
OpenACC Programming
and Best Practices Guide
April 2022

© 2022 openacc-standard.org. All Rights Reserved.

Contents

1 Introduction 1
1.1 Writing Portable Code . 1

1.1.1 Libraries . 2
1.1.2 Standard Programming Languages . 2
1.1.3 Compiler Directives . 2
1.1.4 Parallel Programming Extensions . 3

1.2 What is OpenACC? . 3
1.2.1 The OpenACC Accelerator Model . 3
1.2.2 Benefits and Limitations of OpenACC . 5

1.3 Accelerating an Application with OpenACC . 5
1.3.1 OpenACC Directive Syntax . 5
1.3.2 Porting Cycle . 6
1.3.3 Heterogenous Computing Best Practices . 7

1.4 Case Study - Jacobi Iteration . 8

2 Assess Application Performance 10
2.1 Baseline Profiling . 10
2.2 Additional Profiling . 11
2.3 Case Study - Analysis . 11

3 Parallelize Loops 15
3.1 The Kernels Construct . 15
3.2 The Parallel Construct . 16
3.3 Differences Between Parallel and Kernels . 17
3.4 The Loop Construct . 19

3.4.1 private . 19
3.4.2 reduction . 19

3.5 Routine Directive . 20
3.5.1 C++ Class Functions . 20

3.6 Atomic Operations . 20
3.6.1 Atomic Example . 21

3.7 Case Study - Parallelize . 22
3.7.1 Parallel Loop . 22
3.7.2 Kernels . 24

CONTENTS

4 Optimize Data Locality 29
4.1 Data Regions . 29
4.2 Data Clauses . 30

4.2.1 Shaping Arrays . 31
4.3 Unstructured Data Lifetimes . 32

4.3.1 C++ Class Data . 33
4.4 Update Directive . 35
4.5 Best Practice: Offload Inefficient Operations to Maintain Data Locality 36
4.6 Case Study - Optimize Data Locality . 37

5 Optimize Loops 41
5.1 Efficient Loop Ordering . 41
5.2 OpenACC’s 3 Levels of Parallelism . 41

5.2.1 Understanding OpenACC’s Three Levels of Parallelism 43
5.3 Mapping Parallelism to the Hardware . 44
5.4 Collapse Clause . 46
5.5 Routine Parallelism . 47
5.6 Case Study - Optimize Loops . 47

6 OpenACC Interoperability 53
6.1 The Host Data Region . 53

6.1.1 Asynchronous Device Libraries . 54
6.2 Using Device Pointers . 56
6.3 Obtaining Device and Host Pointer Addresses . 57
6.4 Additional Vendor-Specific Interoperability Features 57

6.4.1 Asynchronous Queues and CUDA Streams (NVIDIA) 58
6.4.2 CUDA Managed Memory (NVIDIA) . 58
6.4.3 Using CUDA Device Kernels (NVIDIA) . 58

7 Advanced OpenACC Features 60
7.1 Asynchronous Operation . 60

7.1.1 Case Study: Asynchronous Pipelining of a Mandelbrot Set 63
7.2 Multi-device Programming . 68

7.2.1 acc_get_num_devices() . 68
7.2.2 acc_get_device_num() and acc_set_device_num() 69
7.2.3 acc_get_device_type() and acc_set_device_type() 69
7.2.4 Multi-device Programming Example . 69

A References 72

Chapter 1

Introduction

This guide presents methods and best practices for accelerating applications in an incremental,
performance portable way. Although some of the examples may show results using a given compiler
or accelerator, the information presented in this document is intended to address all architectures
both available at publication time and well into the future. Readers should be comfortable with C,
C++, or Fortran, but do not need experience with parallel programming or accelerated computing,
although such experience will be helpful.

Note: This guide is a community effort. To contribute, please visit the project on Github.

1.1 Writing Portable Code
The current computing landscape is spotted with a variety of computing architectures: multi-core
CPUs, GPUs, many-core devices, DSPs, ARM processors, and FPGAs, to name a few. It is now
commonplace to find not just one, but several of these differing architectures within the same
machine. Programmers must make portability of their code a forethought, otherwise they risk
locking their application to a single architecture, which may limit the ability to run on future
architectures. Although the variety of architectures may seem daunting to the programmer, closer
analysis reveals trends that show a lot in common between them. The first thing to note is that all
of these architectures are moving in the direction of more parallelism. CPUs are not only adding
CPU cores but also expanding the length of their SIMD operations. GPUs have grown to require
a high degree of block and SIMT parallelism. It is clear that going forward all architectures will
require a significant degree of parallelism in order to achieve high performance. Modern processors
need not only a large amount of parallelism, but frequently expose multiple levels of parallelism
with varying degrees of coarseness. The next thing to notice is that all of these architectures have
exposed hierarchies of memory. CPUs have the main system memory, typically DDR, and multiple
layers of cache memory. GPUs have the main CPU memory, the main GPU memory, and various
degrees of cache or scratchpad memory. Additionally on hybrid architectures, which include two
or more different architectures, there exist machines where the two architectures have completely
separate memories, some with physically separate but logically the same memory, and some with
fully shared memory.

1

https://github.com/OpenACC/openacc-best-practices-guide

CHAPTER 1. INTRODUCTION 2

Because of these complexities, it’s important that developers choose a programming model that
balances the need for portability with the need for performance. Below are four programming models
of varying degrees of both portability and performance. In a real application it’s frequently best to
use a mixture of approaches to ensure a good balance between high portability and performance.

1.1.1 Libraries
Standard (and de facto standard) libraries provide the highest degree of portability because the
programmer can frequently replace only the library used without even changing the source code
itself when changing compute architectures. Since many hardware vendors provide highly-tuned
versions of common libraries, using libraries can also result in very high performance. Although
libraries can provide both high portability and high performance, few applications are able to use
only libraries because of their limited scope.

Some vendors provide additional libraries as a value-add for their platform, but which implement
non-standard APIs. These libraries provide high performance, but little portability. Fortunately
because libraries provide modular APIs, the impact of using non-portable libraries can be isolated
to limit the impact on overall application portability.

1.1.2 Standard Programming Languages
Many standard programming languages either have or are beginning to adopt features for parallel
programming. For example, Fortran 2008 added support for do concurrent, which exposes the
potential parallelism with that loop, and C++17 added support for std::execution, which enables
users to express parallelism with certain loop structures. Adoption of these language features is
often slow, however, and many standard languages are only now beginning to discuss parallel
programming features for future language releases. When these features become commonplace,
they will provide high portability, since they are part of a standard language, and if well-designed
can provide high performance as well.

1.1.3 Compiler Directives
When standard programming languages lack support for necessary features compiler directives can
provide additional functionality. Directives, in the form of pragmas in C/C++ and comments in
Fortran, provide additional information to compilers on how to build and/or optimize the code.
Most compilers support their own directives, and also directives such as OpenACC and OpenMP,
which are backed by industry groups and implemented by a range of compilers. When using industry-
backed compiler directives the programmer can write code with a high degree of portability across
compilers and architectures. Frequently, however, these compiler directives are written to remain
very high level, both for simplicity and portability, meaning that performance may lag lower-level
programming paradigms. Many developers are willing to give up 10-20% of hand-tuned performance
in order to get a high degree of portability to other architectures and to enhance programmer
productivity. The tolerance for this portability/performance trade-off will vary according to the
needs of the programmer and application.

CHAPTER 1. INTRODUCTION 3

1.1.4 Parallel Programming Extensions
CUDA and OpenCL are examples of extensions to existing programming languages to give addi-
tional parallel programming capabilities. Code written in these languages is frequently at a lower
level than that of other options, but as a result can frequently achieve higher performance. Lower
level architectural details are exposed and the way that a problem is decomposed to the hardware
must be explicitly managed with these languages. This is the best option when performance goals
outweigh portability, as the low-level nature of these programming languages frequently makes
the resulting code less portable. Good software engineering practices can reduce the impact these
languages have on portability.

There is no one programming model that fits all needs. An application developer needs to evaluate
the priorities of the project and make decisions accordingly. A best practice is to begin with the
most portable and productive programming models and move to lower level programming models
only as needed and in a modular fashion. In doing so the programmer can accelerate much of the
application very quickly, which is often more beneficial than attempting to get the absolute highest
performance out of a particular routine before moving to the next. When development time is
limited, focusing on accelerating as much of the application as possible is generally more productive
than focusing solely on the top time consuming routine.

1.2 What is OpenACC?
With the emergence of GPU and many-core architectures in high performance computing, program-
mers desire the ability to program using a familiar, high level programming model that provides
both high performance and portability to a wide range of computing architectures. OpenACC
emerged in 2011 as a programming model that uses high-level compiler directives to expose paral-
lelism in the code and parallelizing compilers to build the code for a variety of parallel accelerators.
This document is intended as a best practices guide for accelerating an application using OpenACC
to give both good performance and portability to other devices.

1.2.1 The OpenACC Accelerator Model
In order to ensure that OpenACC would be portable to all computing architectures available at
the time of its inception and into the future, OpenACC defines an abstract model for accelerated
computing. This model exposes multiple levels of parallelism that may appear on a processor as
well as a hierarchy of memories with varying degrees of speed and addressability. The goal of this
model is to ensure that OpenACC will be applicable to more than just a particular architecture or
even just the architectures in wide availability at the time, but to ensure that OpenACC could be
used on future devices as well.

At its core OpenACC supports offloading of both computation and data from a host device to
an accelerator device. In fact, these devices may be the same or may be completely different
architectures, such as the case of a CPU host and GPU accelerator. The two devices may also have
separate memory spaces or a single memory space. In the case that the two devices have different
memories the OpenACC compiler and runtime will analyze the code and handle any accelerator
memory management and the transfer of data between host and device memory. Figure 1.1 shows

CHAPTER 1. INTRODUCTION 4

a high level diagram of the OpenACC abstract accelerator, but remember that the devices and
memories may be physically the same on some architectures.

Figure 1.1: OpenACC’s Abstract Accelerator Model

More details of OpenACC’s abstract accelerator model will be presented throughout this guide
when they are pertinent.

Best Practice: For developers coming to OpenACC from other accelerator programming models,
such as CUDA or OpenCL, where host and accelerator memory is frequently represented by two
distinct variables (host_A[] and device_A[], for instance), it’s important to remember that when
using OpenACC a variable should be thought of as a single object, regardless of whether it’s backed
by memory in one or more memory spaces. If one assumes that a variable represents two separate
memories, depending on where it is used in the program, then it is possible to write programs that
access the variable in unsafe ways, resulting in code that would not be portable to devices that share
a single memory between the host and device. As with any parallel or asynchronous programming
paradigm, accessing the same variable from two sections of code simultaneously could result in
a race condition that produces inconsistent results. By assuming that you are always accessing a
single variable, regardless of how it is stored in memory, the programmer will avoid making mistakes
that could cost a significant amount of effort to debug.

CHAPTER 1. INTRODUCTION 5

1.2.2 Benefits and Limitations of OpenACC
OpenACC is designed to be a high-level, platform independent language for programming accelera-
tors. As such, one can develop a single source code that can be run on a range of devices and achieve
good performance. The simplicity and portability that OpenACC’s programming model provides
sometimes comes at a cost to performance. The OpenACC abstract accelerator model defines a
least common denominator for accelerator devices, but cannot represent architectural specifics of
these devices without making the language less portable. There will always be some optimizations
that are possible in a lower-level programming model, such as CUDA or OpenCL, that cannot
be represented at a high level. For instance, although OpenACC has the cache directive, some
uses of shared memory on NVIDIA GPUs are more easily represented using CUDA. The same is
true for any host or device: certain optimizations are too low-level for a high-level approach like
OpenACC. It is up to the developers to determine the cost and benefit of selectively using a lower
level programming language for performance critical sections of code. In cases where performance
is too critical to take a high-level approach, it’s still possible to use OpenACC for much of the
application, while using another approach in certain places, as will be discussed in a later chapter
on interoperability.

1.3 Accelerating an Application with OpenACC
This section will detail an incremental approach to accelerating an application using OpenACC.
When taking this approach it is beneficial to revisit each step multiple times, checking the results of
each step for correctness. Working incrementally will limit the scope of each change for improved
productivity and debugging.

