
Week 1 – Introduction to OpenACC

Jeff Larkin, Senior DevTech Software Engineer, NVIDIA

OPENACC ONLINE COURSE 2018

ABOUT THIS COURSE

3 Part Introduction to OpenACC

▪ Week 1 – Introduction to OpenACC

▪ Week 2 – Data Management with OpenACC

▪ Week 3 – Optimizations with OpenACC

Each week will have a corresponding lab, only an hour and a web browser is required

Please ask questions in the Q&A box, our TA’s will answer as quickly as possible

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with

OpenACC.

WEEK 1 OUTLINE
Topics to be covered

▪ What is OpenACC and Why Should You Care?

▪ Profile-driven Development

▪ First Steps with OpenACC

▪ Week 1 Lab

▪ Where to Get Help

INTRODUCTION TO OPENACC

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC

OPENACC IS…

a directives-based parallel

programming model

designed for performance

and portability.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

CPU, GPU, Manycore

Performance portable

Interoperable

Single source

Incremental

Single SourceIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

Incremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correctness and

performance

Single Source

OPENACC

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

POWER

Sunway

x86 CPU

AMD GPU

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Low Learning Curve

OPENACC

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU
Parallel Hardware

The programmer will
give hints to the

compiler.

The compiler
parallelizes the code.

Single SourceIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC

32

67

104
132

ISC15 ISC16 ISC17 ISC18

100,000 DOWNLOADS450 DOMAIN EXPERTS

2 OF LAST 9 FINALISTS5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS

ACCELERATED APPS

GAUSSIAN 16

Using OpenACC allowed us to continue

development of our fundamental

algorithms and software capabilities

simultaneously with the GPU-related

work. In the end, we could use the

same code base for SMP, cluster/

network and GPU parallelism. PGI's

compilers were essential to the success

of our efforts.

Mike Frisch, Ph.D.
President and
CEO
Gaussian, Inc.

Parallelization Strategy

Within Gaussian 16, GPUs are used for a small fraction of code that consumes a large

fraction of the execution time. T e implementation of GPU parallelism conforms

to Gaussian’s general parallelization strategy. Its main tenets are to avoid changing

the underlying source code and to avoid modif cations which negatively af ect CPU

performance. For these reasons, OpenACC was used for GPU parallelization.

T e Gaussian approach to parallelization relies on environment-specif c parallelization
frameworks and tools: OpenMP for shared-memory, Linda for cluster and network
parallelization across discrete nodes, and OpenACC for GPUs.

T e process of implementing GPU support involved many dif erent aspects:

 Identifying places where GPUs could be benef cial. T ese are a subset of areas which

are parallelized for other execution contexts because using GPUs requires f ne grained

parallelism.

 Understanding and optimizing data movement/storage at a high level to maximize

GPU ef ciency.

Gaussian, Inc.
340 Quinnipiac St. Bldg. 40
Wallingford, CT 06492 USA
custserv@gaussian.com

Gaussian is a registered trademark of Gaussian, Inc. All other trademarks and registered trademarks are
the properties of their respective holders. Specif cations subject to change without notice.

Copyright © 2017, Gaussian, Inc. All rights reserved.

Roberto Gomperts
NVIDIA

Michael Frisch
Gaussian

Brent Leback
NVIDIA/PGI

Giovanni Scalmani
Gaussian

Project Contributors

PGI Accelerator Compilers with OpenACC
PGI compilers fully support the current OpenACC
standard as well as important extensions to it.
PGI is an important contributor to the ongoing
development of OpenACC.

OpenACC enables developers to implement
GPU parallelism by adding compiler directives
to their source code, of en eliminating the need
for rewriting or restructuring. For example, the
following Fortran compiler directive identif es a
loop which the compiler should parallelize:

! $ a c c p a r a l l e l l o o p

Other directives allocate GPU memory, copy data
to/from GPUs, specify data to remain on the GPU,
combine or split loops and other code sections,
and generally provide hints for optimal work
distribution management, and more.

T e OpenACC project is very active, and the
specif cations and tools are changing fairly
rapidly. T is has been true throughout the
lifetime of this project. Indeed, one of its major
challenges has been using OpenACC in the midst
of its development. T e talented people at PGI
were instrumental in addressing issues that arose
in one of the very f rst uses of OpenACC for a
large commercial sof ware package.

Specifying GPUs to Gaussian 16

T e GPU implementation in Gaussian 16 is sophisticated and complex but using it is simple and straightforward. GPUs are specif ed with

1 additional Link 0 command (or equivalent Default.Route f le entry/command line option). For example, the following commands tell

Gaussian to run the calculation using 24 compute cores plus 8 GPUs+8 controlling cores (32 cores total):

%CPU= 0 - 3 1 Request 32 CPUs for the calculation: 24 cores for computation, and 8 cores to control GPUs (see below).
%GPUCPU= 0 - 7 = 0 - 7 Use GPUs 0-7 with CPUs 0-7 as their controllers.

Detailed information is available on our website.

PGI’s sophisticated prof ling and performance evaluation tools were vital to the success of the ef ort.

