

ABOUT THIS COURSE

3 Part Introduction to OpenACC

= Week 1 — Introduction to OpenACC

= Week 2 — Data Management with OpenACC

= Week 3 — Optimizations with OpenACC

Each week will have a corresponding lab, only an hour and a web browser is required

Please ask questions in the Q&A box, our TA’s will answer as quickly as possible

OpenACC <ANVIDIA. aws PLinuxAcademy

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with
OpenACC.

OpenACC <ANVIDIA. aws tinuxAcadem

WEEK 1 OUTLINE

Topics to be covered

What is OpenACC and Why Should You Care?

Profile-driven Development

First Steps with OpenACC

Week 1 Lab

Where to Get Help

OpenACC <ANVIDIA. aws MLinuxAcademy

INTRODUCTION TO OPENACC

OpenAC C <ANVIDIA. aws [PJLinuxAcademy

3 WAYS TO ACCELERATE

APPLICATIONS
Applications
. . Compller Programmin
Libraries Omp J J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

OpenAGG @ANVIDIA. aws @ Linux Academv\ O p en A C C /

OPENACC s...

a directives-based parallel
programming model
designed for performance
and portability.

OpenACC <ANVIDIA. aws [PtinuxAcademy
Mors Seience, Less Programming ~]

Add Simple Compiler Directive

main()

{

<serial code>
#pragma acc kernels

{

<parallel code>

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data /{
Movement

#pragma acc parallel

. {
Initiate /#pr‘agma acc loop gang vector

Earallell for (i = 0; i < n; ++1i) {
xecution c[i] = a[i] + b[i];
Optimize })

Loop

o OpenACC

Directives fFor Accelerators

OpenACC <ANVIDIA. aws TtinuxAcademy

* [ncremental
* Single source

° Interoperable
e Performance portable
e CPU, GPU, Manycore

OPENACC

Incremental

= Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying

more of the code

\

correctness, annotate

J

Op enAC C <InvIDIA. aws) Linux Academy

Single Source

Rebuild the same code
on multiple
architectures

Compiler determines
how to parallelize for
the desired machine

Sequential code is
maintained

Low Learning Curve

* OpenACC is meant to
be easy to use, and
easy to learn

* Programmer remains
in familiar C, C++, or
Fortran

= No reason to learn
low-level details of the
hardware.

OPENACC

Incremental

» Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying
correctness, annotate
more of the code

\, J

OpenACC <ANVIDIA. aws [PtinuxAcademy
Mors Seience, Less Programming ~]

Enhance Sequential Code
#pragma acc parallel Toop
forC i =0; i < N; i++)

{
}

< loop code >

#pragma acc parallel Toop
for(i =0; i < N; i++)

{
}

< loop code >

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correctness and
performance

OPENACC

Supported Platforms

_ The compiler can ignore your
Single Source OpenACC code additions, so the same

code can be used for parallel or
POWER sequential execution.
» Rebuild the same code
Sunway on multiple
%86 CPU architgctures | int main(){
» Compiler determines
AMD GPU how to parallelize for
the desired machine ﬁpr?gmi acc pa"‘f‘“eﬁ 1‘.’°p)
or(int 1 = ©; 1 < N; 1++
NVIDIA GPU = Sequential code is < loop code >
PEZY-SC maintained
\, J

OpenACC <ANVIDIA. aws [PtinuxAcademy
Mors Seience, Less Programming ~]

OPENACC

CPU

Parallel Hardware
*

int main(){
<sequential code>
#pragma acc kernels
{<parallel code>

}
}

ENENENENEEENEEER

ENENENENENENEEEN

EEEEEEEEENEEEEEE
EEEEEEEEENEEEEEE
EEEEEEEEENEEEEEE
EEEEEEEEENEEEEEE
ENEEENEEEENEEEEN
EENEEEEEEEEEEEED

h

Compiler

Hint

OpenACC <ANVIDIA. aws TtinuxAcademy

Low Learning Curve

The programmer will
give hints to the .
compiler.
The compiler
parallelizes the code.
\,

OpenACC is meant to
be easy to use, and
easy to learn

Programmer remains
in familiar C, C++, or
Fortran

No reason to learn
low-level details of the
hardware.