1.3.1 OpenACC Directive Syntax
This guide will introduce OpenACC directives incrementally, as they become useful for the porting
process. All OpenACC directives have a common syntax, however, with the acc sentinal, designat-
ing to the compiler that the text that follows will be OpenACC, a directive, and clauses to that
directive, many of which are optional but provide the compiler with additional information.

In C and C++, these directives take the form of a pragma. The example code below shows the
OpenACC kernels directive without any additional clauses

1 #pragma acc kernels

In Fortran, the directives take the form of a special comment, as demonstrated below.

1 !$acc kernels

Some OpenACC directives apply to structured blocks of code, while others are executable state-
ments. In C and C++ a block of code can be represented by curly braces ({ and }). In Fortran
a block of code will begin with an OpenACC directive (!$acc kernels) and end with a matching
ending directive (!$acc end kernels).

CHAPTER 1. INTRODUCTION 6

1.3.2 Porting Cycle
Programmers should take an incremental approach to accelerating applications using OpenACC to
ensure correctness. This guide will follow the approach of first assessing application performance,
then using OpenACC to parallelize important loops in the code, next optimizing data locality to
remove unnecessary data migrations between the host and accelerator, and finally optimizing loops
within the code to maximize performance on a given architecture. This approach has been successful
in many applications because it prioritizes changes that are likely to provide the greatest returns
so that the programmer can quickly and productively achieve the acceleration.

There are two important things to note before detailing each step. First, at times during this process
application performance may actually slow down. Developers should not become frustrated if their
initial efforts result in a loss of performance. As will be explained later, this is generally the result
of implicit data movement between the host and accelerator, which will be optimized as a part of
the porting cycle. Second, it is critical that developers check the program results for correctness
after each change. Frequent correctness checks will save a lot of debugging effort, since errors can be
found and fixed immediately, before they have the chance to compound. Some developers may find
it beneficial to use a source version control tool to snapshot the code after each successful change
so that any breaking changes can be quickly thrown away and the code returned to a known good
state.

1.3.2.1 Assess Application Performance

Before one can begin to accelerate an application it is important to understand in which routines
and loops an application is spending the bulk of its time and why. It is critical to understand the
most time-consuming parts of the application to maximize the benefit of acceleration. Amdahl’s
Law informs us that the speed-up achievable from running an application on a parallel accelerator
will be limited by the remaining serial code. In other words, the application will see the most benefit
by accelerating as much of the code as possible and by prioritizing the most time-consuming parts.
A variety of tools may be used to identify important parts of the code, including simple application
timers.

1.3.2.2 Parallelize Loops

Once important regions of the code have been identified, OpenACC directives should be used to
accelerate these regions on the target device. Parallel loops within the code should be decorated
with OpenACC directives to provide OpenACC compilers the information necessary to parallelize
the code for the target architecture.

1.3.2.3 Optimize Data Locality

Because many accelerated architectures, such as CPU + GPU architectures, use distinct memory
spaces for the host and device it is necessary for the compiler to manage data in both memories
and move the data between the two memories to ensure correct results. Compilers rarely have
full knowledge of the application, so they must be cautious in order to ensure correctness, which
often involves copying data to and from the accelerator more often than is actually necessary. The
programmer can give the compiler additional information about how to manage the memory so
that it remains local to the accelerator as long as possible and is only moved between the two

CHAPTER 1. INTRODUCTION 7

memories when absolutely necessary. Programmers will often realize the largest performance gains
after optimizing data movement during this step.

1.3.2.4 Optimize Loops

Compilers will make decisions about how to map the parallelism in the code to the target accelerator
based on internal heuristics and the limited knowledge it has about the application. Sometimes
additional performance can be gained by providing the compiler with more information so that
it can make better decisions on how to map the parallelism to the accelerator. When coming
from a traditional CPU architecture to a more parallel architecture, such as a GPU, it may also
be necessary to restructure loops to expose additional parallelism for the accelerator or to reduce
the frequency of data movement. Frequently code refactoring that was motivated by improving
performance on parallel accelerators is beneficial to traditional CPUs as well.

This process is by no means the only way to accelerate using OpenACC, but it has been proven
successful in numerous applications. Doing the same steps in different orders may cause both
frustration and difficulty debugging, so it’s advisable to perform each step of the process in the
order shown above.

1.3.3 Heterogenous Computing Best Practices
Many applications have been written with little or even no parallelism exposed in the code. The
applications that do expose parallelism frequently do so in a coarse-grained manner, where a small
number of threads or processes execute for a long time and compute a significant amount work
each. Modern GPUs and many-core processors, however, are designed to execute fine-grained
threads, which are short-lived and execute a minimal amount of work each. These parallel archi-
tectures achieve high throughput by trading single-threaded performance in favor of several orders
in magnitude more parallelism. This means that when accelerating an application with OpenACC,
which was designed in light of increased hardware parallelism, it may be necessary to refactor the
code to favor tightly-nested loops with a significant amount of data reuse. In many cases these
same code changes also benefit more traditional CPU architectures as well by improving cache use
and vectorization.

OpenACC may be used to accelerate applications on devices that have a discrete memory or that
have a memory space that’s shared with the host. Even on devices that utilize a shared memory
there is frequently still a hierarchy of a fast, close memory for the accelerator and a larger, slower
memory used by the host. For this reason it is important to structure the application code to
maximize reuse of arrays regardless of whether the underlying architecture uses discrete or unified
memories. When refactoring the code for use with OpenACC it is frequently beneficial to assume
a discrete memory, even if the device you are developing on has a unified memory. This forces data
locality to be a primary consideration in the refactoring and will ensure that the resulting code
exploits hierarchical memories and is portable to a wide range of devices.

CHAPTER 1. INTRODUCTION 8

1.4 Case Study - Jacobi Iteration
Throughout this guide we will use simple applications to demonstrate each step of the acceleration
process. The first such application will solve the 2D-Laplace equation with the iterative Jacobi
solver. Iterative methods are a common technique to approximate the solution of elliptic PDEs,
like the 2D-Laplace equation, within some allowable tolerance. In the case of our example we will
perform a simple stencil calculation where each point calculates it value as the mean of its neighbors’
values. The calculation will continue to iterate until either the maximum change in value between
two iterations drops below some tolerance level or a maximum number of iterations is reached.
For the sake of consistent comparison through the document the examples will always iterate 1000
times. The main iteration loop for both C/C++ and Fortran appears below.

52 while (error > tol && iter < iter_max)
53 {
54 error = 0.0;
55

56 for(int j = 1; j < n-1; j++)
57 {
58 for(int i = 1; i < m-1; i++)
59 {
60 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
61 + A[j-1][i] + A[j+1][i]);
62 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
63 }
64 }
65

66 for(int j = 1; j < n-1; j++)
67 {
68 for(int i = 1; i < m-1; i++)
69 {
70 A[j][i] = Anew[j][i];
71 }
72 }
73

74 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
75

76 iter++;
77 }

52 do while (error .gt. tol .and. iter .lt. iter_max)
53 error=0.0_fp_kind
54

55 do j=1,m-2
56 do i=1,n-2
57 Anew(i,j) = 0.25_fp_kind * (A(i+1,j) + A(i-1,j) + &
58 A(i ,j-1) + A(i ,j+1))

CHAPTER 1. INTRODUCTION 9

59 error = max(error, abs(Anew(i,j)-A(i,j)))
60 end do
61 end do
62

63 do j=1,m-2
64 do i=1,n-2
65 A(i,j) = Anew(i,j)
66 end do
67 end do
68

69 if(mod(iter,100).eq.0) write(*,'(i5,f10.6)'), iter, error
70 iter = iter + 1
71

72 end do

The outermost loop in each example will be referred to as the convergence loop, since it loops
until the answer has converged by reaching some maximum error tolerance or number of iterations.
Notice that whether or not a loop iteration occurs depends on the error value of the previous
iteration. Also, the values for each element of A is calculated based on the values of the previous
iteration, known as a data dependency. These two facts mean that this loop cannot be run in
parallel.

The first loop nest within the convergence loop calculates the new value for each element based
on the current values of its neighbors. Notice that it is necessary to store this new value into
a different array. If each iteration stored the new value back into itself then a data dependency
would exist between the data elements, as the order each element is calculated would affect the
final answer. By storing into a temporary array we ensure that all values are calculated using the
current state of A before A is updated. As a result, each loop iteration is completely independent
of each other iteration. These loop iterations may safely be run in any order or in parallel and the
final result would be the same. This loop also calculates a maximum error value. The error value
is the difference between the new value and the old. If the maximum amount of change between
two iterations is within some tolerance, the problem is considered converged and the outer loop will
exit.

The second loop nest simply updates the value of A with the values calculated into Anew. If this is
the last iteration of the convergence loop, A will be the final, converged value. If the problem has
not yet converged, then A will serve as the input for the next iteration. As with the above loop
nest, each iteration of this loop nest is independent of each other and is safe to parallelize.

In the coming sections we will accelerate this simple application using the method described in this
document.

Chapter 2

Assess Application Performance

A variety of tools can be used to evaluate application performance and which are available will
depend on your development environment. From simple application timers to graphical performance
analyzers, the choice of performance analysis tool is outside of the scope of this document. The
purpose of this section is to provide guidance on choosing important sections of code for acceleration,
which is independent of the profiling tools available.

Throughout this guide, the NVIDIA Nsight Systems performance analysis tool which is provided
with the CUDA toolkit, will be used for CPU profiling. When accelerator profiling is needed, the
application will be run on an NVIDIA GPU and the NVIDIA Nsight Systems profiler will be again
be used.

2.1 Baseline Profiling
Before parallelizing an application with OpenACC the programmer must first understand where
time is currently being spent in the code. Routines and loops that take up a significant percentage
of the runtime are frequently referred to as hot spots and will be the starting point for accelerating
the application. A variety of tools exist for generating application profiles, such as gprof, Vampir,
Nsight Systems, and TAU. Selecting the specific tool that works best for a given application is
outside of the scope of this document, but regardless of which tool or tools are used below are some
important pieces of information that will help guide the next steps in parallelizing the application.

• Application performance - How much time does the application take to run? How efficiently
does the program use the computing resources?

• Program hotspots - In which routines is the program spending most of its time? What is
being done within these important routines? Focusing on the most time consuming parts of
the application will yield the greatest results.

• Performance limiters - Within the identified hotspots, what’s currently limiting the application
performance? Some common limiters may be I/O, memory bandwidth, cache reuse, floating
point performance, communication, etc. One way to evaluate the performance limiters of a
given loop nest is to evaluate its computational intensity, which is a measure of how many

10

CHAPTER 2. ASSESS APPLICATION PERFORMANCE 11

operations are performed on a data element per load or store from memory.
• Available parallelism - Examine the loops within the hotspots to understand how much work

each loop nest performs. Do the loops iterate 10’s, 100’s, 1000’s of times (or more)? Do the
loop iterations operate independently of each other? Look not only at the individual loops,
but look a nest of loops to understand the bigger picture of the entire nest.

Gathering baseline data like the above both helps inform the developer where to focus efforts for
the best results and provides a basis for comparing performance throughout the rest of the process.
It’s important to choose input that will realistically reflect how the application will be used once it
has been accelerated. It’s tempting to use a known benchmark problem for profiling, but frequently
these benchmark problems use a reduced problem size or reduced I/O, which may lead to incorrect
assumptions about program performance. Many developers also use the baseline profile to gather
the expected output of the application to use for verifying the correctness of the application as it
is accelerated.

2.2 Additional Profiling
Through the process of porting and optimizing an application with OpenACC it’s necessary to
gather additional profile data to guide the next steps in the process. Some profiling tools, such as
Nsight Systems and Vampir, support profiling on CPUs and GPUs, while other tools, such as gprof,
may only support profiling on a particular platform. Additionally, some compilers build their own
profiling into the application, such is the case with the NVHPC compiler, which supports setting
the NVCOMPILER_ACC_TIME environment variable for gathering runtime information about
the application. When developing on offloading platforms, such as CPU + GPU platforms, it’s
generally important to use a profiling tool throughout the development process that can evaluate
both time spent in computation and time spent performing PCIe data transfers. This document
will use NVIDIA Nsight Systems Profiler for performing this analysis, although it is only available
on NVIDIA platforms.

