include GPU compute
capability for specify a GPU architecture. To compile for compute
capability 7.0 (which is Volta architecture) would be -ta=tesla:cc70

Is it correct to assume that OpenACC is a mix of
OpenMP (pragma directives) and OpenCL
(heterogeneous platforms)?

OpenMP as of the 4.5 standard can also be used for
heterogeneous systems with accelerators, using target offload
regions. OpenACC is thus fairly similar to OpenMP in this regard.
The main difference is in how parallel regions are specified by the
programmer by the two models.

What is the programming model of OpenACC for
multi-node, multi-GPU program?

For multi-node programs you would generally combine OpenACC
for doing within-GPU parallelism with MPI for multi-GPU and
multi-node parallelism.

What about using high-level languages, like
Python, Go, or Julia (becoming popular with e.g.
data science).

Certain high-level languages do have the ability to generate code
for GPUs, for example on Python you can use Numba to generate
GPU code: https://developer.nvidia.com/how-to-cuda-python

So can OpenACC be used for CPUs instead of
OpenMP?

Yes, OpenACC works on CPU. The same code will run on CPUs
and GPUs.

Can OpenACC parallelize across multiple compute
nodes? Or, do you still have to manage this by
hand with MPI

The programmer still is required to deal with parallelism across
compute nodes with an approach such as MPI.

Can you combine OpenACC and CUDA for specific
applications?

Yes, OpenACC and CUDA can be used together in one
application.

Which are the languages that support OpenACC
directives?

OpenACC supports C, C++ and Fortran

Does OpenACC run on any multi-core ARM-based
SoC?

There's no limitations on OpenACC itself, but currently there's no
implementation that support ARM. Though, you might want to
check with GNU to see there plans.

Can an OpenACC code run on multiple GPUs,
where GPU0 would be a GEFORCE GTX TITANX
and GPU1 would be a TESLA K40C? I hope I can

Yes! I have done this before with one of my university codes, I ran
on a GTX 1080, and a Tesla K80 at the same time. There are a
few different ways to accelerate code for multiple GPU, there are
some materials online (generally you would use OpenMP or MPI

OpenACC Course October 2018. Lecture 1 Q&As.
 3

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
use both GPUs at the same time through one
execution of a code

with OpenACC). Then when you compile, you will add flags for all
desired GPUs. For example, when I compiled my own code I
included the -ta=tesla:cc35,cc60 flag. This compiled for 2 different
GPU architectures, and then the GPU kernels launced depended
on which GPU they were being launched on.

What compilers, if any, support CUDA on MacOS? The CUDA toolkit is supported on MacOS and typically one would
use clang as a compiler.

Any problems using OpenACC with MPI? Nope! MPI+ OpenACC is a popular setup running on large
systems (such as ORNL Summit). You will essentially have your
standard MPI code, but then offload your large computational
loops to 1 or more GPUs.

Does OpenACC support Windows? The PGI compiler does support OpenACC on Windows.

Is it possible to exploit shared memory on the GPU
while using OpenACC?

Yes. PGI will implicitly use shared memory for private variables on
a gang loop. Also, OpenACC has a "cache" directive which will
put data in shared memory. The caveat being that "cache" can be
a bit tricky to use.

Wouldn't deep learning algorithms that do
regression analysis be best coded on
OPENACC/CUDA Fortran? You would get the
highest performance, due to the speed of Fortran
codes. What would be the problems of using
OpenACC Fortran against just using Python...

Typically the math cores of deep learning frameworks are written
in a lower-level model like CUDA C to maximize performance.

Can I use it with Python as well? OpenACC is currently only supported in C, C++ , and Fortran.
However, many users will implement their code using OpenACC
in one of these languages, build the code into a shared object
which can then be imported can called from a Python program.

Can CUDA and OpenACC can combined? Yes, OpenACC and CUDA are fully interoperable.

Can one combine OpenMP and OpenACC? Yes, OpenMP and OpenACC will work together.

Can OpenACC be used on, and has it been tested
on small embedded devices such as the Raspberry
pi?

The is no limitation if OpenACC could be implemented on a
Rasberry Pi, however, there currently is no implementation that
I'm aware of that support Pi. In general, OpenACC is used in high
performance and scientific computing.

Is there an NVIDIA math library alternative to Intel
MKL?

NVIDIA does provide several libraries for handling linear algebra
(cuBLAS, cuSOLVER, etc.), fast Fourier transforms (cuFFT), and
other math primitives. More details here:
https://docs.nvidia.com/cuda/#cuda-api-references

Are OpenACC directives recognized by GNU
compilers?

GNU is starting to support OpenACC. You have to install it
separately, but it is doable. However, OpenACC support on GNU
is new, and somewhat limited. For example, I know that at the
moment it does not support compiling for multicore CPU

Could it be possible to use it in a v-san architecture
with a multi-GPU and combine it like a middleware
like hadoop?