OPENACC

Incremental

= Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying

more of the code

\

correctness, annotate

J

Op enAC C <InvIDIA. aws) Linux Academy

Single Source

Rebuild the same code
on multiple
architectures

Compiler determines
how to parallelize for
the desired machine

Sequential code is
maintained

Low Learning Curve

* OpenACC is meant to
be easy to use, and
easy to learn

* Programmer remains
in familiar C, C++, or
Fortran

= No reason to learn
low-level details of the
hardware.

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC

3 OF TOP 5 HPC APPS 5 OF 13 CAAR CODES 2 OF LAST 9 FINALISTS

Intersect360 5 u "-, rr, ' t Gordon Bell Prize
RESEARCH

450 DOMAIN EXPERTS ACCELERATED APPS 100,000 DOWNLOADS
132
o
67/JL PG I

Community
EDITION

AWARDS

/

32

ISC15 ISC16 ISC17 [SC18

GAUSSIAN 16

Using OpenACC allowed us to continue
development of our fundamental
algorithms and software capabilities
simultaneously with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/
network and GPU parallelism. PGl's
compilers were essential to the success
of our efforts.

- ’\ "
VAT

) X
>,/

-~

i i For VASP, OpenACC is the way
forward for GPU acceleration.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We’re excited to collaborate
with NVIDIA and PGl as an early
adopter of CUDA Unified Memory. , !

OpenAC C <InvIDIA. aws) Linux Academy

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs.

Adding OpenACC into MAS has given us

the ability to migrate medium-sized
simulations from a multi-node CPU

cluster to a single multi-GPU server.

The implementation yielded a portable
single-source code for both CPU and

GPU runs. Future work will add

OpenACC to the remaining model
features, enabling GPU-accelerated
realistic solar storm modeling. . .

https://devblogs.nvidia.com/solar-storm-modeling-gpu-openacc/

GAUSSIAN 16

g g Using OpenACC allowad us to continue
development of our fundamental
algorithms and software capabilities
simultanecusly with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/
network and GPU paralleiism, PGI's
compilers were essential to the success
of our afforts.

b

Ihe CAAR praject pravided us with
carly access Lo Summil. hardware and
access ta PGl compiter experts. Bath
of these were critical to our success.
PGI's DpendGC support temains the
best available and is competitive with
e moee s ive programeming

madel approaches.

VMD

Due to Amdahl’s law, we need to port
SEEE - more parts of our code o the GPU if were
going to speed ft up. But the sheer
number of rautines pases & challenge.
DOpenace directives give us a low-cost
approach to getting at least same speed-
Up out of these second-tier routmes. In
mary casas its compietely sufficient
because with the cument algorithms, GRU
performance is bandwidth-bound. R

bt

SANJEEVINI

4

In an acsdemic environment

S E maintenance and speadup of exiating
«codes is a tedious task. OpanACC
provides a great platform for

sclenteats 1o

both fasks wihout involving & lot of
efforts ar manpower In speeding up the
@nfire computationa! task.

e

-

B We've effectively used
OpenACC for heterogeneous
computing in ANSYS Fluent

ANSYS FLUENT

For VASP, OpenACC is the way
forward for GPU acoelesation.

Performance is similar and in some

OpenACC made it practical to
develop for GPU-based hardware
while retaining a single source for

with impressive performance,
We're now applying this work

to more of our models and

new platforms. morn

NUMECA FINE/Open

¥

- - Parling our unstriuctured C++
CFD solver FINE/Open to GPUs
using OpenACC would have
been impossible two or three
years ago, but OpenACC has
developad enough that we're
naw getting some really goq.q -
results.

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

IBM-CFD

DRENALE can prove: 1o be 3 nandy 100l for

cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We're excited to collaborate
with NVIDIA and PGI as an carly
adopter of CUDA Unified Memory.

almost all the COSMO physics
code.