2.3 Case Study - Analysis
To get a better understanding of the case study program we will use the NVIDIA NSight Systems
command line interface that comes as a part of the CUDA Toolkit and NVIDIA HPC SDK. First,
it’s necessary to build the executable. Remember to use the flags included in the example below
to ensure that additional information about how the compiler optimized the program is displayed.
The executable is built with the following command:

$ nvc -fast -Minfo=all laplace2d.c
GetTimer:

21, include "timer.h"
61, FMA (fused multiply-add) instruction(s) generated

main:
41, Loop not fused: function call before adjacent loop

Loop unrolled 8 times
49, StartTimer inlined, size=2 (inline) file laplace2d.c (37)
52, FMA (fused multiply-add) instruction(s) generated

CHAPTER 2. ASSESS APPLICATION PERFORMANCE 12

58, Generated vector simd code for the loop containing reductions
68, Memory copy idiom, loop replaced by call to __c_mcopy8
79, GetTimer inlined, size=10 (inline) file laplace2d.c (54)

Once the executable has been built, the nsys command will run the executable and generate a
profiling report that can be viewed offline in the NVIDIA Nsight Systems GUI

$ nsys profile ./a.out

Jacobi relaxation Calculation: 4096 x 4096 mesh
0, 0.250000

100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 36.480533 s
Processing events...

Capturing symbol files...
Saving temporary "/tmp/nsys-report-2f5b-f32e-7dec-9af0.qdstrm" file to disk...
Creating final output files...

Processing [==100%]
Saved report file to "/tmp/nsys-report-2f5b-f32e-7dec-9af0.qdrep"
Report file moved to "/home/ubuntu/openacc-programming-guide/examples/laplace/ch2/report1.qdrep"

Once the data has been collected, and the .qdrep report has been generated, it can be visualized
using the Nsight Systems GUI. You must first copy the report (report1.qdrep in the example above)
to a machine that has graphical capabilities and download the Nsight Systems interface. Next, you
must open the application and select your file via the file manager.

When we open the report in Nsight Systems, we see that the vast majority of the time is spent
in two routines: main and __c_mcopy8. A screenshot of the initial screen for Nsight systems is
shown in figure 2.1. Since the code for this case study is completely within the main function of the
program, it’s not surprising that nearly all of the time is spent in main, but in larger applications
it’s likely that the time will be spent in several other routines.

Clicking into the main function we can see that nearly all of the runtime within main comes from
the loop that calculates the next value for A. This is shown in figure 2.2. What is not obvious from
the profiler output, however, is that the time spent in the memory copy routine shown in the initial
screen is actually the second loop nest, which performs the array swap at the end of each iteration.
The compiler output shows above that the loop at line 68 was replaced by a memory copy, because
doing so is more efficient than copying each element individually. So what the profiler is really
showing us is that the major hotspots for our application are the loop nest that calculate Anew
from A and the loop nest that copies from Anew to A for the next iteration, so we’ll concentrate our

CHAPTER 2. ASSESS APPLICATION PERFORMANCE 13

Figure 2.1: Nsight Systems initial window in the GUI. You must use the toolbar at the top to find
your target report file

Figure 2.2: Nsight initial profile window showing 81% of runtime in main and 17% in a memory
copy routine.

CHAPTER 2. ASSESS APPLICATION PERFORMANCE 14

efforts on these two loop nests.

In the chapters that follow, we will optimize the loops identified in this chapter as the hotspots
within our example application.

Chapter 3

Parallelize Loops

Now that the important hotspots in the application have been identified, the programmer should in-
crementally accelerate these hotspots by adding OpenACC directives to the important loops within
those routines. There is no reason to think about the movement of data at this point in the process,
the OpenACC compiler will analyze the data needed in the identified region and automatically en-
sure that the data is available on the accelerator. By focusing solely on the parallelism during this
step, the programmer can move as much computation to the device as possible and ensure that the
program is still giving correct results before optimizing away data motion in the next step. During
this step in the process it is common for the overall runtime of the application to increase, even if
the execution of the individual loops is faster using the accelerator. This is because the compiler
must take a cautious approach to data movement, frequently copying more data to and from the
accelerator than is actually necessary. Even if overall execution time increases during this step, the
developer should focus on expressing a significant amount of parallelism in the code before moving
on to the next step and realizing a benefit from the directives.

OpenACC provides two different approaches for exposing parallelism in the code: parallel and
kernels regions. Each of these directives will be detailed in the sections that follow.

3.1 The Kernels Construct
The kernels construct identifies a region of code that may contain parallelism, but relies on the
automatic parallelization capabilities of the compiler to analyze the region, identify which loops are
safe to parallelize, and then accelerate those loops. Developers with little or no parallel programming
experience, or those working on functions containing many loop nests that might be parallelized,
will find the kernels directive a good starting place for OpenACC acceleration. The code below
demonstrates the use of kernels in both C/C++ and Fortran.

1 #pragma acc kernels
2 {
3 for (i=0; i<N; i++)

15

CHAPTER 3. PARALLELIZE LOOPS 16

4 {
5 y[i] = 0.0f;
6 x[i] = (float)(i+1);
7 }
8

9 for (i=0; i<N; i++)
10 {
11 y[i] = 2.0f * x[i] + y[i];
12 }
13 }

1 !$acc kernels
2 do i=1,N
3 y(i) = 0
4 x(i) = i
5 enddo
6

7 do i=1,N
8 y(i) = 2.0 * x(i) + y(i)
9 enddo

10 !$acc end kernels

In this example the code is initializing two arrays and then performing a simple calculation on them.
Notice that we have identified a block of code, using curly braces in C and starting and ending
directives in Fortran, that contains two candidate loops for acceleration. The compiler will analyze
these loops for data independence and parallelize both loops by generating an accelerator kernel for
each. The compiler is given complete freedom to determine how best to map the parallelism available
in these loops to the hardware, meaning that we will be able to use this same code regardless of the
accelerator we are building for. The compiler will use its own knowledge of the target accelerator
to choose the best path for acceleration. One caution about the kernels directive, however, is that
if the compiler cannot be certain that a loop is data independent, it will not parallelize the loop.
Common reasons for why a compiler may misidentify a loop as non-parallel will be discussed in a
later section.

3.2 The Parallel Construct
The parallel construct identifies a region of code that will be parallelized across OpenACC gangs.
By itself a parallel region is of limited use, but when paired with the loop directive (discussed
in more detail later) the compiler will generate a parallel version of the loop for the accelerator.
These two directives can, and most often are, combined into a single parallel loop directive. By
placing this directive on a loop the programmer asserts that the affected loop is safe to parallelize
and allows the compiler to select how to schedule the loop iterations on the target accelerator. The
code below demonstrates the use of the parallel loop combined directive in both C/C++ and
Fortran.

CHAPTER 3. PARALLELIZE LOOPS 17

1 #pragma acc parallel loop
2 for (i=0; i<N; i++)
3 {
4 y[i] = 0.0f;
5 x[i] = (float)(i+1);
6 }
7

8 #pragma acc parallel loop
9 for (i=0; i<N; i++)

10 {
11 y[i] = 2.0f * x[i] + y[i];
12 }

1 !$acc parallel loop
2 do i=1,N
3 y(i) = 0
4 x(i) = i
5 enddo
6

7 !$acc parallel loop
8 do i=1,N
9 y(i) = 2.0 * x(i) + y(i)

10 enddo

Notice that, unlike the kernels directive, each loop needs to be explicitly decorated with parallel
loop directives. This is because the parallel construct relies on the programmer to identify the
parallelism in the code rather than performing its own compiler analysis of the loops. In this case,
the programmer is only identifying the availability of parallelism, but still leaving the decision of how
to map that parallelism to the accelerator to the compiler’s knowledge about the device. This is a
key feature that differentiates OpenACC from other similar programming models. The programmer
identifies the parallelism without dictating to the compiler how to exploit that parallelism. This
means that OpenACC code will be portable to devices other than the device on which the code is
being developed, because details about how to parallelize the code are left to compiler knowledge
rather than being hard-coded into the source.

3.3 Differences Between Parallel and Kernels
One of the biggest points of confusion for new OpenACC programmers is why the specification has
both the parallel and kernels directives, which appear to do the same thing. While they are very
closely related there are subtle differences between them. The kernels construct gives the compiler
maximum leeway to parallelize and optimize the code how it sees fit for the target accelerator, but
also relies most heavily on the compiler’s ability to automatically parallelize the code. As a result,
the programmer may see differences in what different compilers are able to parallelize and how they
do so. The parallel loop directive is an assertion by the programmer that it is both safe and
desirable to parallelize the affected loop. This relies on the programmer to have correctly identified

CHAPTER 3. PARALLELIZE LOOPS 18

parallelism in the code and remove anything in the code that may be unsafe to parallelize. If the
programmer asserts incorrectly that the loop may be parallelized then the resulting application may
produce incorrect results.

To put things another way: the kernels construct may be thought of as a hint to the compiler of
where it should look for parallelism while the parallel directive is an assertion to the compiler of
where there is parallelism.

An important thing to note about the kernels construct is that the compiler will analyze the code
and only parallelize when it is certain that it is safe to do so. In some cases the compiler may not
have enough information at compile time to determine whether a loop is safe to parallelize, in which
case it will not parallelize the loop, even if the programmer can clearly see that the loop is safely
parallel. For example, in the case of C/C++ code, where arrays are represented as pointers, the
compiler may not always be able to determine that two arrays do not reference the same memory,
otherwise known as pointer aliasing. If the compiler cannot know that two pointers are not aliased
it will not be able to parallelize a loop that accesses those arrays.

Best Practice: C programmers should use the restrict keyword (or the __restrict decorator
in C++) whenever possible to inform the compiler that the pointers are not aliased, which will
frequently give the compiler enough information to then parallelize loops that it would not have
otherwise. In addition to the restrict keyword, declaring constant variables using the const
keyword may allow the compiler to use a read-only memory for that variable if such a memory
exists on the accelerator. Use of const and restrict is a good programming practice in general,
as it gives the compiler additional information that can be used when optimizing the code.

Fortran programmers should also note that an OpenACC compiler will parallelize Fortran array
syntax that is contained in a kernels construct. When using parallel instead, it will be necessary
to explicitly introduce loops over the elements of the arrays.

One more notable benefit that the kernels construct provides is that if data is moved to the device
for use in loops contained in the region, that data will remain on the device for the full extent of the
region, or until it is needed again on the host within that region. This means that if multiple loops
access the same data it will only be copied to the accelerator once. When parallel loop is used
on two subsequent loops that access the same data a compiler may or may not copy the data back
and forth between the host and the device between the two loops. In the examples shown in the
previous section the compiler generates implicit data movement for both parallel loops, but only
generates data movement once for the kernels approach, which may result in less data motion by
default. This difference will be revisited in the case study later in this chapter.

For more information on the differences between the kernels and parallel directives, please see
[http://www.pgroup.com/lit/articles/insider/v4n2a1.htm].

At this point many programmers will be left wondering which directive they should use in their code.
More experienced parallel programmers, who may have already identified parallel loops within their
code, will likely find the parallel loop approach more desirable. Programmers with less parallel
programming experience or whose code contains a large number of loops that need to be analyzed
may find the kernels approach much simpler, as it puts more of the burden on the compiler. Both
approaches have advantages, so new OpenACC programmers should determine for themselves which

CHAPTER 3. PARALLELIZE LOOPS 19

approach is a better fit for them. A programmer may even choose to use kernels in one part of
the code, but parallel in another if it makes sense to do so.

Note: For the remainder of the document the phrase parallel region will be used to describe either
a parallel or kernels region. When refering to the parallel construct, a terminal font will be
used, as shown in this sentence.

3.4 The Loop Construct
The loop construct gives the compiler additional information about the very next loop in the source
code. The loop directive was shown above in connection with the parallel directive, although it
is also valid with kernels. Loop clauses come in two forms: clauses for correctness and clauses for
optimization. This chapter will only discuss the two correctness clauses and a later chapter will
discuss optimization clauses.

