

OpenACC Course October 2018. Lecture 2 Q&As.
 1

OpenACC Course October 2018

Lecture 2 Q&As

Question Response
Which Spec version we should follow 2.5 or 2.6? 2.6

What is the defined behavior of an "acc enter data
copyin(a)" if "a" is an array that has not been
allocated?

This will probably just seg fault at execution when the runtime
attempts to copy data from an unallocated buffer.

Last week we saw that -ta=multicore triggers CPU
computation wheres -ta=tesla:managed launches
GPU computation. However, the loops were
parallelized with OpenACC directives. HOw does
the compiler change from OpenACC to OpenMP for
CPU ?

The compiler doesn't change to using OpenMP, but I think you
mean parallelizing accross multicore CPUs which is similar to
OpenMP. With OpenACC you are defining which loops to
parallelize. This parallelism is general so can be targeted to
different architectures.

I am having GTX 1050 TI, then what flag will I be
using?

GTX 1050 should be pascal architecture. That would be -
ta=tesla:cc60
You can double check me though, if you are using PGI compiler
there is a command called "pgaccelinfo" which will give you info
(and compiler flags) for all accelerator devices on the system.

-ta=multicore triggers multi CPU computation, but
how did the compiler do that if the instruction were
OpenACC directives?

The directives are generic and the compiler knows how to
translate the parallelism to different targets. The details are a bit
much to explain in the forum.

How can I set a number of "threads" for a program
with OpenACC directives, like we did with OpenMP
on console (export OMP_NUM_THREADS) ?

When targeting multicore devices (-ta=multicore), you can set the
environment variable "ACC_NUM_CORES" or, starting in PGI
18.10, call the API "void acc_set_num_cores(int);"

Can targeting GPU automatically handle multi-GPU
parallelism? In other words, are the examples
illustrated so far only for shared memory
parallelism?

Using multiple GPUs requires additional work by the programmer.
A single accelerator region will not automatically span multiple
GPUs.

Followup: with PGI 18.4 it does not segfault
(probably because I never try to use "a"). The use
case is that I have conditional arrays that
sometimes are used, sometimes not, all within the
same structure. For simplicity, I have a single "data
copyin()" call for all members, but sometimes some
arrays in the struct are not allocated yet. It seems
to work now, but I was wondering what the
"official" behavior is according to the spec so that
the code does not break with future
updates/compilers.

You might want to look at using the "no_create" clause for the
optional arrays, assuming that you're copying them individually
and not the structure as a whole.

In FORTRAN, isn't the starting index and ending
index optional if you want to copy the whole array?

Yes

Does OpenACC (PGI compiler) handles adding
padding to 2D arrays necessary for correct align to
the cacheline, for faster global GPU memory
access?

No it does not. You may be thinking of CUDA pitched allocations.
Pitched allocations are generally not used in OpenACC, and they
are less advantageous on newer GPUs anyway.

Do the copy, copyin, copyout, ... also work on
derived types in fortran if I have more complicated
data structures?

In Fortran, if you have a derived type with allocatable data
members, you can add the flag "-ta=tesla:deepcopy" to have the
runtime perform a deep copy of the structure. The caveat being it
will copy the entire structure including all sub-structures. So if you

OpenACC Course October 2018. Lecture 2 Q&As.
 2

OpenACC Course October 2018

Lecture 2 Q&As

Question Response
only want to copy a portion of the structure to the GPU, you'll
want to stick to manual deep copy (unstructured data regions) or
CUDA unified memory (-ta=tesla:managed). The next OpenACC
standard also defines new directives for true deep copy ("shape"
and "policy") which are prototyped in the PGI 18.10 compilers.

Did the webinar start? I cannot see anything. The webinar has started. You may want to try refreshing your
browser, make sure you have a good internet connection, make
sure volume is turned up on your computer as well as the view
window

I have two accelerator regions that are independent
of each other in variables/arrays/memory and I
would like each one to be parallelized on two
different GPUs, would that be possible in OpenACC
Fortran? So two independent loops, one goes to
GPU1 and the other goes to GPU2. Is it possible
for the host to send info to both and receive info
from them async?

