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ABOUT THIS COURSE

3 Part Introduction to OpenACC

▪ Week 1 – Introduction to OpenACC

▪ Week 2 – Data Management with OpenACC

▪ Week 3 – Optimizations with OpenACC

Each week will have a corresponding lab, only an hour and a web browser is required

Please ask questions in the Q&A box, our TA’s will answer as quickly as possible



COURSE OBJECTIVE

Enable YOU to accelerate 
YOUR applications with 

OpenACC.



WEEK 1 OUTLINE
Topics to be covered

▪ What is OpenACC and Why Should You Care?

▪ Profile-driven Development

▪ First Steps with OpenACC

▪ Week 1 Lab 

▪ Where to Get Help



INTRODUCTION TO OPENACC



3 WAYS TO ACCELERATE 
APPLICATIONS

Applications
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Most Performance
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Most Performance
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OPENACC IS…

a directives-based parallel 

programming model 

designed for performance

and portability.  

main()
{
<serial code>
#pragma acc kernels
{  
<parallel code>

}
}

Add Simple Compiler Directive



OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel 
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

CPU, GPU, Manycore

Performance portable

Interoperable

Single source

Incremental



Single SourceIncremental

OPENACC

▪ Maintain existing 
sequential code

▪ Add annotations to 
expose parallelism

▪ After verifying 
correctness, annotate 
more of the code

▪ Rebuild the same code 
on multiple 
architectures

▪ Compiler determines 
how to parallelize for 
the desired machine

▪ Sequential code is 
maintained

Low Learning Curve

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Programmer remains 
in familiar C, C++, or 
Fortran

▪ No reason to learn 
low-level details of the 
hardware.



Incremental

OPENACC

▪ Maintain existing 
sequential code

▪ Add annotations to 
expose parallelism

▪ After verifying 
correctness, annotate 
more of the code

for( i = 0; i < N; i++ )
{  

< loop code >
}

for( i = 0; i < N; i++ )
{  

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

Begin with a working 
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify 
correctness and 

performance



Single Source

OPENACC

▪ Rebuild the same code 
on multiple 
architectures

▪ Compiler determines 
how to parallelize for 
the desired machine

▪ Sequential code is 
maintained

POWER

Sunway

x86 CPU

AMD GPU

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your 
OpenACC code additions, so the same 

code can be used for parallel or 
sequential execution.



Low Learning Curve

OPENACC

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Programmer remains 
in familiar C, C++, or 
Fortran

▪ No reason to learn 
low-level details of the 
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU
Parallel Hardware

The programmer will 
give hints to the 

compiler.

The compiler 
parallelizes the code.



Single SourceIncremental

OPENACC

▪ Maintain existing 
sequential code

▪ Add annotations to 
expose parallelism

▪ After verifying 
correctness, annotate 
more of the code

▪ Rebuild the same code 
on multiple 
architectures

▪ Compiler determines 
how to parallelize for 
the desired machine

▪ Sequential code is 
maintained

Low Learning Curve

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Programmer remains 
in familiar C, C++, or 
Fortran

▪ No reason to learn 
low-level details of the 
hardware.



DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC

32

67

104
132

ISC15 ISC16 ISC17 ISC18

100,000 DOWNLOADS450 DOMAIN EXPERTS 

2 OF LAST 9 FINALISTS5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS

ACCELERATED APPS



GAUSSIAN 16

Using OpenACC allowed us to continue 

development of our fundamental 

algorithms and software capabilities 

simultaneously with the GPU-related 

work. In the end, we could use the 

same code base for SMP, cluster/ 

network and GPU parallelism. PGI's 

compilers were essential to the success 

of our efforts.

Mike Frisch, Ph.D.
President and 
CEO
Gaussian, Inc.

Parallelization Strategy

Within Gaussian 16, GPUs are used for a small fraction of code that consumes a large 

fraction of the execution time. T e implementation of GPU parallelism conforms 

to Gaussian’s general parallelization strategy. Its main tenets are to avoid changing 

the underlying source code and to avoid modif cations which negatively af ect CPU 

performance. For these reasons, OpenACC was used for GPU parallelization. 

T e Gaussian approach to parallelization relies on environment-specif c parallelization 
frameworks and tools: OpenMP for shared-memory, Linda for cluster and network 
parallelization across discrete nodes, and OpenACC for GPUs.

T e process of implementing GPU support involved many dif erent aspects:

 Identifying places where GPUs could be benef cial. T ese are a subset of areas which 

are parallelized for other execution contexts because using GPUs requires f ne grained 

parallelism.

 Understanding and optimizing data movement/storage at a high level to maximize 

GPU ef ciency.