Not sure what a "v-san" architecture is, but the OpenACC
standard is meant to target a generic accelerator device. Not sure
if there is a compiler implementation for your scenario.

Does OpenACC has support to use multi-GPU? Yes, OpenACC works on multiple GPUs through MPI

Will CLANG support ACC anytime soon? Sorry, I'm not sure what CLANG's current plans are regarding
adding OpenACC support. However, I would encourage you to

OpenACC Course October 2018. Lecture 1 Q&As.
 4

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
reach out to the CLANG community and ask if they can add
support for OpenACC.

On a computer with multiple cores and a GPU, how
will the pragmas inform the compiler whether we
want a multi-threaded code or GPU code.?

When you compile you will have to switch a flag. The "-ta" flag
lets you specify which parallel architecture to compile for. -
ta=multicore will build for multicore CPU. -ta=tesla will build for
NVIDIA GPU. You cannot run on multicore and GPU at the same
time with OpenACC. You would need to include something else,
like OpenMP for example.

Is it possible to use OpenACC in Nvidia Jetson TX2
Development Kit?

OpenACC PGI compiler doesn't support ARM architechure yet.

What is the best way to combine both OpenACC
and OpenMPI?

OpenACC generally handles within-node parallelism, similar to
how OpenMP typically handles this for on-node parallelism
among CPU cores. MPI is used for communicating between
nodes.

Will there be examples in this course on how to use
OpenACC with MPI?

We are covering only intro to OpenACC in this course. But you
can refer to the advanced part we did before here:
https://developer.nvidia.com/openacc-advanced-course

Does OpenACC only support NVIDIA hardware? OpenACC supports a variety of platforms including NVIDIA
GPUs, x86 CPU, POWER CPU, AMD GPU, PEZY, Sunway,
FPGA. Support will vary based on the compiler implementation.

For CFD applications, it is usually said that GPU
affects the performance because of the constant
movement of the data from and out of GPU, can
you please give us your thoughts about this issue?

It depends on the specific application. If you can engineer your
code to keep data on the GPU as long as possible and not return
it to the CPU regularly, then you will amortize the cost of the
memory transfer to and from the GPU. If your application requires
constantly transferring the data back to the CPU, then the
application performance may be suboptimal, especially if the
amount of work done on the GPU is relatively small. However if
the work done on the GPU takes a long time, it may still dominate
the transfer cost.

Can OpenACC allow to program multicore CPU in
MPI that offload some calculations separately to a
single GPU?

Yes, with PGI, you can create a unified binary targeting both
multicore CPU and GPUs (i.e. -ta=multicore,tesla), then at run
time you can call an API routine to select which target device the
rank uses.

Is there a way to get the correspondent CUDA
kernel of a parallel region code generated by the
compiler (for instance the PGI compiler)?

Bu default, the PGI compiler will target LLVM code for the device
code generation. However, you can have the compiler instead
perform a translation to CUDA and save the output via the flags "-
ta=tesla:nollvm,keep". The CUDA code will outputed to a ".gpu"
file. However, the CUDA is very low level so may be difficult to
read.

Just saw you reply "OpenACC works on multi
GPUs through MPI", is there GPU programing
today allows "smp" style on multi GPUs in One
node (not via MPI)?

Yes, PGI will target multiple CPUs on the same node when
targeting multicore (-ta=multicore). No code changes are needed
if then wanted to instead target a single GPU (i.e. just recompile
using -ta=tesla)

How do I know that an OpenACC directive is slower
than my serial code? Is there an option of timing
the execution such as CUDA Event Timer?

There are a few ways to judge runtime. The two that I recommend
is to either: 1. profile the code. The profile will include runtimes
and a bunch of other details about how your code is running.
There is a profiler included in the PGI compiler if you are using it.
2. Again, if using PGI compiler, there is an environment variable

OpenACC Course October 2018. Lecture 1 Q&As.
 5

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
called PGI_ACC_TIME. If you set this variable, you code will
output some extra info about runtimes after it finishes executing.

What is the difference between gefore and rtx? GeForce is the brand name for NVIDIA GPUs such as the GTX
1080, which are of the Pascal GPU generation. RTX is the brand
name for the higher-end, more recent GPUs such as the RTX
2080. The main new feature of the RTX GPUs is tensor cores for
performing matrix multiplication steps (that are common in deep
learning) and RT cores for doing real-time ray tracing.

Can you use directive to switch between using
CPU-based bLAS library and CUBLAS (which have
slightly different calling conventions), depending on
the -ta (target architecture): multicore vs GPU?