3.4.1 private
The private clause specifies that each loop iteration requires its own copy of the listed variables. For
example, if each loop contains a small, temporary array named tmp that it uses during its calculation,
then this variable must be made private to each loop iteration in order to ensure correct results. If
tmp is not declared private, then threads executing different loop iterations may access this shared
tmp variable in unpredictable ways, resulting in a race condition and potentially incorrect results.
Below is the synax for the private clause.

private(var1, var2, var3, ...)

There are a few special cases that must be understood about scalar variables within loops. First,
loop iterators will be privatized by default, so they do not need to be listed as private. Second,
unless otherwise specified, any scalar accessed within a parallel loop will be made first private by
default, meaning a private copy will be made of the variable for each loop iteration and it will be
initialized with the value of that scalar upon entering the region. Finally, any variables (scalar or
not) that are declared within a loop in C or C++ will be made private to the iterations of that
loop by default.

Note: The parallel construct also has a private clause which will privatize the listed variables
for each gang in the parallel region.

3.4.2 reduction
The reduction clause works similarly to the private clause in that a private copy of the affected
variable is generated for each loop iteration, but reduction goes a step further to reduce all of those
private copies into one final result, which is returned from the region. For example, the maximum
of all private copies of the variable may be required. A reduction may only be specified on a scalar
variable and only common, specified operations can be performed, such as +, *, min, max, and
various bitwise operations (see the OpenACC specification for a complete list). The format of the
reduction clause is as follows, where operator should be replaced with the operation of interest and
variable should be replaced with the variable being reduced:

CHAPTER 3. PARALLELIZE LOOPS 20

reduction(operator:variable)

An example of using the reduction clause will come in the case study below.

3.5 Routine Directive
Function or subroutine calls within parallel loops can be problematic for compilers, since it’s not
always possible for the compiler to see all of the loops at one time. OpenACC 1.0 compilers were
forced to either inline all routines called within parallel regions or not parallelize loops containing
routine calls at all. OpenACC 2.0 introduced the routine directive to address this shortcoming.
The routine directive gives the compiler the necessary information about the function or subroutine
and the loops it contains in order to parallelize the calling parallel region. The routine directive
must be added to a function definition informing the compiler of the level of parallelism used within
the routine. OpenACC’s levels of parallelism will be discussed in a later section.

3.5.1 C++ Class Functions
When operating on C++ classes, it’s frequently necessary to call class functions from within parallel
regions. The example below shows a C++ class float3 that contains 3 floating point values and
has a set function that is used to set the values of its x, y, and z members to that of another
instance of float3. In order for this to work from within a parallel region, the set function is
declared as an OpenACC routine using the routine directive. Since we know that it will be called
by each iteration of a parallel loop, it’s declared a seq (or sequential) routine.

1 class float3 {
2 public:
3 float x,y,z;
4

5 #pragma acc routine seq
6 void set(const float3 *f) {
7 x=f->x;
8 y=f->y;
9 z=f->z;

10 }
11 };

3.6 Atomic Operations
When one or more loop iterations need to access an element in memory at the same time data races
can occur. For instance, if one loop iteration is modifying the value contained in a variable and
another is trying to read from the same variable in parallel, different results may occur depending
on which iteration occurs first. In serial programs, the sequential loops ensure that the variable
will be modified and read in a predictable order, but parallel programs don’t make guarantees that
a particular loop iteration will happen before another. In simple cases, such as finding a sum,
maximum, or minimum value, a reduction operation will ensure correctness. For more complex
operations, the atomic directive will ensure that no two threads can attempt to perfom the contained

CHAPTER 3. PARALLELIZE LOOPS 21

operation simultaneously. Use of atomics is sometimes a necessary part of parallelization to ensure
correctness.

The atomic directive accepts one of four clauses to declare the type of operation contained within
the region. The read operation ensures that no two loop iterations will read from the region at
the same time. The write operation will ensure that no two iterations with write to the region at
the same time. An update operation is a combined read and write. Finally a capture operation
performs an update, but saves the value calculated in that region to use in the code that follows.
If no clause is given, then an update operation will occur.

3.6.1 Atomic Example
A histogram is a common technique for counting up how many times values occur from an input
set according to their value. The example code below loops through a series of integer numbers
of a known range and counts the occurances of each number in that range. Since each number in
the range can occur multiple times, we need to ensure that each element in the histogram array
is updated atomically. The code below demonstrates using the atomic directive to generate a
histogram.

1 #pragma acc parallel loop
2 for(int i=0;i<HN;i++)
3 h[i]=0;
4

5 #pragma acc parallel loop
6 for(int i=0;i<N;i++) {
7 #pragma acc atomic update
8 h[a[i]]+=1;
9 }

1 !$acc kernels
2 h(:) = 0
3 !$acc end kernels
4 !$acc parallel loop
5 do i=1,N
6 !$acc atomic
7 h(a(i)) = h(a(i)) + 1
8 enddo
9 !$acc end parallel loop

Notice that updates to the histogram array h are performed atomically. Because we are incrementing
the value of the array element, an update operation is used to read the value, modify it, and then
write it back.

CHAPTER 3. PARALLELIZE LOOPS 22

3.7 Case Study - Parallelize
In the last chapter we identified the two loop nests within the convergence loop as the most time
consuming parts of our application. Additionally we looked at the loops and were able to determine
that the outer convergence loop is not parallel, but the two loops nested within are safe to parallelize.
In this chapter we will accelerate those loop nests with OpenACC using the directives discussed
earlier in this chapter. To further emphasize the similarities and differences between parallel and
kernels directives, we will accelerate the loops using both and discuss the differences.

3.7.1 Parallel Loop
We previously identified the available parallelism in our code, now we will use the parallel loop
directive to accelerate the loops that we identified. Since we know that the two doubly-nested sets
of loops are parallel, simply add a parallel loop directive above each of them. This will inform
the compiler that the outer of the two loops is safely parallel. Some compilers will additionally
analyze the inner loop and determine that it is also parallel, but to be certain we will also add a
loop directive around the inner loops.

There is one more subtlety to accelerating the loops in this example: we are attempting to calculate
the maximum value for the variable error. As discussed above, this is considered a reduction since
we are reducing from all possible values for error down to just the single maximum. This means
that it is necessary to indicate a reduction on the first loop nest (the one that calculates error).

Best Practice: Some compilers will detect the reduction on error and implicitly insert the
reduction clause, but for maximum portability the programmer should always indicate reductions
in the code.

At this point the code looks like the examples below.

52 while (error > tol && iter < iter_max)
53 {
54 error = 0.0;
55

56 #pragma acc parallel loop reduction(max:error)
57 for(int j = 1; j < n-1; j++)
58 {
59 #pragma acc loop reduction(max:error)
60 for(int i = 1; i < m-1; i++)
61 {
62 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1]
63 + Anew[j-1][i] + Anew[j+1][i]);
64 error = fmax(error, fabs(A[j][i] - Anew[j][i]));
65 }
66 }
67

68 #pragma acc parallel loop
69 for(int j = 1; j < n-1; j++)
70 {

CHAPTER 3. PARALLELIZE LOOPS 23

71 #pragma acc loop
72 for(int i = 1; i < m-1; i++)
73 {
74 A[j][i] = Anew[j][i];
75 }
76 }
77

78 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
79

80 iter++;
81 }

52 do while (error .gt. tol .and. iter .lt. iter_max)
53 error=0.0_fp_kind
54

55 !$acc parallel loop reduction(max:error)
56 do j=1,m-2
57 !$acc loop reduction(max:error)
58 do i=1,n-2
59 A(i,j) = 0.25_fp_kind * (Anew(i+1,j) + Anew(i-1,j) + &
60 Anew(i ,j-1) + Anew(i ,j+1))
61 error = max(error, abs(A(i,j) - Anew(i,j)))
62 end do
63 end do
64

65 !$acc parallel loop
66 do j=1,m-2
67 !$acc loop
68 do i=1,n-2
69 A(i,j) = Anew(i,j)
70 end do
71 end do
72

73 if(mod(iter,100).eq.0) write(*,'(i5,f10.6)'), iter, error
74 iter = iter + 1
75 end do

Best Practice: Most OpenACC compilers will accept only the parallel loop directive on the j
loops and detect for themselves that the i loop can also be parallelized without needing the loop
directives on the i loops. By placing a loop directive on each loop that can be parallelized, the
programmer ensures that the compiler will understand that the loop is safe the parallelize. When
used within a parallel region, the loop directive asserts that the loop iterations are independent
of each other and are safe the parallelize and should be used to provide the compiler as much
information about the loops as possible.

Building the above code using the NVHPC compiler produces the following compiler feedback

CHAPTER 3. PARALLELIZE LOOPS 24

(shown for C, but the Fortran output is similar).

$ nvc -acc -Minfo=accel laplace2d-parallel.c
main:

56, Generating Tesla code
57, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)
59, #pragma acc loop vector(128) /* threadIdx.x */

56, Generating implicit copyin(A[:][:]) [if not already present]
Generating implicit copy(error) [if not already present]
Generating implicit copyout(Anew[1:4094][1:4094]) [if not already present]

59, Loop is parallelizable
67, Generating Tesla code

68, #pragma acc loop gang /* blockIdx.x */
70, #pragma acc loop vector(128) /* threadIdx.x */

67, Generating implicit copyin(Anew[1:4094][1:4094]) [if not already present]
Generating implicit copyout(A[1:4094][1:4094]) [if not already present]

70, Loop is parallelizable

Analyzing the compiler feedback gives the programmer the ability to ensure that the compiler is
producing the expected results or fix any problems. In the output above we see that accelerator
kernels were generated for the two loops that were identified (at lines 58 and 71, in the compiled
source file) and that the compiler automatically generated data movement, which will be discussed
in more detail in the next chapter.

Other clauses to the loop directive that may further benefit the performance of the resulting code
will be discussed in a later chapter.

3.7.2 Kernels
Using the kernels construct to accelerate the loops we’ve identified requires inserting just one
directive in the code and allowing the compiler to perform the parallel analysis. Adding a kernels
construct around the two computational loop nests results in the following code.

51 while (error > tol && iter < iter_max)
52 {
53 error = 0.0;
54

55 #pragma acc kernels
56 {
57 for(int j = 1; j < n-1; j++)
58 {
59 for(int i = 1; i < m-1; i++)
60 {
61 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1]
62 + Anew[j-1][i] + Anew[j+1][i]);
63 error = fmax(error, fabs(A[j][i] - Anew[j][i]));
64 }

CHAPTER 3. PARALLELIZE LOOPS 25

65 }
66

67 for(int j = 1; j < n-1; j++)
68 {
69 for(int i = 1; i < m-1; i++)
70 {
71 A[j][i] = Anew[j][i];
72 }
73 }
74 }
75

76 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
77

78 iter++;
79 }

51 do while (error .gt. tol .and. iter .lt. iter_max)
52 error=0.0_fp_kind
53

54 !$acc kernels
55 do j=1,m-2
56 do i=1,n-2
57 A(i,j) = 0.25_fp_kind * (Anew(i+1,j) + Anew(i-1,j) + &
58 Anew(i ,j-1) + Anew(i ,j+1))
59 error = max(error, abs(A(i,j) - Anew(i,j)))
60 end do
61 end do
62

63 do j=1,m-2
64 do i=1,n-2
65 A(i,j) = Anew(i,j)
66 end do
67 end do
68 !$acc end kernels
69

70 if(mod(iter,100).eq.0) write(*,'(i5,f10.6)'), iter, error
71 iter = iter + 1
72 end do

The above code demonstrates some of the power that the kernels construct provides, since the
compiler will analyze the code and identify both loop nests as parallel and it will automatically
discover the reduction on the error variable without programmer intervention. An OpenACC
compiler will likely discover not only that the outer loops are parallel, but also the inner loops,
resulting in more available parallelism with fewer directives than the parallel loop approach. Had
the programmer put the kernels construct around the convergence loop, which we have already
determined is not parallel, the compiler likely would not have found any available parallelism. Even

CHAPTER 3. PARALLELIZE LOOPS 26

with the kernels directive it is necessary for the programmer to do some amount of analysis to
determine where parallelism may be found.

Taking a look at the compiler output points to some more subtle differences between the two
approaches.

