

OpenACC Course October 2018. Lecture 3 Q&As.
 1

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

When I read OpenACC 2.6
document, I have noticed the
following statements regarding
copyin(var) clause:
" If var is not present on the
current device, a runtime error
is issued".
1. Could you please explain
how I can check the variable is
on the current device or not.
2. How could this error happen,
in what situation the variable not
in the current device?
3. How can I have used the data
clause correctly and the variable
does not appear in the GPU,
Could you please give me an
example of this situation?

For the case of a "copyin" clause, it's an unlikely situation. The
phrase you're quoting pertains to exiting a data region where
var is no longer present. This can only really occur if you are
mixing a structured data region with a copyin, and then adding
an unstructured "exit data delete(var)". Hence, when the
structured data region exits, var is no longer present. There
might be other situations that this could occur, but it would be
rare.

Is there an OpenACC
equivalent to OpenMP's
"threadprivate" declaration? the
use case is a small array used
as a temporary storage for each
thread independently. Would
one simply add the array to the
"private()" clause?

"threadprivate" has the notion of a persistent thread which
doesn't exist under OpenACC since threads are
created/destroyed upon entering/exiting a compute region. For
small private arrays, you would use the "private" or "firstprivate"
clauses. The difference is "firstprivate" the private arrays are
initialized to the value of the host array. "private" is
uninitialized.

How does OpenACC tackle
deep copy?

With OpenACC 2.6 you transfer the root type, then copy over
the other components and connect them up. in the future
standards you will be able to tell how much of the data
structure you want to copy to the Device.

Otherwise, you need to break up your data structures and copy
over the pieces to the Device. Then you have to use the pieces
individually.

So in CUDA terms, a "worker" is
the "y"-block dimension and the
vector is the "x" block
dimension?

The standard is agnostic as to how to implement this, but as
Jeff says, this is a valid way to reason about it and may in fact
be how it is implemented, depending on the compiler.

Do you have a link to a simple
example showing the use of the

I have an example of using the API call "acc_attach" which
could be modified to use the directive version. See Chapter 5

OpenACC Course October 2018. Lecture 3 Q&As.
 2

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

"attach" clause for manual deep
copy? The documentation is a
little vague and I cannot find an
actual example with a simple
Fortran derived type

from
https://github.com/rmfarber/ParallelProgrammingWithOpenACC

Is CUDA grid block thread a one
to one mapping to gang worker
vector? (I may have order mixed
up)

For PGI's implementation, an OpenACC gang maps to a CUDA
block, a vector to the threadid+x dimension of a block, and
worker to threadid+y. Other implementation may be different,
but it's the most likely mapping.

Comparing this with CUDA, a
gang would be a block, workers
would be threads and vector
would be a warp. Am i correct?

Actually, a gang is a threadblock (block), a worker is effectively
a warp, and an OpenACC vector is a CUDA thread.

Can we do a vector loop
reduction? That is each worker
does a separate reduction?

Yes, it's valid to have a reduction clause on a vector loop.

How could we download the
three labs for future use to have
more time to learn?

We plan to publish a container with all the labs towards the end
of the month. We will announce on Slack availability.

Is the "warp" the same length
for float and double?

I believe the warp size is always 32.

Is a GPU sensitive to a crips or
bloods gang :)

Hopefully not. Unless they're branching out into using HPC...

In the context of the painter
model, I am currently on this
event and my GTX 745 is on
one display with 12 programs
can you relate this to the Painter
model.

The display and 12 programs would be more like painting 12
houses. The painter model Jeff is refer is to is distributing the
painting work across many workers for each individual house
(i.e. each program).

Is there a way to have
nvprof/pgprof not show data
transfers smaller than a
specified size? My program
does a LOT of 1-8-byte
transfers due to derived type
pointers and scalars and it is
hard to figure out if there is a
performance-limiting data
transfer within all the multitude
of brown boxes

That is not available as an option currently, but I will file an RFE
with NVIDIA, indicating this as the use case in mind, thank you!

OpenACC Course October 2018. Lecture 3 Q&As.
 3

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

In unified memory, can there be
two copies of constant data or is
there one and only one copy?
That is, can I have a constant
table of data on both the host
and device at the same time w/o
having to explicitly copy it? Will
UVM repeatedly move these
data back and forth or allow two
copies?

Chris - it's Jeff Layton. I'm not sure - I'll check with the PGI folks
and get back to you over private email.

If the warp size is 32, how can it
be that I sometimes get better
performance with a warp size of
16? Could it have to do with the
resulting block sizes?

In CUDA the warp size is always 32, and so indeed if you
launched work in chunks of 16 this is suboptimal, but in
OpenACC it is not necessarily the case that e.g. vector(32)
maps directly to a CUDA concept like a warp of size 32. As Jeff
said earlier, if you think about this in terms of x and y
dimensions of a thread block, then the size of a given chunk of
work can at least be size 32 assuming the worker length is > 1.

What recommendations are
there for profiling
MPI+OpenACC and
MPI+OpenMP+OpenACC
code?

While you can't have a single profile across all ranks, you can
profile each individual rank. Something like "mpirun -np 32
pgprof -o myprofile.+p.prof a.out". The "-o" says to save the
profile to a file, where "+p" will be replaced with the process id
of the rank. You will then have 32 profiles. These can then be
inspected individually in the GUI or command line, but can also
be merged in the GUI. However, in general, the GPU
performance information you're using the profiler for is single
rank. For MPI performance, you'll need to use something like
TotalView.

Do you have any documentation
about Deep Learning
implementation using OpenACC
directives?