This is not generally available, but it would be relatively
straightforward for you as the developer to write a unified wrapper
interface that can take either of these paths and then toggle
between them with, say, a compile-time flag of your own.

Can you please provide a sample FORTRAN code
for MULTI-GPU code with OpenACC and
OpenMPI? Most sample codes one can find online
are just parts of codes and not complete...

Have you checked the recording of the course on advanced
OpenACC topics here: https://developer.nvidia.com/openacc-
advanced-course. If you can't find your answer there, please join
our slack channel at www.openacc.org/community#slack and we
will help you there.

Debugging: How does one debug paralellized code
if that become necessary?

If targeting multicore CPUs with PGI, you can use the PGI
debugger, pgdbg. One the GPU, you can use cuda-gdb.
However, since the code has been optimized, debugging GPU
can be a bit difficult.

Is it possible to modify my current CPU-based
Fortran simulation code into gpu-based parallel
computing using OpenACC?

Yes, it should be possible, assuming your algorithm is
parallelizable or can be modified to be parallel. OpenACC works
very well with Fortran.

Any recommended profiling tool for OpenACC and
CUDA?

The NVIDIA command-line profiler, nvprof, can be used to profile
both OpenACC code and CUDA code, as well as the GUI version
of this, the NVIDIA Visual Profiler (nvvp). PGI provides a similar
profiling tool, pgprof.

Will NVIDIA be using AI soon? NVIDIA is deeply involved in artificial intelligence, and NVIDIA
GPUs have played a substantial role in the development of deep
learning using neural networks for the last 5-10 years.

Does OpenACC provide preprocessor variable or
ordinary variable that I can check to know whether
the code is being compiled on CPU or on GPU (i.e.
what target architecture is), to e.g. chose between
FFTW and CUFFT?

The PGI compiler defines the _OPENACC macro when you are
compiling for OpenACC.

Gang is a thread? Gang is a general term that can mean a few different things. In
short, it depends on your architecture. On a multicore CPU,
generally gang=thread. On a GPU, generally gang=thread block.
The way I like to think of it is that gang represents my outer-most
level of parallelism for any architecture I am running on.

Is it worth it to parallelize with OpenACC a code
that is already parallelized with OpenMP (in a
multicore CPU - no GPU involved)?

If all you're ever going to run is on a multicore CPU, then sticking
with your OpenMP code is fine. Though, if you ever want to move
to using GPUs, then you'll want to use OpenACC or possibly
OpenMP 4.5 offload directives.

Looking for a suggestion for a master's project
work, where OpenACC could be used.

You are welcome to join our slack channel and ask your
questions to 400 people out there. You should be able to find
collaborators :) www.openacc.org/community#slack

OpenACC Course October 2018. Lecture 1 Q&As.
 6

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
How does OpenACC help in deep learning
applications?

OpenACC is mostly targeted to HPC and we recommend existing
deep learning libraries and frameworks for deep learning work.

In the OpenACC computing can we access threads
using thread ids just like in CUDA?

OpenACC does not expose this like CUDA does.

Will use OpenACC for FPGA boards? There is an implementation by ORNL of OpenACC for FPGAs -
OpenARC

Doesn't using multiple parallel regions add kernel
initialization latency?

Yes, additional kernel launches (corresponding to multiple parallel
regions) will lead to additional kernel launch latency. However
note that this may be true even for a single parallel region, if the
compiler generates multiple kernel launches corresponding to
multiple loops.

Are there scientific code uses for the new RT cores
on Turing? If so, will OpenACC eventually
somehow target RT or tensor cores?

Certain applications such as particle-based codes could
theoretically benefit from RT cores. However it is not clear how or
when OpenACC would take advantage of this.

When I try install the driver for GTX Titan X, my
OpenACC code fails to understand that PC setup
has a 2 GPUs, the other being the Tesla K40. Is
this a driver problem? I was compiling with -
ta:tesla=cc35

You can use acc_set_device_num() to select which GPU you
would like to run on.

Nvidia TX2 and Xavier are ARM %2B GPU
systems. When you said OpenACC runs on them,
does it mean we can use OpenACC for both the
ARM and the GPU sections?

As a standard, there's nothing inhibiting an implementation of
OpenACC. Currently, I do not know of a released compiler
implementation that supports ARM. Though, if/when there is an
implementation, then yes, it could be used for both ARM and GPU
sections.

Can you say what gonna happen if we do not use
reductions?

Reductions are necessary if the threads all need to coordinate to
create an answer, such as the minimum value over an array. If a
reduction is not performed, the answer will be incorrect and
meaningless.

Parallel loop, as in OpenMP, works only with for
loop?

OpenACC parallel loops are intended to expose parallelism in
"spatial" loops such as for loops. It would not make sense for
"temporal" loops such as while loops.