$ nvc -acc -Minfo=accel laplace2d-kernels.c
main:

56, Generating implicit copyin(A[:][:]) [if not already present]
Generating implicit copyout(Anew[1:4094][1:4094],A[1:4094][1:4094]) [if not already present]

58, Loop is parallelizable
60, Loop is parallelizable

Generating Tesla code
58, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
60, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
64, Generating implicit reduction(max:error)

68, Loop is parallelizable
70, Loop is parallelizable

Generating Tesla code
68, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
70, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

The first thing to notice from the above output is that the compiler correctly identified all four loops
as being parallelizable and generated kernels from those loops. Also notice that the compiler only
generated implicit data movement directives at line 54 (the beginning of the kernels region), rather
than at the beginning of each parallel loop. This means that the resulting code should perform
fewer copies between host and device memory in this version than the version from the previous
section. A more subtle difference between the output is that the compiler chose a different loop
decomposition scheme (as is evident by the implicit acc loop directives in the compiler output)
than the parallel loop because kernels allowed it to do so. More details on how to interpret this
decomposition feedback and how to change the behavior will be discussed in a later chapter.

At this point we have expressed all of the parallelism in the example code and the compiler has
parallelized it for an accelerator device. Analyzing the performance of this code may yield surprising
results on some accelerators, however. The results below demonstrate the performance of this code
on 1 - 16 CPU threads on an AMD Threadripper CPU and an NVIDIA Volta V100 GPU using
both implementations above. The y axis for figure 3.1 is execution time in seconds, so smaller is
better. For the two OpenACC versions, the bar is divided by time transferring data between the
host and device and time executing on the device.

The performance of this improves as more CPU threads are added to the calculation, however,
since the code is memory-bound the performance benefit of adding additional threads quickly di-
minishes. Also, the OpenACC versions perform poorly compared to the CPU baseline. The both
the OpenACC kernels and parallel loop versions perform worse than the serial CPU baseline.
It is also clear that the parallel loop version spends significantly more time in data transfer
than the kernels version. Further performance analysis is necessary to identify the source of this
slowdown. This analysis has already been applied to the graph above, which breaks down time

CHAPTER 3. PARALLELIZE LOOPS 27

Figure 3.1: Jacobi Iteration Performance - Step 1

spent computing the solution and copying data to and from the accelerator.

A variety of tools are available for performing this analysis, but since this case study was compiled for
an NVIDIA GPU, NVIDIA Nsight Systems will be used to understand the application peformance.
The screenshot in figure 3.2 shows Nsight Systems profile for 2 iterations of the convergence loop
in the parallel loop version of the code.

Since the test machine has two distinct memory spaces, one for the CPU and one for the GPU,
it’s necessary to copy data between the two memories. In this screenshot, the tool represents data
transfers using the tan colored boxes in the two MemCpy rows and the computation time in the
green and purple boxes in the rows below Compute. It should be obvious from the timeline displayed
that significantly more time is being spent copying data to and from the accelerator before and
after each compute kernel than actually computing on the device. In fact, the majority of the time
is spent either in memory copies or in overhead incurred by the runtime scheduling memory copeis.
In the next chapter we will fix this inefficiency, but first, why does the kernels version outperform
the parallel loop version?

When an OpenACC compiler parallelizes a region of code it must analyze the data that is needed
within that region and copy it to and from the accelerator if necessary. This analysis is done at a
per-region level and will typically default to copying arrays used on the accelerator both to and from
the device at the beginning and end of the region respectively. Since the parallel loop version
has two compute regions, as opposed to only one in the kernels version, data is copied back and
forth between the two regions. As a result, the copy and overhead times are roughly twice that of
the kernels region, although the compute kernel times are roughly the same.

CHAPTER 3. PARALLELIZE LOOPS 28

Figure 3.2: Screenshot of NVIDIA Nsight Systems Profile on 2 steps of the Jacobi Iteration showing
a high amount of data transfer compared to computation.

Chapter 4

Optimize Data Locality

At the end of the previous chapter we saw that although we’ve moved the most compute intensive
parts of the application to the accelerator, sometimes the process of copying data from the host to
the accelerator and back will be more costly than the computation itself. This is because it’s difficult
for a compiler to determine when (or if) the data will be needed in the future, so it must be cautious
and ensure that the data will be copied in case it’s needed. To improve upon this, we’ll exploit
the data locality of the application. Data locality means that data used in device or host memory
should remain local to that memory for as long as it’s needed. This idea is sometimes referred to
as optimizing data reuse or optimizing away unnecessary data copies between the host and device
memories. However you think of it, providing the compiler with the information necessary to only
relocate data when it needs to do so is frequently the key to success with OpenACC.

After expressing the parallelism of a program’s important regions it’s frequently necessary to provide
the compiler with additional information about the locality of the data used by the parallel regions.
As noted in the previous section, a compiler will take a cautious approach to data movement,
always copying data that may be required, so that the program will still produce correct results.
A programmer will have knowledge of what data is really needed and when it will be needed. The
programmer will also have knowledge of how data may be shared between two functions, something
that is difficult for a compiler to determine. Profiling tools can help the programmer identify when
excess data movement occurs, as will be shown in the case study at the end of this chapter.

The next step in the acceleration process is to provide the compiler with additional information
about data locality to maximize reuse of data on the device and minimize data transfers. It is after
this step that most applications will observe the benefit of OpenACC acceleration. This step will
be primarily beneficial on machines where the host and device have separate memories.

4.1 Data Regions
The data construct facilitates the sharing of data between multiple parallel regions. A data region
may be added around one or more parallel regions in the same function or may be placed at a higher

29

CHAPTER 4. OPTIMIZE DATA LOCALITY 30

level in the program call tree to enable data to be shared between regions in multiple functions.
The data construct is a structured construct, meaning that it must begin and end in the same
scope (such as the same function or subroutine). A later section will discuss how to handle cases
where a structured construct is not useful. A data region may be added to the earlier parallel
loop example to enable data to be shared between both loop nests as follows.

1 #pragma acc data
2 {
3 #pragma acc parallel loop
4 for (i=0; i<N; i++)
5 {
6 y[i] = 0.0f;
7 x[i] = (float)(i+1);
8 }
9

10 #pragma acc parallel loop
11 for (i=0; i<N; i++)
12 {
13 y[i] = 2.0f * x[i] + y[i];
14 }
15 }

1 !$acc data
2 !$acc parallel loop
3 do i=1,N
4 y(i) = 0
5 x(i) = i
6 enddo
7

8 !$acc parallel loop
9 do i=1,N

10 y(i) = 2.0 * x(i) + y(i)
11 enddo
12 !$acc end data

The data region in the above examples enables the x and y arrays to be reused between the two
parallel regions. This will remove any data copies that happen between the two regions, but it
still does not guarantee optimal data movement. In order to provide the information necessary to
perform optimal data movement, the programmer can add data clauses to the data region.

Note: An implicit data region is created by each parallel and kernels region.

4.2 Data Clauses
Data clauses give the programmer additional control over how and when data is created on and
copied to or from the device. These clauses may be added to any data, parallel, or kernels

CHAPTER 4. OPTIMIZE DATA LOCALITY 31

construct to inform the compiler of the data needs of that region of code. The data directives,
along with a brief description of their meanings, follow.

• copy - Create space for the listed variables on the device, initialize the variable by copying
data to the device at the beginning of the region, copy the results back to the host at the end
of the region, and finally release the space on the device when done.

• copyin - Create space for the listed variables on the device, initialize the variable by copying
data to the device at the beginning of the region, and release the space on the device when
done without copying the data back the the host.

• copyout - Create space for the listed variables on the device but do not initialize them. At
the end of the region, copy the results back to the host and release the space on the device.

• create - Create space for the listed variables and release it at the end of the region, but do
not copy to or from the device.

• present - The listed variables are already present on the device, so no further action needs
to be taken. This is most frequently used when a data region exists in a higher-level routine.

• deviceptr - The listed variables use device memory that has been managed outside of Ope-
nACC, therefore the variables should be used on the device without any address translation.
This clause is generally used when OpenACC is mixed with another programming model, as
will be discussed in the interoperability chapter.

In the case of the copy, copyin, copyout and create clause, their intended functionality will not
occur if the variable referenced already exists within device memory. It may be helpful to think of
these clauses as having an implicit present clause attached to them, where if the variable is found
to be present on the device, the other clause will be ignored. An important example of this behavior
is that using the copy clause when the variable already exists within device memory will not copy
any data between the host and device. There is a different directive for copying data between the
host and device from within a data region, and will be discussed shortly.

4.2.1 Shaping Arrays
Sometimes a compiler will need some extra help determining the size and shape of arrays used in
parallel or data regions. For the most part, Fortran programmers can rely on the self-describing
nature of Fortran arrays, but C/C++ programmers will frequently need to give additional infor-
mation to the compiler so that it will know how large an array to allocate on the device and how
much data needs to be copied. To give this information the programmer adds a shape specification
to the data clauses.

In C/C++ the shape of an array is described as x[start:count] where x is the variable name,
start is the first element to be copied and count is the number of elements to copy. If the first
element is 0, then it may be left off, taking the form of x[:count].

In Fortran the shape of an array is described as x(start:end) where x is the
variable name, start is the first element to be copied and end is the last element to be copied. If
start is the beginning of the array or end is the end of the array, they may be left off, taking the
form of x(:end), x(start:) or x(:).

Array shaping is frequently necessary in C/C++ codes when the OpenACC appears inside of
function calls or the arrays are dynamically allocated, since the shape of the array will not be

CHAPTER 4. OPTIMIZE DATA LOCALITY 32

known at compile time. Shaping is also useful when only a part of the array needs to be stored on
the device.

As an example of array shaping, the code below modifies the previous example by adding shape
information to each of the arrays.

1 #pragma acc data create(x[0:N]) copyout(y[0:N])
2 {
3 #pragma acc parallel loop
4 for (i=0; i<N; i++)
5 {
6 y[i] = 0.0f;
7 x[i] = (float)(i+1);
8 }
9

10 #pragma acc parallel loop
11 for (i=0; i<N; i++)
12 {
13 y[i] = 2.0f * x[i] + y[i];
14 }
15 }

1 !$acc data create(x(1:N)) copyout(y(1:N))
2 !$acc parallel loop
3 do i=1,N
4 y(i) = 0
5 x(i) = i
6 enddo
7

8 !$acc parallel loop
9 do i=1,N

10 y(i) = 2.0 * x(i) + y(i)
11 enddo
12 !$acc end data

In this example, the programmer knows that both x and y will be populated with data on the device,
so neither need to have data copied from the host. However, since y is used within a copyout clause,
the data contained within y will be copied from the device to the host when the end of the data
region is reached. This is useful in a situation where you need the results stored in y later in host
code.

4.3 Unstructured Data Lifetimes
While structured data regions are sufficient for optimizing the data locality in many program, they
are not sufficient for some cases, particularly those using Object Oriented coding practices, or when

CHAPTER 4. OPTIMIZE DATA LOCALITY 33

wanting to manage device data across different code files. For example, in a C++ class data is
frequently allocated in a class constructor, deallocated in the destructor, and cannot be accessed
outside of the class. This makes using structured data regions impossible because there is no single,
structured scope where the construct can be placed. For these situations we can use unstructured
data lifetimes. The enter data and exit data directives can be used to identify precisely when
data should be allocated and deallocated on the device.

The enter data directive accepts the create and copyin data clauses and may be used to specify
when data should be created on the device.

The exit data directive accepts the copyout and a special delete data clause to specify when
data should be removed from the device.

If a variable appears in multiple enter data directives, it will only be deleted from the device if an
equivalent number of exit data directives are used. To ensure that the data is deleted, you can
add the finalize clause to the exit data directive. Additionally, if a variable appears in multiple
enter data directives, only the instance will do any host-to-device data movement. If you need
to move data between the host and device any time after data is allocated with enter data, you
should use the update directive, which is discussed later in this chapter.

4.3.1 C++ Class Data
C++ class data is one of the primary reasons that unstructured data lifetimes were added to
OpenACC. As described above, the encapsulation provided by classes makes it impossible to use a
structured data region to control the locality of the class data. Programmers may choose to use
the unstructured data lifetime directives or the OpenACC API to control data locality within a
C++ class. Use of the directives is preferable, since they will be safely ignored by non-OpenACC
compilers, but the API is also available for times when the directives are not expressive enough
to meet the needs of the programmer. The API will not be discussed in this guide, but is well-
documented on the OpenACC website.