VASP

For VASP, OpenACC is the way

forward for GPU acceleration.

Performance is similar and in some

cases better than CUDA C, and

OpenACC dramatically decreases

GPU development and maintenance

efforts. We’re excited to collaborate

with NVIDIA and PGI as an early

adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna

GTC

Using OpenACC our scientists

were able to achieve the

acceleration needed for

integrated fusion simulation with

a minimum investment of time

and effort in learning to program

GPUs.

Zhihong Lin
Professor and Principal Investigator
UC Irvine

Head

Shot

MAS

Adding OpenACC into MAS has given us

the ability to migrate medium-sized

simulations from a multi-node CPU

cluster to a single multi-GPU server.

The implementation yielded a portable

single-source code for both CPU and

GPU runs. Future work will add

OpenACC to the remaining model

features, enabling GPU-accelerated

realistic solar storm modeling.

Ronald M. Caplan
Computational Scientist
Predictive Science Inc.

https://devblogs.nvidia.com/solar-storm-modeling-gpu-openacc/

OPENACC SYNTAX

OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

▪ Common, useful algorithm

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE

25

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OPENACC DEVELOPMENT CYCLE
▪ Analyze your code to determine

most likely places needing
parallelization or optimization.

▪ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

▪ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Obtain detailed information about how

the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:

▪ Total runtime

▪ Runtime of individual routines

▪ Hardware counters

Identify the portions of code that took

the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

PROFILING SEQUENTIAL CODE
First sight when using PGPROF

▪ Profiling a simple, sequential code

▪ Our sequential program will on run
on the CPU

▪ To view information about how our
code ran, we should select the
“CPU Details” tab

PROFILING SEQUENTIAL CODE
CPU Details

▪ Within the “CPU Details” tab, we
can see the various parts of our
code, and how long they took to run

▪ We can reorganize this info using
the three options in the top-right
portion of the tab

▪ We will expand this information, and
see more details about our code

PROFILING SEQUENTIAL CODE
CPU Details

▪ We can see that there are two
places that our code is spending
most of its time

▪ 21.49 seconds in the “calcNext”
function

▪ 19.04 seconds in a memcpy
function

▪ The c_mcopy8 that we see is
actually a compiler optimization that
is being applied to our “swap”
function

PROFILING SEQUENTIAL CODE
PGPROF

▪ We are also able to select the
different elements in the CPU
Details by double-clicking to open
the associated source code

▪ Here we have selected the
“calcNext:37” element, which
opened up our code to show the
exact line (line 37) that is
associated with that element

OPENACC PARALLEL LOOP DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of
this in a single line of code

▪ In this example, the parallel loop directive
applies to the next loop

▪ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

▪ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

▪ To parallelize multiple loops, each loop should
be accompanied by a parallel directive

▪ Each parallel loop can have different loop
boundaries and loop optimizations

▪ Each parallel loop can be parallelized in a
different way

▪ This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

PARALLELIZE WITH OPENACC PARALLEL LOOP

41

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize first loop nest,

max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

REDUCTION CLAUSE

▪ The reduction clause takes many values and
“reduces” them to a single value, such as in a
sum or maximum

▪ Each thread calculates its part

▪ The compiler will perform a final reduction to
produce a single global result using the
specified operation

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma parallel acc loop \
reduction(+:tmp)

for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

BUILD AND RUN THE CODE

PGI COMPILER BASICS

▪ The command to compile C code is ‘pgcc’

▪ The command to compile C++ code is ‘pgc++’

▪ The command to compile Fortran code is ‘pgfortran’

▪ The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

PGI COMPILER BASICS

▪ The -Minfo flag will instruct the compiler to print feedback about the compiled code

▪ -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

▪ -Minfo=opt will give information about all code optimizations

▪ -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

PGI COMPILER BASICS

▪ The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)

▪ -ta=multicore – Build the code to run across threads on a multicore CPU

▪ -ta=tesla:managed – Build the code for an NVIDIA (Tesla) GPU and manage the
data movement for me (more next week)

-ta flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed main.f90

BUILDING THE CODE (MULTICORE)

48

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

3.05X

0.00X

0.50X

1.00X

1.50X

2.00X

2.50X

3.00X

3.50X

SERIAL MULTICORE

S
p

e
e

d
-U

p

Speed-up

PGI 18.7, NVIDIA Tesla V100, Intel i9-7900X CPU @ 3.30GHz

BUILDING THE CODE (GPU)

50

$ pgcc -fast -ta=tesla:managed -Minfo=accel laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X
3.05X

37.14X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE NVIDIA TESLA V100

S
p

e
e

d
-U

p

Speed-up

PGI 18.7, NVIDIA Tesla V100, Intel i9-7900X CPU @ 3.30GHz

CLOSING REMARKS

KEY CONCEPTS
This week we discussed…

▪ What is OpenACC

▪ How profile-driven programming helps you write better code

▪ How to parallelize loops using OpenACC’s parallel loop directive to
improve time to solution

Next Week:

▪ Managing your data with OpenACC

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm?utm_source=openacc&utm_medium=webinar&utm_campaign=CE&ncid=pa-par-59663