- -

SYNOPSYS

|y Using OpenACC, we've GPU- (3\ Our team has been evaluating

" OpenACC as a pathway to
accelerated the Synopsys TCAD i P b N performance portability for the Model

Sentaurus Device EMW simulator . for Prediction (WPAS) atmospheric

to speed up optical simulations of a .) | model. Using this approach on the
image sensors. GPUs are key to . MPAS dynamical core, we have

i g % 7 achieved performance on a single
improving simulation throughput “ P100 GPU eqivalent 10 2.7 dual

in the design of advanced image socketed Intel Xeon nodes on our new

sensors. Cheyenne supercomputer. —

GAMERA
E g z AT 7 S

With OpenACC and a compute

node based on NVIDIA's Tesla

P100 GPU, we achieved more

than a 14X speed up over a K
Computer node running our
earthquake disaster simulation
code mm

PWscf (Quantum
ESPRESSO)

CUDA Fortran gives us the full

Adding OpenACC into MAS has given us

- e

E

computaticnal engineers and researchers 10
00 of non-linear dynamics
15 boundary Incompresstie:

ANd mavtx 50heTs haws bocn v

cookoratod 1
e e crveral seakeity ¢

ke

PU
arth agarthm

pertormance potential of the CUDA
programming model and NVIDIA GPUs.
Whete: leweraging the potenbal of expiat
data movement, ISCUF KERNELS
divectives give s productidly and
sowce code mamanabidy I's the best
of both wodds

-

S5 the abitity to migrate medium-sized

simulations from a multi node CPU
chinter 1o a single multi-GPU server.
Thes implementation yielded a portable
single-source code for both CPU and
GPU runs. Future work will add
OpenACC to the remaining model
features, cnabling GPU-accelerated
realistic solar storm modeling. f

OPENACC SYNTAX

OpenAC C <InvIDIA. aws) Linux Academy

OPENACC SYNTAX

Syntax for using OpenACC directives in code

#pragma acc directive clauses I$acc directive clauses
<code> <code>

A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

“acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

= Clauses are specifiers or additions to directives.

OpenACC <ANVIDIA. aws TtinuxAcademy

EXAMPLE CODE

OpenAC C <InvIDIA. aws) Linux Academy

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

OpenACC <ANVIDIA. aws [PtinuxAcademy
Mors Seience, Less Programming ~]

EXAMPLE: JACOBI ITERATION

= [teratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

= Common, useful algorithm

= Example: Solve Laplace equation in 2D: V2f(x,y) = 0

A(i,j+1)
)
AG-1,])9—% A(i+1,3)
A(i,3)
¥ A (D) = A =1L+ A0+ 1)+ A0 - D+ A0 + 1)
A(],J'1) k+1(l;]) - 4

OpenACC <ANVIDIA. aws tinuxAcademy

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {
err=0.0;

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[3-1][i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[Jj]I[i])) -
}
}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[]][i]’
}
}

iter++;
OpenACE <InvIDIA. aws tinuxacademy

Iterate until converged

Ilterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OpenAC C <InvIDIA. aws) Linux Academy

OPENACC DEVELOPMENT CYCLE

[- Analyze your code to determine J

most likely places needing

- = . . . An I
parallelization or optimization. alyze

= Parallelize your code by starting
with the most time consuming parts
and check for correctness.

= Optimize your code to improve
observed speed-up from
parallelization.

Optimize Parallelize

OpenACC <ANVIDIA. aws TtinuxAcademy

PROFILING SEQUENTIAL CODE

Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:

= Total runtime

= Runtime of individual routines
calcNext

= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC <ANVIDIA. aws LinuxAcademy

PROFILING SEQUENTIAL CODE

First sight when using PGPROF

= Profiling a simple, sequential code ¢ wecws

00

= Qur sequential program will on run
on the CPU

= To view information about how our
code ran, we should select the
“CPU Details” tab