The example below shows a simple C++ class that has a constructor, a destructor, and a copy
constructor. The data management of these routines has been handled using OpenACC directives.

1 template <class ctype> class Data
2 {
3 private:
4 /// Length of the data array
5 int len;
6 /// Data array
7 ctype *arr;
8

9 public:
10 /// Class constructor
11 Data(int length)
12 {
13 len = length;
14 arr = new ctype[len];
15 #pragma acc enter data copyin(this)

CHAPTER 4. OPTIMIZE DATA LOCALITY 34

16 #pragma acc enter data create(arr[0:len])
17 }
18

19 /// Copy constructor
20 Data(const Data<ctype> &d)
21 {
22 len = d.len;
23 arr = new ctype[len];
24 #pragma acc enter data copyin(this)
25 #pragma acc enter data create(arr[0:len])
26 #pragma acc parallel loop present(arr[0:len],d)
27 for(int i = 0; i < len; i++)
28 arr[i] = d.arr[i];
29 }
30

31 /// Class destructor
32 ~Data()
33 {
34 #pragma acc exit data delete(arr)
35 #pragma acc exit data delete(this)
36 delete arr;
37 len = 0;
38 }
39 };

Notice that an enter data directive is added to the class constructor to handle creating space for
the class data on the device. In addition to the data array itself the this pointer is copied to the
device. Copying the this pointer ensures that the scalar member len, which denotes the length
of the data array arr, and the pointer arr are available on the accelerator as well as the host. It
is important to place the enter data directive after the class data has been initialized. Similarly
exit data directives are added to the destructor to handle cleaning up the device memory. It
is important to place this directive before array members are freed, because once the host copies
are freed the underlying pointer may become invalid, making it impossible to then free the device
memory as well. For the same reason the this pointer should not be removed from the device until
after all other memory has been released.

The copy constructor is a special case that is worth looking at on its own. The copy constructor
will be responsible for allocating space on the device for the class that it is creating, but it will
also rely on data that is managed by the class being copied. Since OpenACC does not currently
provide a portable way to copy from one array to another, like a memcpy on the host, a loop is used
to copy each individual element to from one array to the other. Because we know that the Data
object passed in will also have its members on the device, we use a present clause on the parallel
loop to inform the compiler that no data movement is necessary.

The same technique used in the class constructor and destructor above can be used in other program-
ming languages as well. For instance, it’s common practice in Fortran codes to have a subroutine

CHAPTER 4. OPTIMIZE DATA LOCALITY 35

that allocate and initialize all arrays contained within a module. Such a routine is a natural place to
use an enter data region, as the allocation of both the host and device memory will appear within
the same routine in the code. Placing enter data and exit data directives in close proximity to
the usual allocation and deallocation of data within the code simplifies code maintenance.

4.4 Update Directive
Keeping data resident on the accelerator is often key to obtaining high performance, but sometimes
it’s necessary to copy data between host and device memories. The update directive provides a
way to explicitly update the values of host or device memory with the values of the other. This can
be thought of as synchronizing the contents of the two memories. The update directive accepts a
device clause for copying data from the host to the device and a self clause for updating from
the device to local memory, which is the host memory.

As an example of the update directive, below are two routines that may be added to the above
Data class to force a copy from host to device and device to host.

1 void update_host()
2 {
3 #pragma acc update self(arr[0:len])
4 ;
5 }
6 void update_device()
7 {
8 #pragma acc update device(arr[0:len])
9 ;

10 }

The update clauses accept an array shape, as already discussed in the data clauses section. Although
the above example copies the entire arr array to or from the device, a partial array may also be
provided to reduce the data transfer cost when only part of an array needs to be updated, such as
when exchanging boundary conditions.

Best Practice: As noted earlier in the document, variables in an OpenACC code should always be
thought of as a singular object, rather than a host copy and a device copy. Even when developing
on a machine with a unified host and device memory it is important to include an update directive
whenever accessing data from the host or device that was previously written to by the other, as this
ensures correctness on all devices. For systems with distinct memories, the update will synchronize
the values of the affected variable on the host and the device. On devices with a unified memory,
the update will be ignored, incurring no performance penalty. In the example below, omiting the
update on line 17 will produce different results on a unified and non-unified memory machine,
making the code non-portable.

1 for(int i=0; i<N; i++)
2 {
3 a[i] = 0;
4 b[i] = 0;
5 }

CHAPTER 4. OPTIMIZE DATA LOCALITY 36

6

7 #pragma acc enter data copyin(a[0:N])
8

9 #pragma acc parallel loop
10 {
11 for(int i=0; i<N; i++)
12 {
13 a[i] = 1;
14 }
15 }
16

17 #pragma acc update self(a[0:N])
18

19 for(int i=0; i<N; i++)
20 {
21 b[i] = a[i];
22 }
23

24 #pragma acc exit data

4.5 Best Practice: Offload Inefficient Operations to Main-
tain Data Locality

Due to the high cost of PCIe data transfers on systems with distinct host and device memories, it’s
often beneficial to move sections of the application to the accelerator device, even when the code
lacks sufficient parallelism to see direct benefit. The performance loss of running serial or code with
a low degree of parallelism on a parallel accelerator is often less than the cost of transferring arrays
back and forth between the two memories. A developer may use a parallel region with just 1 gang
as a way to offload a serial section of the code to the accelerator. For instance, in the code below
the first and last elements of the array are host elements that need to be set to zero. A parallel
region (without a loop) is used to perform the parts that are serial.

1 #pragma acc parallel loop
2 for(i=1; i<(N-1); i++)
3 {
4 // calculate internal values
5 A[i] = 1;
6 }
7 #pragma acc parallel
8 {
9 A[0] = 0;

10 A[N-1] = 0;
11 }

1 !$acc parallel loop

CHAPTER 4. OPTIMIZE DATA LOCALITY 37

2 do i=2,N-1
3 ! calculate internal values
4 A(i) = 1
5 end do
6 !$acc parallel
7 A(1) = 0;
8 A(N) = 0;
9 !$acc end parallel

In the above example, the second parallel region will generate and launch a small kernel for
setting the first and last elements. Small kernels generally do not run long enough to overcome
the cost of a kernel launch on some offloading devices, such as GPUs. It’s important that the data
transfer saved by employing this technique is large enough to overcome the high cost of a kernel
launch on some devices. Both the parallel loop and the second parallel region could be made
asynchronous (discussed in a later chapter) to reduce the cost of the second kernel launch.

Note: Because the kernels directive instructs the compiler to search for parallelism, there is no
similar technique for kernels, but the parallel approach above can be easily placed between kernels
regions.

4.6 Case Study - Optimize Data Locality
By the end of the last chapter we had moved the main computational loops of our example code
and, in doing so, introduced a significant amount of implicit data transfers. The performance profile
for our code shows that for each iteration the A and Anew arrays are being copied back and forth
between the host and device, four times for the parallel loop version and twice for the kernels
version. Given that the values for these arrays are not needed until after the answer has converged,
let’s add a data region around the convergence loop. Additionally, we’ll need to specify how the
arrays should be managed by this data region. Both the initial and final values for the A array are
required, so that array will require a copy data clause. The results in the Anew array, however, are
only used within this section of code, so a create clause will be used for it. The resulting code is
shown below.

Note: The changes required during this step are the same for both versions of the code, so only the
parallel loop version will be shown.

51 #pragma acc data copy(A[:n][:m]) create(Anew[:n][:m])
52 while (error > tol && iter < iter_max)
53 {
54 error = 0.0;
55

56 #pragma acc parallel loop reduction(max:error)
57 for(int j = 1; j < n-1; j++)
58 {
59 #pragma acc loop reduction(max:error)
60 for(int i = 1; i < m-1; i++)
61 {
62 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]

CHAPTER 4. OPTIMIZE DATA LOCALITY 38

63 + A[j-1][i] + A[j+1][i]);
64 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
65 }
66 }
67

68 #pragma acc parallel loop
69 for(int j = 1; j < n-1; j++)
70 {
71 #pragma acc loop
72 for(int i = 1; i < m-1; i++)
73 {
74 A[j][i] = Anew[j][i];
75 }
76 }
77

78 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
79

80 iter++;
81 }

51 !$acc data copy(A) create(Anew)
52 do while (error .gt. tol .and. iter .lt. iter_max)
53 error=0.0_fp_kind
54

55 !$acc parallel loop reduction(max:error)
56 do j=1,m-2
57 !$acc loop reduction(max:error)
58 do i=1,n-2
59 A(i,j) = 0.25_fp_kind * (Anew(i+1,j) + Anew(i-1,j) + &
60 Anew(i ,j-1) + Anew(i ,j+1))
61 error = max(error, abs(A(i,j) - Anew(i,j)))
62 end do
63 end do
64

65 !$acc parallel loop
66 do j=1,m-2
67 !$acc loop
68 do i=1,n-2
69 A(i,j) = Anew(i,j)
70 end do
71 end do
72

73 if(mod(iter,100).eq.0) write(*,'(i5,f10.6)'), iter, error
74 iter = iter + 1
75 end do

CHAPTER 4. OPTIMIZE DATA LOCALITY 39

76 !$acc end data

With this change, only the value computed for the maximum error, which is required by the con-
vergence loop, is copied from the device every iteration. The A and Anew arrays will remain local
to the device through the extent of this calculation. Using the NVIDIA NSight Systems again, we
see that each data transfers now only occur at the beginning and end of the data region and that
the time between each iterations is much less.

Figure 4.1: NVIDIA Nsight Systems showing a single iteration of the Jacobi solver after adding the
OpenACC data region.

Looking at the final performance of this code, we see that the time for the OpenACC code on a
GPU is now much faster than even the best threaded CPU code. Although only the parallel
loop version is shown in the performance graph, the kernels version performs equally well once
the data region has been added.

This ends the Jacobi Iteration case study. The simplicity of this implementation generally shows
very good speed-ups with OpenACC, often leaving little potential for further improvement. The
reader should feel encouraged, however, to revisit this code to see if further improvements are
possible on the device of interest to them.

CHAPTER 4. OPTIMIZE DATA LOCALITY 40

Figure 4.2: Runtime of Jacobi Iteration after adding OpenACC data region

Chapter 5

Optimize Loops

Once data locality has been expressed, developers may wish to further tune the code for the hard-
ware of interest. It’s important to understand that the more loops are tuned for a particular type of
hardware the less performance portable the code becomes to other architecures. If you’re generally
running on one particular accelerator, however, there may be some gains to be had by tuning how
the loops are mapped to the underlying hardware.

It’s tempting to begin tuning the loops before all of the data locality has been expressed in the
code. However, because data copies are frequently the limiter to application performance on the
current generation of accelerators the performance impact of tuning a particular loop may be too
difficult to measure until data locality has been optimized. For this reason the best practice is to
wait to optimize particular loops until after all of the data locality has been expressed in the code,
reducing the data transfer time to a minimum.

5.1 Efficient Loop Ordering
Before changing the way OpenACC maps loops onto the hardware of interest, the developer should
examine the important loops to ensure that data arrays are being accessed in an efficient manner.
Most modern hardware, be it a CPU with large caches and SIMD operations or a GPU with
coalesced memory accesses and SIMT operations, favor accessing arrays in a stride 1 manner. That
is to say that each loop iteration accesses consecutive memory addresses. This is achieved by
ensuring that the innermost loop of a loop nest iterates on the fastest varying array dimension
and each successive loop outward accesses the next fastest varying dimension. Arranging loops in
this increasing manner will frequently improve cache efficiency and improve vectorization on most
architectures.