Is there any Minfo alike for gcc? There is not a direct analogue that I am aware of in gcc.

Does the build of the compiler depend on
hardware? for example for windows can get
portable build?

I'm you're asking if you can build your application on one
Windows system and then move it to another Windows system
using different hardware. Yes, this is done all the time. Though,
you do need to compile your code to target multiple CPUs (or a
generic CPU) and multiple GPUs. For example, the flags "-
tp=penryn,haswell,skylake" will target multiple CPUs covering
most current x86 based systems. By default, "-ta=tesla" will target
multiple NVIDIA GPUs, the exact GPU will vary by compiler
version and CUDA version. You can give an explicit list of target
GPUs by specifying them, for example "-
ta=tesla:cc35,cc50,cc60,cc70". Other issues are runtime libraries
and CUDA driver version.

Is a function called allowed in an OpenACC parallel
loop code segment?

Yes! If you are using a multicore CPU, you shouldn't have a
problem. If you are using a GPU, I would give a search for
"OpenACC Routine Directive" to learn how to run subfunctions on
GPUs in OpenACC.

OpenACC Course October 2018. Lecture 1 Q&As.
 7

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
Is it possible to use the GPU constant memory with
OpenACC?

OpenACC does not expose the ability to use constant memory
directly (though the compiler may choose to take advantage of it
under the hood).

Can I use OpenACC in NVIDIA GTX instead a
TESLA?

Yes, OpenACC can generate code for GeForce GPUs in addition
to Tesla GPUs.

Is pgc++ supported on Windows? PGI currently supports C and Fortran on Windows. No C++
support.

How about if we use a consumer level GPUs? for
example Nvidia GTX 10xx, how is the floating point
performance in double precision?

Double precision performance on GeForce GPUs is typically
substantially lower than on Tesla GPUs. For example, there is
typically 1 double precision core for every 2 single precision cores
on a high-end Tesla GPU such as V100, while on GeForce cards
the ratio is typically 1:16 or 1:32, something in that ballpark.

How long is the lab available? The labs will be available after the course for a few months. We
suggest though to do the lab now, so we can help you along the
way.

What about amd strix? You may want to check with GNU. I believe that they are adding
OpenACC support for AMD devices but I don't know specifically if
this include Strix.

Do you think is it wise to build a C++ application
from scratch on OpenACC or is it just a good fit for
parallelize existing applications?

OpenACC is pretty good both ways. The major benefit you get
from using OpenACC on any code is that you will have a single
source-code that can be run on a variety of architectures. Also,
this is ultimately my opinion, but if I were planning to write a
CUDA code, and I wasn't concerned with completely maximizing
my performance I would definitely consider OpenACC as a good
option.

How about multiple cores using a single GPU? do
they have to take turns or can the GPU used
simultaneously?

Yes, you can use OpenMP host threads to generate parallel
regions independently. You should launch them in separate
streams if you want them to execute simultaneously.

How about the license of OpenACC? Does it mean
we can use as commercial version?

PGI Community Edition is available for free to everyone. More
details here: https://www.pgroup.com/products/community.htm

How to work with Visual Studio? PGI is supported for Windows with Visual Studio. More
information on Windows support here:
https://www.pgroup.com/support/win-ce.htm

Do we need to be concerned about synchronization
barriers while using OpenACC?

No. By default, barriers are placed after each compute region.
Later classes will introduce the "async" clause where you can
have the GPU compute region be non-blocking so the CPU will
continue while the GPU is executing the compute region.

Does NVLINK help in copying data between
GPUs?

NVLink substantially improves the bandwidth when copying data
between GPUs, relative to PCIe.

My question related with productization then how
much do I have pay in order to sell my product
shipped with OpenACC?

PGI does not charge for run time, so there's no additional cost.
Though, you may consider purchasing the PGI Professional
Edition, as opposed to the no-cost Community Edition, so you
have support from PGI. Again though, there is no fee for you to
redistribute your program.

Can OpenACC check if the loop is parallel or not
and reject parallelization?

The compiler will check for you whether a loop can be validly
parallelized and will refuse to do so if it cannot be. You can use
the -Minfo=all messages to get information on which loops were
parallelized.

OpenACC Course October 2018. Lecture 1 Q&As.
 8

OpenACC Course October 2018

Lecture 1 Q&As

Question Response
Are there OpenACC directory to copy data between
GPUs via NVLINK, or that is dumb thing and does
not make sense?

The NVLink connection between GPUs will be automatically used
when doing data transfers between GPUs, if available; the
programmer does not need to request this.

How does NVIDIA work for updating drivers with
Microsoft and the NVIDIA website?

NVIDIA drivers can be downloaded here for all supported
operating systems: https://www.nvidia.com/download/index.aspx