Gaussian, Inc.
340 Quinnipiac St. Bldg. 40
Wallingford, CT 06492 USA
custserv@gaussian.com

Gaussian is a registered trademark of Gaussian, Inc. All other trademarks and registered trademarks are 
the properties of their respective holders. Specif cations subject to change without notice.

Copyright © 2017, Gaussian, Inc. All rights reserved. 

Roberto Gomperts
NVIDIA

Michael Frisch
Gaussian

Brent Leback
NVIDIA/PGI

Giovanni Scalmani
Gaussian

Project Contributors

PGI Accelerator Compilers with OpenACC
PGI compilers fully support the current OpenACC 
standard as well as important extensions to it. 
PGI is an important contributor to the ongoing 
development of OpenACC.

OpenACC enables developers to implement 
GPU parallelism by adding compiler directives 
to their source code, of en eliminating the need 
for rewriting or restructuring. For example, the 
following Fortran compiler directive identif es a 
loop which the compiler should parallelize:

! $ a c c  p a r a l l e l  l o o p

Other directives allocate GPU memory, copy data 
to/from GPUs, specify data to remain on the GPU, 
combine or split loops and other code sections, 
and generally provide hints for optimal work 
distribution management, and more.

T e OpenACC project is very active, and the 
specif cations and tools are changing fairly 
rapidly. T is has been true throughout the 
lifetime of this project. Indeed, one of its major 
challenges has been using OpenACC in the midst 
of its development. T e talented people at PGI 
were instrumental in addressing issues that arose 
in one of the very f rst uses of OpenACC for a 
large commercial sof ware package.

Specifying GPUs to Gaussian 16

T e GPU implementation in Gaussian 16 is sophisticated and complex but using it is simple and straightforward. GPUs are specif ed with 

1 additional Link 0 command (or equivalent Default.Route f le entry/command line option). For example, the following commands tell 

Gaussian to run the calculation using 24 compute cores plus 8 GPUs+8 controlling cores (32 cores total):

%CPU= 0 - 3 1    Request 32 CPUs for the calculation: 24 cores for computation, and 8 cores to control GPUs (see below). 
%GPUCPU= 0 - 7 = 0 - 7   Use GPUs 0-7 with CPUs 0-7 as their controllers.

Detailed information is available on our website.

PGI’s sophisticated prof ling and performance evaluation tools were vital to the success of the ef ort.



VASP

For VASP, OpenACC is the way 

forward for GPU acceleration. 

Performance is similar and in some 

cases better than CUDA C, and 

OpenACC dramatically decreases 

GPU development and maintenance 

efforts. We’re excited to collaborate 

with NVIDIA and PGI as an early 

adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna



GTC

Using OpenACC our scientists 

were able to achieve the 

acceleration needed for 

integrated fusion simulation with 

a minimum investment of time 

and effort in learning to program 

GPUs.

Zhihong Lin
Professor and Principal Investigator
UC Irvine

Head 

Shot



MAS

Adding OpenACC into MAS has given us 

the ability to migrate medium-sized 

simulations from a multi-node CPU 

cluster to a single multi-GPU server.   

The implementation yielded a portable 

single-source code for both CPU and 

GPU runs.  Future work will add 

OpenACC to the remaining  model 

features, enabling GPU-accelerated 

realistic solar storm modeling.

Ronald M. Caplan
Computational Scientist
Predictive Science Inc.

https://devblogs.nvidia.com/solar-storm-modeling-gpu-openacc/





OPENACC SYNTAX



OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code. 
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the 
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>



EXAMPLE CODE



LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation 
of heat distributing across a metal 

plate.

We will apply a consistent heat to 
the top of the plate.

Then, we will simulate the heat 
distributing across the plate.



EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new 
values at each point from the average of neighboring points.  

▪ Common, useful algorithm 

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4



JACOBI ITERATION: C CODE

25

while ( err > tol && iter < iter_max ) {

err=0.0;

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Iterate until converged

Iterate across matrix 

elements

Calculate new value from 

neighbors

Compute max error for 

convergence

Swap input/output arrays



PROFILE-DRIVEN DEVELOPMENT



OPENACC DEVELOPMENT CYCLE
▪ Analyze your code to determine 

most likely places needing 
parallelization or optimization.

▪ Parallelize your code by starting 
with the most time consuming parts 
and check for correctness.

▪ Optimize your code to improve 
observed speed-up from 
parallelization.