5.2 OpenACC’s 3 Levels of Parallelism
OpenACC defines three levels of parallelism: gang, worker, and vector. Additionally execution may
be marked as being sequential (seq). Vector parallelism has the finest granularity, with an individual

41

CHAPTER 5. OPTIMIZE LOOPS 42

instruction operating on multiple pieces of data (much like SIMD parallelism on a modern CPU
or SIMT parallelism on a modern GPU). Vector operations are performed with a particular vector
length, indicating how many data elements may be operated on with the same instruction. Gang
parallelism is coarse-grained parallelism, where gangs work independently of each other and may
not synchronize. Worker parallelism sits between vector and gang levels. A gang consists of 1 or
more workers, each of which operates on a vector of some length. Within a gang the OpenACC
model exposes a cache memory, which can be used by all workers and vectors within the gang,
and it is legal to synchronize within a gang, although OpenACC does not expose synchronization
to the user. Using these three levels of parallelism, plus sequential, a programmer can map the
parallelism in the code to any device. OpenACC does not require the programmer to do this
mapping explicitly, however. If the programmer chooses not to explicitly map loops to the device
of interest the compiler will implicitly perform this mapping using what it knows about the target
device. This makes OpenACC highly portable, since the same code may be mapped to any number
of target devices. The more explicit mapping of parallelism the programmer adds to the code,
however, the less portable they make the code to other architectures.

Figure 5.1: OpenACC’s Three Levels of Parallelism

CHAPTER 5. OPTIMIZE LOOPS 43

5.2.1 Understanding OpenACC’s Three Levels of Parallelism
The terms gang, worker, and vector are foreign to most programmers, so the meanings of these
three levels of parallelism is often lost on new OpenACC programmers. Here’s a practical example
to help understand these three levels. Imagine that you need to paint your apartment. One person
with a roller and bucket of paint can be reasonably expected to paint a small apartment in a few
hours, maybe a day. For a small apartment, one painter is probably enough to complete the job,
but what about if I need to paint every apartment in a large, multi-story building. In that case,
it’s a pretty daunting task for one person to complete. There’s a few tricks this painter may try
in order to work more quickly. One option is to work faster, moving the roller across the wall as
fast that their arm can manage. There’s a practical limit, however, to how fast a human being
can actually use a paint roller. Another option is to use a larger paint roller. Perhaps our painter
started with a 4 inch paint roller, so if they upgraded to an 8 inch roller, they can cover twice as
much wall space in the same amount of time. Why stop there? Let’s buy a 32 inch paint roller
to cover even more wall per stroke! Now we’re going to start to run into different problems. For
instance, the painter’s arm probably can’t move as fast with a 32 inch roller as an 8 inch, so there’s
no guarantee that this is actually faster. Futhermore, wider rollers may result in awkward times
when the painter has to paint over a place they’ve already painted just so that the roller fits or the
wider roller may take more time to fill with paint. In either case, there’s a clear limit to how fast
a single painter can get the job done, so let’s invite more painters.

Now assume I have 4 painters working on the job. If given independent areas to paint, the job
should get gone nearly 4 times faster, but at the cost of getting 4 times as many rollers, paint pans,
and cans of paint. This is probably a small price to pay to get the job done nearly 4 times faster.
Large jobs require large crews, however, so let’s increase the number of painters again to 16. If each
painter can work independently then the time it takes to complete the painting will probably go
down by another 4 times, but now there may be some other inefficencies. For instance, it’s probably
cheaper to buy large buckets of the paint, rather than small paint cans, so we’ll store those buckets
in a central location where everyone can access them. Now if a painter needs to refill their pan,
they have to walk to get their paint, which takes away from the time they’re painting. Here’s an
idea, let’s organize our 16 painters into 4 groups of 4 painters, each of which has their own bucket
to share. Now so long as the painters within each crew is working on jobs near the rest of the
crew, the walk to get more paint is much shorter, but the crews are still free to work completely
independently of each other.

In this analogy, there’s 3 levels of parallelism, just like OpenACC. The finest-grained level may not
be completely obvious, but it’s the size of the roller. The width of the roller dictates how much wall
the painter can paint with each stroke. Wider rollers mean more wall per stroke, up to some limit.
Next there are parallel painters within each crew. These painters can work mostly independently
of each other, but occaisionally need to access their shared paint bucket or coordinate the next,
near-by piece of work to do. Finally, there’s our crews, which can work completely independently
of each other and might even work at different times (think, day shift and night shift), representing
the coarsest-grained parallelism in our hierarchy.

In OpenACC gangs are like the work crews, they are completely independent of each other and
may operate in parallel or even at different times. Workers are the individual painters, they can
operate on their own but may also share resources with other workers in the same gang. Finally
the paint roller represents the vector where the width of the roller represents the vector length.

CHAPTER 5. OPTIMIZE LOOPS 44

Workers perform the same instruction on multiple elements of data using vector operations. So,
gangs consist of at least one worker, which operates on a vector of data.

5.3 Mapping Parallelism to the Hardware
With some understanding of how the underlying accelerator hardware works it’s possible to inform
that compiler how it should map the loop iterations into parallelism on the hardware. It’s worth
restating that the more detail the compiler is given about how to map the parallelism onto a
particular accelerator the less performance portable the code will be. For instance, setting a fixed
vector length may enhance performance on one processor and hinder performance on another or
fixing the number of gangs used to execute on a loop may result in limiting the performance on
processors with a larger degree of parallelism.

As discussed earlier in this guide, the loop directive is intended to give the compiler additional
information about the next loop in the code. In addition to the clauses shown before, which were
intended to ensure correctness, the clauses below inform the compiler which level of parallelism
should be used to for the given loop.

• Gang clause - partition the loop across gangs
• Worker clause - partition the loop across workers
• Vector clause - vectorize the loop
• Seq clause - do not partition this loop, run it sequentially instead

These directives may also be combined on a particular loop. For example, a gang vector loop
would be partitioned across gangs, each of which with 1 worker implicitly, and then vectorized.
The OpenACC specification enforces that the outermost loop must be a gang loop, the innermost
parallel loop must be a vector loop, and a worker loop may appear in between. A sequential loop
may appear at any level.

1 #pragma acc parallel loop gang
2 for (i=0; i<N; i++)
3 #pragma acc loop vector
4 for (j=0; j<M; j++)
5 ;

–

1 !$acc parallel loop gang
2 do j=1,M
3 !$acc loop vector
4 do i=1,N

Informing the compiler where to partition the loops is just one part of optimizing the loops. The
programmer may additionally tell the compiler the specific number of gangs, workers, or the vector
length to use for the loops. This specific mapping is achieved slightly differently when using the
kernels directive or the parallel directive. In the case of the kernels directive, the gang, worker,
and vector clauses accept an integer parameter that will optionally inform the compiler how to
partition that level of parallelism. For example, vector(128) informs the compiler to use a vector
length of 128 for the loop.

CHAPTER 5. OPTIMIZE LOOPS 45

1 #pragma acc kernels
2 {
3 #pragma acc loop gang
4 for (i=0; i<N; i++)
5 #pragma acc loop vector(128)
6 for (j=0; j<M; j++)
7 ;
8 }

1 !$acc kernels
2 !$acc loop gang
3 do j=1,M
4 !$acc loop vector(128)
5 do i=1,N
6

7 !$acc end kernels

When using the parallel directive, the information is presented on the parallel directive
itself, rather than on each individual loop, in the form of the num_gangs, num_workers, and
vector_length clauses to the parallel directive.

1 #pragma acc parallel loop gang vector_length(128)
2 for (i=0; i<N; i++)
3 #pragma acc loop vector
4 for (j=0; j<M; j++)
5 ;

1 !$acc parallel loop gang vector_length(128)
2 do j=1,M
3 !$acc loop vector(128)
4 do i=1,N

Since these mappings will vary between different accelerator, the loop directive accepts a
device_type clause, which will inform the compiler that these clauses only apply to a particular
device type. Clauses after a device_type clause up until either the next device_type or the end
of the directive will apply only to the specified device. Clauses that appear before all device_type
clauses are considered default values, which will be used if they are not overridden by a later
clause. For example, the code below specifies that a vector length of 128 should be used on
devices of type acc_device_nvidia or a vector length of 256 should be used on devices of type
acc_device_radeon. The compiler will choose a default vector length for all other device types.

1 #pragma acc parallel loop gang vector \
2 device_type(acc_device_nvidia) vector_length(128) \
3 device_type(acc_device_radeon) vector_length(256)
4 for (i=0; i<N; i++)
5 {

CHAPTER 5. OPTIMIZE LOOPS 46

6 y[i] = 2.0f * x[i] + y[i];
7 }

5.4 Collapse Clause
When a code contains tightly nested loops it is frequently beneficial to collapse these loops into
a single loop. Collapsing loops means that two loops of trip counts N and M respectively will
be automatically turned into a single loop with a trip count of N times M. By collapsing two
or more parallel loops into a single loop the compiler has an increased amount of parallelism to
use when mapping the code to the device. On highly parallel architectures, such as GPUs, this
can result in improved performance. Additionally, if a loop lacked sufficient parallelism for the
hardware by itself, collapsing it with another loop multiplies the available parallelism. This is
especially beneficial on vector loops, since some hardware types will require longer vector lengths to
achieve high performance than others. Collapsing gang loops may also be beneficial if it allows for
generating a greater number of gangs for highly-parallel processors. The code below demonstrates
how to use the collapse directive.

1 #pragma acc parallel loop gang collapse(2)
2 for(ie = 0; ie < nelemd; ie++) {
3 for(q = 0; q < qsize; q++) {
4 #pragma acc loop vector collapse(3)
5 for(k = 0; k < nlev; k++) {
6 for(j = 0; j < np; j++) {
7 for(i = 0; i < np; i++) {
8 qtmp = elem[ie].state.qdp[i][j][k][q][n0_qdp];
9 vs1tmp = vstar[i][j][k][0][ie] * elem[ie].metdet[i][j] * qtmp;

10 vs2tmp = vstar[i][j][k][1][ie] * elem[ie].metdet[i]]j] * qtmp;
11 gv[i][j][k][0] = (dinv[i][j][0][0][ie] * vs1tmp + dinv[i][j][0][1][ie] * vs2tmp);
12 gv[i][j][k][1] = (dinv[i][j][1][0][ie] * vs1tmp + dinv[i][j][1][1][ie] * vs2tmp);
13 }
14 }
15 }
16 }
17 }

1 ! $acc parallel loop gang collapse (2)
2 do ie = 1 , nelemd
3 do q = 1 , qsize
4 ! $acc loop vector collapse (3)
5 do k = 1 , nlev
6 do j = 1 , np
7 do i = 1 , np
8 qtmp = elem (ie)% state % qdp (i,j,k,q, n0_qdp)
9 vs1tmp = vstar (i,j,k ,1, ie) * elem (ie)% metdet (i,j) * qtmp

10 vs2tmp = vstar (i,j,k ,2, ie) * elem (ie)% metdet (i,j) * qtmp

CHAPTER 5. OPTIMIZE LOOPS 47

11 gv(i,j,k ,1) = (dinv (i,j ,1 ,1 , ie)* vs1tmp + dinv (i,j ,1 ,2, ie)* vs2tmp)
12 gv(i,j,k ,2) = (dinv (i,j ,2 ,1 , ie)* vs1tmp + dinv (i,j ,2 ,2, ie)* vs2tmp)
13 enddo
14 enddo
15 enddo
16 enddo
17 enddo

The above code is an excerpt from a real application where collapsing loops extended the parallelism
available to be exploited. On line 1, the two outermost loops are collapsed together to make it
possible to generate gangs across the iterations of both loops, thus making the possible number of
gangs nelemd x qsize rather than just nelemd. The collapse at line 4 collapses together 3 small
loops to increase the possible vector length, as none of the loops iterate for enough trips to create a
reasonable vector length on the target accelerator. How much this optimization will speed-up the
code will vary according to the application and the target accelerator, but it’s not uncommon to
see large speed-ups by using collapse on loop nests.

5.5 Routine Parallelism
A previous chapter introduced the routine directive for calling functions and subroutines from
OpenACC parallel regions. In that chapter it was assumed that the routine would be called from
each loop iteration, therefore requiring a routine seq directive. In some cases, the routine itself
may contain parallelism that must be mapped to the device. In these cases, the routine directive
may have a gang, worker, or vector clause instead of seq to inform the compiler that the routine
will contain the specified level of parallelism. This can be thought of as reserving a particular level
of parallelism for the loops in that routine. This is so that when the compiler then encounters the
call site of the affected routine, it will then know how it can parallelize the code to use the routine.
It’s important to note that if an acc routine calls another routine, that routine must also have
an acc routine directive. At this time the OpenACC specification does not allow for specifying
multiple possible levels of parallelism on a single routine.