The classic DL frameworks do not use OpenACC. They use
CUDA and NVIDIA libraries such as cuDNN, cuBLAS, etc or
DL frameworks. It's possible to used OpenACC for DL for
matrix multiplication, etc. but we don't have any specific
documentation on how to do that. I would recommend to write
your DL implementation for a serial implementation and then
port it using OpenACC.

Why do you have the
copyin/copyout clauses on the
inner loops along with the outer
copy clause?

That is done in this case to ensure the avoidance of race
conditions since the tiles can operate independently of each
other.

OpenACC Course October 2018. Lecture 3 Q&As.
 4

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

Does the tile clause imply cache
clause? Since each tile will be
put into shared memory, is that
not the same as the cache
clause? Do they need to be
combined?

No, tiling is about how to distribute the work across multiple
thread dimensions. Cache is about putting a subset of data in
shared memory. Yes, they can be combined.

Will the next version of PGI
support using tile and cache
clauses for derived type arrays?

Tile has to do about distribution of work of the loops so wouldn't
apply. I'm not expecting any additional support in the cache
clause the upcoming PGI release. Please send us a request
for enhancement and we'll take a look at what can be done.

With tiling what if you have a
prime number of loop iterations?

That is probably suboptimal in performance compared to an
even number, or better yet a power of 2, but you will get correct
results.

What's the parallel idea of tiles
in cuda?

Tiling is a general parallelism concept, not an OpenACC
specific concept. You could tile a loop in CUDA in many ways.
The most canonical example is dividing an array into N chunks
and then launching each of the N chunks in a separate CUDA
stream.

Is there a relationship between
the warp size and the tile sizes
in dimensions?

The warp size is always 32. The product of the integers in a
tile() clause cannot be greater than 1024. It's recommended to
use a tile combination that is divisible by 32. So things like
(32,7) is OK, but tile(7,7) is not a good idea (it will work, but the
performance won't be good).

Is the size of tile dynamic, or
should it be constant?

The tile size must either be a compile-time constant, or left as
an * in which case the compiler will figure out the optimal value.

If one has a nested loop that
does internal points of a grid
(such as do i=2:n-1) etc is the
collapse clause efficient or does
the break in stride-1 of the array
break any advantage of the
collapse?

I'm thinking that in most cases, it probably doesn't matter. The
striding would be the same if the loops were collapsed or if you
used a loop directive on each loop. Of course the optimal loop
schedule is dependent on the specific of the loops and the data
access pattern, so there may be cases where it could be a
problem.

With modern GPUs that have a
nice cache, does the cache
clause (i.e. manual shared
memory) yield any performance
gain? Are there any example
data of the cache clause
improving performance on
Pascal/Volta GPUs?

In general NVIDIA finds that there is some benefit from using
shared memory compared to relying on L1 cache, but on
modern GPUs like Volta, the performance gap between hand-
tuned code using shared memory and non-tuned OpenACC
code is of order 10% for the SPEC accel benchmarks, so that
is probably an upper bound on the difference.

OpenACC Course October 2018. Lecture 3 Q&As.
 5

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

Is there a way to have the CPU
and the GPU working together
with OpenACC? For example,
have the CPU working on a for
loop and the GPU working on
the other for loop?

Yes. By putting an "async" clause on OpenACC data and
compute regions will make them non-blocking. The CPU will
continue with execution until it reaches an OpenACC "wait"
directive. During this time the CPU can be executing another
loop.

Does OpenACC (or the PGI
implementation) allocate to a
good (i.e., performant)
alignment automatically?

Yes, data allocation is aligned.

Any way to change the default
vector length at compile-time
with PGI?

No, this is not possible, and in any case you may not want to
do such a thing because it would prevent the compiler from
analyzing loops to figure out what is the best choice.

What if the number of
gangs*#workers*#vector is
smaller than the loop iterations?
will the compiler use sets of
#gangs to fill out the iterations?

Yes, by default it adds a loop so that each gang/worker/vector
may compute more than one iteration.

What is the usage of OpenACC
API functions, and what are
their benefits?

Are you looking for specific functions of OpenACC?

Is it possible to target multiple
GPUs or a CPU system with
multiple sockets using
OpenACC?

There are options. We recommend to wrap your OpenACC
code with OpenMP or MPI, or both. So you write your code with
OpenACC to run on one GPU. Then this code can be used as
a thread with OpenMP or a rank with MPI.

There is a way to create "queues" with OpenACC so you can
assign certain work to a queue and they work between queues
is independent.

Why OpenACC was created? OpenACC was designed to help start with parallel
programming faster. It is a directives-based programming
model that allows to minimize programming efforts and code
modifications.

The tiles operate entirely
independent of each other,
right? That would mean I
couldn't use them for stencils,
because they more one element
by one element (such as to
create image blur)

Loops with the loop directive are independent. The tile clause
is used to schedule these independent loops across multi-
dimensional thread blocks. Though you should be able to use
tile with a stencil.

OpenACC Course October 2018. Lecture 3 Q&As.
 6

OpenACC Course October 2018

Lecture 3 Q&As

 Question Response

Given the hardware
configuration of the host is
unknown until run-time, would it
be possible to use the
OpenACC API library calls to
dynamically determine what
optimizations should be done?

The optimization is performed at compile time, so no would not
be able to change at runtime. However with the PGI compiler
you can create a unified binary which targets multiple
architectures. On the host side, this would be done by giving a
list of architectures to the "-tp" flag (target processor). For
example "-tp=penryn,haswell,skylake". For a target device,
you'd use the "-ta" flag (target accelerator). for example "-
ta=multicore,tesla:cc35,cc50,cc60,cc70".

Regarding two books on
OpenACC, which is best to start
with? Many thanks.

Is it better to start with "OpenACC for Programmers: Concepts
and Strategies"

What is the link to NGC? https://www.nvidia.com/en-us/gpu-cloud/