OpenACC <ANVIDIA. aws MLinuxAcademy

PROFILING SEQUENTIAL CODE

CPU Detalls

File wview window Run Help

cir . 9 B sy &y H R ([BEE A~
= Within the “CPU Details” tab, we % laplace nwp 3 - 5
can see the various parts of our

code, and how long they took to run

= We can reorganize this info using
the three options in the top-right

portlon Of the tab 4 CPU Details 22 I I |=' O E Properties 2 = B

TOTAL w | Use the buttons on the top-right of this view to select how to display prc
prig playp Select or highlight a single

= We will expand this information, and " _— incervalto see properties
see more details about our code e e

> /lib/x86_64-linux-gnu/libc-2.2; 0.125% 10.055

Op enAC C <InvIDIA. aws) Linux Academy

PROFILING SEQUENTIAL CODE

CPU Detalls

= \We can see that there are two
places that our code is spending
most of its time

= 21.49 seconds in the “calcNext”
function

= 19.04 seconds in a memcpy
function

= The c_mcopy8 that we see is
actually a compiler optimization that
is being applied to our “swap”
function

OpenACC <ANVIDIA. aws TtinuxAcademy

window Ri
S = I T R F B2 L8 A&
% laplace.nvvp 2 =g
.0 s SOOOOIDOOO s ‘\0000?0000 s 1500090000 s 2000090000 s 25000[?0000 5
s GPU Details B CPU Details 22 B Console Settings I & % = B E Properties 2 = g
TOTAL ¥ | Use the buttons on the top-right of this view ko select how to display profile data More... Select or highlight a single interval to see
Event % Time properties
/home/ewright/edited_laplac 21.519%
v flaplacezd.c 21.519% 21.51s
v {d 21 5153.
l caleNext:37 21.499% 21.49s I
calcMext:35 0.02% 0.02s
¥ fopt/pai/linux86-64/17.4/lib/l. 19.048% 19.04s
¥ Unknown Filename 19.048% 19.04s
¥ ¢ mcopy8 19.048% 19.04s
I ¢ mcopys:-1 19.048% 19.045 |
» /lib/x86_64-linux-gnu/libc-2.2 0.06% 0.06s

PROFILING SEQUENTIAL CODE

PGPROF

ile View Window Help

= We are also able to select the DA :.
different elements in the CPU e -
Details by double-clicking to open ' i

the associated source code

double error = 9.9;
for(int j = 1; j < n-1; j++)
{

for(int i = 1; 1 = m-1; i++)
Anew[OFFSET(j, i, m)] = @.25 * (A[OFFSET(j, i+l, m)]1 + A[OFFSET(j, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)1);
error = fmax(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m})]1));

}

= Here we have selected the
“calcNext:37” element, which
opened up our code to show the
exact line (line 37) that is — kTt ..
associated with that element ' .

return error;

—~void swap(double *restrict A, double *restrict Anew, int m, int n)

for(int j = 1; j < n-1; j++)

= | Use the buttons on the top-right of this view to select how to display profile data More... Select or highlight a single interval to see

Event % Time properties
¥ /home/ewright/edited_laplac 21.519% 21.51s
v Jlaplacez2d.c 21.519% 21.51s
¥ calcNext 21.519% 21.51s
caleNext:37 21.499% 21.49s
caleNext:35 0.02% 0.02s
» /opt/pgiflinux86-64/17.4/lib/l 19.048% 19.04s

Op enAc c @Z nVIDIA aWS @ Linux Academv > [lib/x86_64-linux-gnu/libc-2.27 0.06% 0.065

OPENACC PARALLEL LOOP DIRECTIVE

OpenAC C <InvIDIA. aws) Linux Academy

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

When encountering the
parallel directive, the
compiler will generate

gang gang
1 or more parallel
gangs, which execute
redundantly.
) gang gang

OpenACC <ANVIDIA. aws MLinuxAcademy

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

loop

or(int 1 = @0; i < N; i++

{

// Do Something

This loop will be
J executed redundantly

Open A(;Q @2 NVIDIA. q& e@mcaga n g

o o

@) @)

L= o
gang gang

o o

@ @)

o o
gang gang

o o

@ @)

o o
gang gang

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

or(int 1 = @0; i < N; i++

{

gang gang

// Do Something

This means that each gang gang

} gang will execute the
Open AGG <ANVIDIA. av@ n B[ﬁ(AlQQ p

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

?p'ﬁagma CIela el = Use a parallel directive to mark a region of
#pragma acc loop code where you want parallel execution to occur
for(int i = @; j < N; i . . .