Analyze

ParallelizeOptimize

Analyze



Obtain detailed information about how 

the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:

▪ Total runtime

▪ Runtime of individual routines

▪ Hardware counters

Identify the portions of code that took 

the longest to run. We want to focus on 

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext 
21.49s

swap         
19.04s



PROFILING SEQUENTIAL CODE
First sight when using PGPROF

▪ Profiling a simple, sequential code

▪ Our sequential program will on run 
on the CPU

▪ To view information about how our 
code ran, we should select the 
“CPU Details” tab



PROFILING SEQUENTIAL CODE
CPU Details

▪ Within the “CPU Details” tab, we 
can see the various parts of our 
code, and how long they took to run

▪ We can reorganize this info using 
the three options in the top-right 
portion of the tab

▪ We will expand this information, and 
see more details about our code



PROFILING SEQUENTIAL CODE
CPU Details

▪ We can see that there are two 
places that our code is spending 
most of its time

▪ 21.49 seconds in the “calcNext” 
function

▪ 19.04 seconds in a memcpy
function

▪ The c_mcopy8 that we see is 
actually a compiler optimization that 
is being applied to our “swap” 
function



PROFILING SEQUENTIAL CODE
PGPROF

▪ We are also able to select the 
different elements in the CPU 
Details by double-clicking to open 
the associated source code

▪ Here we have selected the 
“calcNext:37” element, which 
opened up our code to show the 
exact line (line 37) that is 
associated with that element



OPENACC PARALLEL LOOP DIRECTIVE



OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the 
parallel directive, the 
compiler will generate 

1 or more parallel 
gangs, which execute 

redundantly.

gang

gang gang

gang

gang

gang



#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be 
executed redundantly 

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p



#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each 
gang will execute the 

entire loop

gang

gang gang

gang

gang

gang



OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of 
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in 
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the 
compiler to parallelize the iterations of the next 
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel



OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of 
this in a single line of code

▪ In this example, the parallel loop directive 
applies to the next loop

▪ This directive both marks the region for parallel 
execution and distributes the iterations of the 
loop.

▪ When applied to a loop with a data dependency, 
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do



#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive 
informs the compiler 

which loops to 
parallelize.



OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

▪ To parallelize multiple loops, each loop should 
be accompanied by a parallel directive

▪ Each parallel loop can have different loop 
boundaries and loop optimizations

▪ Each parallel loop can be parallelized in a 
different way

▪ This is the recommended way to parallelize 
multiple loops. Attempting to parallelize multiple 
loops within the same parallel region may give 
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;



PARALLELIZE WITH OPENACC PARALLEL LOOP

41

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Parallelize first loop nest, 

max reduction required.

Parallelize second loop.

We didn’t detail how to 
parallelize the loops, just which

loops to parallelize.



REDUCTION CLAUSE

▪ The reduction clause takes many values and 
“reduces” them to a single value, such as in a 
sum or maximum

▪ Each thread calculates its part

▪ The compiler will perform a final reduction to 
produce a single global result using the 
specified operation

for( i = 0; i < size; i++ )
for( j = 0; j < size; j++ )
double tmp = 0.0f;
#pragma parallel acc loop \
reduction(+:tmp)

for( k = 0; k < size; k++ )
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for( i = 0; i < size; i++ )
for( j = 0; j < size; j++ )
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)



BUILD AND RUN THE CODE



PGI COMPILER BASICS

▪ The command to compile C code is ‘pgcc’

▪ The command to compile C++ code is ‘pgc++’

▪ The command to compile Fortran code is ‘pgfortran’

▪ The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90



PGI COMPILER BASICS

▪ The -Minfo flag will instruct the compiler to print feedback about the compiled code

▪ -Minfo=accel will give us information about what parts of the code were accelerated 
via OpenACC

▪ -Minfo=opt will give information about all code optimizations

▪ -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90



PGI COMPILER BASICS

▪ The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)

▪ -ta=multicore – Build the code to run across threads on a multicore CPU

▪ -ta=tesla:managed – Build the code for an NVIDIA (Tesla) GPU and manage the 
data movement for me (more next week)

-ta flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed main.f90



BUILDING THE CODE (MULTICORE)

48

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable



OPENACC SPEED-UP
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PGI 18.7, NVIDIA Tesla V100, Intel i9-7900X CPU @ 3.30GHz



BUILDING THE CODE (GPU)

50

$ pgcc -fast -ta=tesla:managed -Minfo=accel laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable



OPENACC SPEED-UP
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CLOSING REMARKS



KEY CONCEPTS
This week we discussed…

▪ What is OpenACC

▪ How profile-driven programming helps you write better code

▪ How to parallelize loops using OpenACC’s parallel loop directive to 
improve time to solution

Next Week:

▪ Managing your data with OpenACC



Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

FREE 

Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm?utm_source=openacc&utm_medium=webinar&utm_campaign=CE&ncid=pa-par-59663