Yes, it’s possible. You can find examples on the web
demonstrating multi-GPU use in OpenACC. Here is one
example: http://on-
demand.gputechconf.com/gtc/2017/presentation/S7546-jeff-
larkin-multi-gpu-programming-with-openacc.pdf

Q&A link from last week is broken Here is the link to the Q&A document:
https://www.openacc.org/sites/default/files/inline-
files/OpenACC_Course_Oct2018/Lecture1_Q&A_2018.pdf

what is the latency (time wise) associated with a
host device copy on modern GPUs? Must be
milliseconds?

The latency consists of some overhead, plus a variable amount of
time depending on the size of the copy. The overhead is usually
50 microseconds or less, and the variable duration for larger
transfers can be computed by dividing the transfer size by the link
bandwidth, which is often around 6 or 12 GB/s

No need to answer this if you think it is more suited
for next lecture but: If I have a few "async(#)"
kernels in a row, but one (or more) is in a
conditional, I can currently use a simple "acc wait"
and it will wait for whatever streams are being
used. However, is there a way to be more selective
about this. I.e. can I use a "wait(1,2,3,4,5) even if
stream "2" let's say is not launched? The use case
is that I want to have a more global async kernel
that I do not want to wait for at the "wait" in
question.

Yes, waiting on a stream that has had no instructions issued into
it is basically just a no-op.

Copyin(a) support shadow copy ? suppose a is a
structure and has a pointer member

This is the "deep copy" discussion that Jeff just went through.
Deep copy can be handled but requires a few extra steps.

"When targeting multicore devices (-ta=multicore),
you can set the environment variable
"ACC_NUM_CORES" " So if i compile it like: pgcc -
fast -ta=multicore -o wtv wtv.c &&
ACC_NUM_CORES=10, it should use 10 threads ?

Yes, assuming the loop you are parallelizing trip count is greater
than 10.

Within a single routine, is there any performance
difference between using a structured data clause
as shown here (enclosing the whole routine)
versus an unstructured data enter and exit?

There shouldn't be any difference from the perspective of the
performance of the accelerator region itself.

OpenACC Course October 2018. Lecture 2 Q&As.
 3

OpenACC Course October 2018

Lecture 2 Q&As

Question Response
What happens if there is no enough physical device
memory?

If you are not using managed memory, you will get an out of
memory error at runtime. If you are using managed memory, with
proper GPUs and configuration (e.g. linux, Volta, etc.) you may be
able to oversubscribe the GPU, i.e. handle data that is larger than
physical device memory.

When i used "pgfortran -ta=tesla:cc20 -Minfo=all
laplace2d.f90 jacobi.f90", the compiler used
managed memory as default because I see
messages as "Generating implicit copyout(a(1:n-
2,1:m-2))". Is managed option used as default in pgi
compilers?

No, you still need to use the managed clause to have managed
memory used by default. Looking at a copyout generated by the
OpenACC compiler is not a guarantee in this case.

Can I use a global parameters for use in async
streams? Such as: "acc ... async(BC_UPDATE)"
where BC_UPDATE is defined as: "integer,
parameter :: BC_UPDATE=12345"?

Sure, so long as they are integers.

What is OpenACC Slack Link? www.openacc.org/community#slack

With laplace2d running sequential on my PC i had
around 90 secs, i did some loops and data explicitly
and run it on GPU, it speed-up to 40-42 secs. I
have a tesla=cc20, it is the best speed-up i can get
with it ?

Not know the specifics of what you did to the code, nor your
system, it's difficult to say. Though, my best guess is that you
should be able to improve performance a bit more.

What kind of code can you use on device? Can you
use member functions of a struct?