Og[(il?t; : J < 1++) = This parallel region is marked by curly braces in

} ’ C/C++ or a start and end directive in Fortran

= The loop directive is used to instruct the

compiler to parallelize the iterations of the next

|
l$acc parallel loop to run across the parallel gangs

I$acc loop
doi=1, N
a(i) =

end do

I$acc end parallel

OpenACC <ANVIDIA. aws MLinuxAcademy

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of

#pragma acc parallel loop this in a single line of code
f°§[(115‘t=1 Soeds N5 14+4) = In this example, the parallel loop directive
- applies to the next loop
= This directive both marks the region for parallel
execution and distributes the iterations of the
loop.
I$acc parallel loop
doa(l.): o N = When applied to a loop with a data dependency,
end EO - parallel loop may produce incorrect results

OpenACC <ANVIDIA. aws MLinuxAcademy

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

#pragma acc loop
for(int 1 = 9; 1 < N; i++)
{

// Do Something

} The loop directive

Informs the compiler
} which loops to
parallelize.

OpenACC <ANVIDIA. aws tinuxAcademy

I

I

I

OPENACC PARALLEL LOOP DIRECTIVE

Parallelizing many loops

#pragma acc parallel loop
for(int 1 = 9; 1 < N; i++)
a[i] = ©;

#pragma acc parallel loop
for(int j = 9; j < M; Jj++)
b[j] = 9;

OpenACC <ANVIDIA. aws PLinuxAcademy

To parallelize multiple loops, each loop should
be accompanied by a parallel directive

Each parallel loop can have different loop
boundaries and loop optimizations

Each parallel loop can be parallelized in a
different way

This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

PARALLELIZE WITH OPENACC PARALLEL LOOP

while (err > tol && iter < iter max) ({

err=0.0;
#pragma acc parallel loop reduction (max:err) ‘ Parallelize first loop nest,
for(int j = 1; j < n-1; j++) { max reduction required.

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][1i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[3j]1I[i])) -
}
}
for(int j = 1; j < n-1; j++) {
for(int i =1; 1i < m-1; i++) {
A[j]1[i] = Anew[]][i]~
. We didn’t detail how to

iter++; parallelize the loops, just which
loops to parallelize.

}
OpenACC <ANVIDIA. aws TtinuxAcademy

REDUCTION CLAUSE

= The reduction clause takes many values and
“reduces” them to a single value, such as in a
sum or maximum

= Each thread calculates its part

= The compiler will perform a final reduction to
produce a single global result using the
specified operation

OpenACC <ANVIDIA. aws TtinuxAcademy

for(1 = 0; 1 < size; i++)
for(j = 9; j < size; j++)
for(k = 9; k < size; k++)
c[i][j] += a[i][k] * b[k][]J];
for(i = ; i < size; i++)
for(j = 9; j < size; j++)
double tmp = ;

#pragma parallel acc loop \
reduction(+:tmp)

for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][]];

c[i][]] = tmp;

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)
max Maximum value reduction(max:maximum)
min Minimum value reduction(min:minimum)
& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

| | Logical or reduction(]||:val)

OpenACC <ANVIDIA. aws TtinuxAcademy

BUILD AND RUN THE CODE

OpenAC C <InvIDIA. aws) Linux Academy

PGI COMPILER BASICS

pgcc, pgc++ and pgfortran

The command to compile C code is ‘pgcc’

The command to compile C++ code is ‘pgc++’

The command to compile Fortran code is ‘pgfortran’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ pgcc -fast main.c
$ pgc++ -fast main.cpp
$ pgfortran -fast main.F90

Op enAC C <InvIDIA. aws) Linux Academy

PGI COMPILER BASICS

-Minfo flag

= The -Minfo flag will instruct the compiler to print feedback about the compiled code

= -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

= -Minfo=opt will give information about all code optimizations

= -Minfo=all will give all code feedback, whether positive or negative

$ pgcc -fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran -fast -Minfo=all main.f90

Op enAC C <InvIDIA. aws) Linux Academy

PGI COMPILER BASICS

-ta flag

= The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)
= -ta=multicore — Build the code to run across threads on a multicore CPU

= -ta=tesla:managed — Build the code for an NVIDIA (Tesla) GPU and manage the
data movement for me (more next week)

$ pgcc -fast -Minfo=accel -ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel -ta=tesla:managed main.cpp
$ pgfortran -fast -Minfo=accel -ta=tesla:managed main.f90

Op enAC C <InvIDIA. aws) Linux Academy

BUILDING THE CODE (MULTICORE)

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d uvm.c
main:
63, Generating Multicore code
64, #pragma acc loop gang
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction (max:error)
66, Loop is parallelizable
74, Generating Multicore code
75, #pragma acc loop gang
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

Op enAC C <InvIDIA. aws) Linux Academy

OPENACC SPEED-UP

Speed-up

3.50X

3.05X

3.00X

2.50X

2.00X

Speed-Up

1.50X

1.00X

1.00X

0.50X

0.00X
SERIAL MULTICORE

OpenACC <ANVIDIA aws (lLinuxAcademy PGI 18.7, NVIDIA Tesla V100, Intel i9-7900X CPU @ 3.30GHz

BUILDING THE CODE (GPU)

$ pgcc -fast -ta=tesla:managed -Minfo=accel laplace2d uvm.c
main:
63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */
63, Generating implicit copyin(A[:])
Generating implicit copyout (Anew[:])
Generating implicit copy (error)
66, Loop is parallelizable
74, Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector (128) /* threadIdx.x */
74, Generating implicit copyin(Anew|[:])
Generating implicit copyout(A[:])
77, Loop is parallelizable

OpenACC <ANVIDIA. aws MLinuxAcademy

OPENACC SPEED-UP

Speed-up

e 37.14X

35.00X

30.00X

25.00X

20.00X

Speed-Up

15.00X

10.00X

5.00X 3-65%

=]

SERIAL MULTICORE NVIDIA TESLA V100

: PGI 18.7, NVIDIA Tesla V100, Intel i9-7900X CP .30GH
anggﬂgmg <INVIDIA. aws) Linux Academy Gl 18.7, esla V100, Intel i9-7900X CPU @ 3.30GHz

CLOSING REMARKS

OpenAC C <InvIDIA. aws) Linux Academy

KEY CONCEPTS

This week we discussed...

= What is OpenACC
= How profile-driven programming helps you write better code

= How to parallelize loops using OpenACC'’s parallel loop directive to
Improve time to solution

Next Week:
= Managing your data with OpenACC

Op enAC C <InvIDIA. aws) Linux Academy

OPENACC RESOURCES

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

Resources Success Stories
https://www.openacc.org/resources https://www.openacc.org/success-stories
gpenAcc OpenACC

Success Stories

Resources

C materal guides, onli books and more. are snaning e results ang experences.

R Guides & Books

[] Introduction to OpenACC Quick Guides.
+ 0penACC Programming and Best Practices Guide
+ ODONACC 25 API Roterence Card
c

Paraliel Programming with OpenACC

* OpenAcC

B Tutorials

Programming Massivoly Paraliel Procssors, Third
Edition: A Hands-on h

> Watch more OpenACC Videos on YouTube

Compilers and Tools Events
e https://www.openacc.org/tools https://www.openacc.org/events
OpenACC OpenACC

Events

The OpenACC ¢ y orgas

Community Downloads & Tools
EDITION OpenACE complers, prof Al
Commercial Compilers Open Source Compilers

(;F}_A:f PG I él]gmuuimﬁiwm @

around the world

Contact Cray

PGl
OpenACC Directives

OpenACC <ANVIDIA. aws tinuxAcademy

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm?utm_source=openacc&utm_medium=webinar&utm_campaign=CE&ncid=pa-par-59663