Yes, you can use class member functions in your compute
regions. You can decorate the functions with the OpenACC
"routine" directive to have the compiler create device callable
versions. Note that the PGI will implicitly create device routines
for C functions called in compute regions if the function definition
is visible during the compilation of source file. This allow the use
of templated functions as well where decorating them with
directives may be difficult.

I have some comments about Lab 1, is there
somewhere I could send them?

yes, please send them to openacc@nvidia.com

Are asyncs on data directives and async on loops
share the same streams?

Using CUDA streams is how PGI implements async queues when
targeting NVIDIA GPUs. Though other implementations may do it
differently.

Sorry I was having trouble getting in ... what was
the final decision about the lab?

Are you having issues signing getting into LinuxAcademy for the
lab? If so, please shoot an email to support@linuxacademy.com
with the subject line of Nvidia Lab and we can help you out.

<#pragma acc parallel loop ...
for (int i=0; i< N; i%2B%2B) {
 for (int j=0; j< M; j%2B%2B) {
 Anew[i][j] = function of A[i][j-1], A[i-1][j-1], ...
 A[i][j] = chage value here too;
 }
}

In this case, how to handle the sync. data (A,
Anew) between GPU-threads? I mean if A[i][j]

In this case, the inner loops aren’t parallelizable so if you went
ahead an forced it to parallelize, then you'd have a data race.

OpenACC Course October 2018. Lecture 2 Q&As.
 4

OpenACC Course October 2018

Lecture 2 Q&As

Question Response
change in another thread may lead an error on
another thread due to non-sync.

Which Spec version we should follow 2.5 or 2.6? 2.6

Question for later (don't want to forget) : What is
the defined behavior of an "acc enter data
copyin(a)" if "a" is an array that has not been
allocated?

This will probably just seg fault at execution when the runtime
attempts to copy data from an unallocated buffer.

Last week we saw that -ta=multicore triggers CPU
computation wheres -ta=tesla:managed launches
GPU computation. However, the loops were
parallelized with OpenACC directives. How does
the compiler change from OpenACC to OpenMP for
CPU ?

The compiler doesn't change to using OpenMP, but I think you
mean parallelizing across multicore CPUs which is similar to
OpenMP. With OpenACC you are defining which loops to
parallelize. This parallelism is general so can be targeted to
different architectures.

I am having GTX 1050 TI, then what flag will I be
using?

GTX 1050 should be pascal architecture. That would be -
ta=tesla:cc60
You can double check me though, if you are using PGI compiler
there is a command called "pgaccelinfo" which will give you info
(and compiler flags) for all accelerator devices on the system.

-ta=multicore triggers multi CPU computation, but
how did the compiler do that if the instruction were
OpenACC directives?

The directives are generic and the compiler knows how to
translate the parallelism to different targets. The details are a bit
much to explain in the forum.

How can I set a number of "threads" for a program
with OpenACC directives, like we did with OpenMP
on console (export OMP_NUM_THREADS) ?

When targeting multicore devices (-ta=multicore), you can set the
environment variable "ACC_NUM_CORES" or, starting in PGI
18.10, call the API "void acc_set_num_cores(int);"

Can targeting GPU automatically handle multi-GPU
parallelism? In other words, are the examples
illustrated so far only for shared memory
parallelism?

Using multiple GPUs requires additional work by the programmer.
A single accelerator region will not automatically span multiple
GPUs.

Followup: with PGI 18.4 it does not segfault
(probably because I never try to use "a"). The use
case is that I have conditional arrays that
sometimes are used, sometimes not, all within the
same structure. For simplicity, I have a single "data
copyin()" call for all members, but sometimes some
arrays in the struct are not allocated yet. It seems
to work now, but I was wondering what the
"official" behavior is according to the spec so that
the code does not break with future
updates/compilers.

You might want to look at using the "no_create" clause for the
optional arrays, assuming that you're copying them individually
and not the structure as a whole.