5.6 Case Study - Optimize Loops
This case study will focus on a different algorithm than the previous chapters. When a compiler has
sufficient information about loops to make informed decisions, it’s frequently difficult to improve
the performance of a given parallel loop by more than a few percent. In some cases, the code
lacks the information necessary for the compiler to make informed optimization decisions. In these
cases, it’s often possible for a developer to optimize the parallel loops significantly by informing the
compiler how to decompose and distribute the loops to the hardware.

The code used in this section implements a sparse, matrix-vector product (SpMV) operation. This
means that a matrix and a vector will be multiplied together, but the matrix has very few elements
that are not zero (it is sparse), meaning that calculating these values is unnecessary. The matrix
is stored in a Compress Sparse Row (CSR) format. In CSR the sparse array, which may contain
a significant number of cells whose value is zero, thus wasting a significant amount of memory, is
stored using three, smaller arrays: one containing the non-zero values from the matrix, a second

CHAPTER 5. OPTIMIZE LOOPS 48

that describes where in a given row these non-zero elements would reside, and a third describing
the columns in which the data would reside. The code for this exercise is below.

1 #pragma acc parallel loop
2 for(int i=0;i<num_rows;i++) {
3 double sum=0;
4 int row_start=row_offsets[i];
5 int row_end=row_offsets[i+1];
6 #pragma acc loop reduction(+:sum)
7 for(int j=row_start;j<row_end;j++) {
8 unsigned int Acol=cols[j];
9 double Acoef=Acoefs[j];

10 double xcoef=xcoefs[Acol];
11 sum+=Acoef*xcoef;
12 }
13 ycoefs[i]=sum;
14 }

1 !$acc parallel loop
2 do i=1,a%num_rows
3 tmpsum = 0.0d0
4 row_start = arow_offsets(i)
5 row_end = arow_offsets(i+1)-1
6 !$acc loop reduction(+:tmpsum)
7 do j=row_start,row_end
8 acol = acols(j)
9 acoef = acoefs(j)

10 xcoef = x(acol)
11 tmpsum = tmpsum + acoef*xcoef
12 enddo
13 y(i) = tmpsum
14 enddo

One important thing to note about this code is that the compiler is unable to determine how many
non-zeros each row will contain and use that information in order to schedule the loops. The
developer knows, however, that the number of non-zero elements per row is very small and this
detail will be key to achieving high performance.

NOTE: Because this case study features optimization techniques, it is necessary to
perform optimizations that may be beneficial on one hardware, but not on others. This
case study was performed using the NVHPC 20.11 compiler on an NVIDIA Volta
V100 GPU. These same techniques may apply on other architectures, particularly
those similar to NVIDIA GPUs, but it will be necessary to make certain optimization
decisions based on the particular accelerator in use.
In examining the compiler feedback from the code shown below, I know that the compiler has chosen
to use a vector length of 256 on the innermost loop. I could have also obtained this information

CHAPTER 5. OPTIMIZE LOOPS 49

from a runtime profile of the application.

matvec(const matrix &, const vector &, const vector &):
3, Generating Tesla code

4, #pragma acc loop gang /* blockIdx.x */
9, #pragma acc loop vector(128) /* threadIdx.x */

Generating reduction(+:sum)
3, Generating present(ycoefs[:],xcoefs[:],row_offsets[:],Acoefs[:],cols[:])
9, Loop is parallelizable

Based on my knowledge of the matrix, I know that this is significantly larger than the typical
number of non-zeros per row, so many of the vector lanes on the accelerator will be wasted because
there’s not sufficient work for them. The first thing to try in order to improve performance is to
adjust the vector length used on the innermost loop. I happen to know that the compiler I’m using
will restrict me to using multiples of the warp size (the minimum SIMT execution size on NVIDIA
GPUs) of this processor, which is 32. This detail will vary according to the accelerator of choice.
Below is the modified code using a vector length of 32.

1 #pragma acc parallel loop vector_length(32)
2 for(int i=0;i<num_rows;i++) {
3 double sum=0;
4 int row_start=row_offsets[i];
5 int row_end=row_offsets[i+1];
6 #pragma acc loop vector reduction(+:sum)
7 for(int j=row_start;j<row_end;j++) {
8 unsigned int Acol=cols[j];
9 double Acoef=Acoefs[j];

10 double xcoef=xcoefs[Acol];
11 sum+=Acoef*xcoef;
12 }
13 ycoefs[i]=sum;
14 }

1 !$acc parallel loop vector_length(32)
2 do i=1,a%num_rows
3 tmpsum = 0.0d0
4 row_start = arow_offsets(i)
5 row_end = arow_offsets(i+1)-1
6 !$acc loop vector reduction(+:tmpsum)
7 do j=row_start,row_end
8 acol = acols(j)
9 acoef = acoefs(j)

10 xcoef = x(acol)
11 tmpsum = tmpsum + acoef*xcoef
12 enddo
13 y(i) = tmpsum
14 enddo

CHAPTER 5. OPTIMIZE LOOPS 50

Notice that I have now explicitly informed the compiler that the innermost loop should be a vector
loop, to ensure that the compiler will map the parallelism exactly how I wish. I can try different
vector lengths to find the optimal value for my accelerator by modifying the vector_length clause.
Below is a graph showing the relative speed-up of varying the vector length compared to the
compiler-selected value.

Figure 5.2: Relative speed-up from varying vector_length from the default value of 128

Notice that the best performance comes from the smallest vector length. Again, this is because the
number of non-zeros per row is very small, so a small vector length results in fewer wasted compute
resources. On the particular chip I’m using, the smallest possible vector length, 32, achieves the
best possible performance. On this particular accelerator, I also know that the hardware will not
perform efficiently at this vector length unless we can identify further parallelism another way. In
this case, we can use the worker level of parallelism to fill each gang with more of these short vectors.
Below is the modified code.

1 #pragma acc parallel loop gang worker num_workers(4) vector_length(32)
2 for(int i=0;i<num_rows;i++) {
3 double sum=0;
4 int row_start=row_offsets[i];
5 int row_end=row_offsets[i+1];
6 #pragma acc loop vector
7 for(int j=row_start;j<row_end;j++) {
8 unsigned int Acol=cols[j];
9 double Acoef=Acoefs[j];

10 double xcoef=xcoefs[Acol];
11 sum+=Acoef*xcoef;
12 }

CHAPTER 5. OPTIMIZE LOOPS 51

13 ycoefs[i]=sum;
14 }

1 !$acc parallel loop gang worker num_workers(32) vector_length(32)
2 do i=1,a%num_rows
3 tmpsum = 0.0d0
4 row_start = arow_offsets(i)
5 row_end = arow_offsets(i+1)-1
6 !$acc loop vector reduction(+:tmpsum)
7 do j=row_start,row_end
8 acol = acols(j)
9 acoef = acoefs(j)

10 xcoef = x(acol)
11 tmpsum = tmpsum + acoef*xcoef
12 enddo
13 y(i) = tmpsum
14 enddo

In this version of the code, I’ve explicitly mapped the outermost loop to both gang and worker
parallelism and will vary the number of workers using the num_workers clause. The results follow.

Figure 5.3: Speed-up from varying number of workers for a vector length of 32.

On this particular hardware, the best performance comes from a vector length of 32 and 4 workers,
which is similar to the simpler loop with a default vector length of 128. In this case, we observed
a 2.5X speed-up from decreasing the vector length and another 1.26X speed-up from varying the

CHAPTER 5. OPTIMIZE LOOPS 52

number of workers within each gang, resulting in an overall 3.15X performance improvement from
the untuned OpenACC code.

Best Practice: Although not shown in order to save space, it’s generally best to use the
device_type clause whenever specifying the sorts of optimizations demonstrated in this section,
because these clauses will likely differ from accelerator to accelerator. By using the device_type
clause it’s possible to provide this information only on accelerators where the optimizations
apply and allow the compiler to make its own decisions on other architectures. The OpenACC
specification specifically suggests nvidia, radeon, and host as three common device type strings.

Chapter 6

OpenACC Interoperability

The authors of OpenACC recognized that it may sometimes be beneficial to mix OpenACC code
with code accelerated using other parallel programming languages, such as CUDA or OpenCL, or
accelerated math libraries. This interoperability means that a developer can choose the program-
ming paradigm that makes the most sense in the particular situation and leverage code and libraries
that may already be available. Developers don’t need to decide at the begining of a project between
OpenACC or something else, they can choose to use OpenACC and other technologies.

NOTE: The examples used in this chapter can be found online at https://github.com/jefflarkin/openacc-
interoperability

6.1 The Host Data Region
The first method for interoperating between OpenACC and some other code is by managing all
data using OpenACC, but calling into a function that requires device data. For the purpose of
example the cublasSaxpy routine will be used in place of writing a saxpy routine, as was shown in
an earlier chapter. This routine is freely provided by NVIDIA for their hardware in the CUBLAS
library. Most other vendors provide their own, tuned library.

The host_data directive gives the programmer a way to expose the device address of a given array
to the host for passing into a function. This data must have already been moved to the device
previously. The name of this construct often confuses new users, but it can be thought of as a
reverse data region, since it takes data on the device and exposes it to the host. The host_data
region accepts only the use_device clause, which specifies which device variables should be exposed
to the host. In the example below, the arrays x and y are placed on the device via a data region and
then initialized in an OpenACC loop. These arrays are then passed to the cublasSaxpy function
as device pointers using the host_data region.

1 #pragma acc data create(x[0:n]) copyout(y[0:n])
2 {
3 #pragma acc kernels
4 {

53

CHAPTER 6. OPENACC INTEROPERABILITY 54

5 for(i = 0; i < n; i++)
6 {
7 x[i] = 1.0f;
8 y[i] = 0.0f;
9 }

10 }
11

12 #pragma acc host_data use_device(x,y)
13 {
14 cublasSaxpy(n, 2.0, x, 1, y, 1);
15 }
16 }

1 !$acc data create(x,y)
2 !$acc kernels
3 X(:) = 1.0
4 Y(:) = 0.0
5 !$acc end kernels
6

7 !$acc host_data use_device(x,y)
8 call cublassaxpy(N, 2.0, x, 1, y, 1)
9 !$acc end host_data

10 !$acc update self(y)
11 !$acc end data

The call to cublasSaxpy can be changed to any function that expects device pointers as parameters.

6.1.1 Asynchronous Device Libraries
NOTE: When using the host_data region to pass data into asynchronous libraries calls or kernels
care must be taken regarding the lifetime of data on the device. A common example of this pattern
is passing device data to a device-aware MPI library, as illustrated below.

A common use of the host_data region is to pass device pointers into a device-aware MPI im-
plementation. Such MPI libraries may have specific optimizations when passed device data, such
as Remote Direct Memory Access (RDMA) or pipelining. For synchronous MPI routines, the
host_data directive can be used just as shown above, but care must be taken when mixing this
directive with asynchronous MPI functions (e.g. MPI_ISend, MPI_IRecv, etc.). Take for example
the following code:

1 #pragma acc data copyin(buf)
2 { // Data in `buf` put on device
3 #pragma acc host_data use_device(buf)
4 { // Device pointer to `buf` passed to MPI
5 MPI_Isend(buf, ...);
6 // MPI_Isend immediatly returns to main thread
7 }

CHAPTER 6. OPENACC INTEROPERABILITY 55

8 // MPI_Isend may not have completed sending data
9 } // Data in `buf` potentially removed from device

1 !$acc data copyin(buf)
2 ! Data in `buf` put on device
3 !$acc host_data use_device(buf)
4 ! Device pointer to `buf` passed to MPI
5 call MPI_Isend(buf, ...);
6 ! MPI_Isend immediatly returns to main thread
7 !$acc end host_data
8 ! MPI_Isend may not have completed sending data
9 !$acc end data

10 ! Data in `buf` potentially removed from device

In the above example the device pointer to the data in buf is provided to MPI_ISend, which will
immediately return control to the thread of execution, even if the data has not yet been sent. As
such, when the end of the data region is reached, the device copy of buf may be deallocated before
the MPI library has finished sending the data. This could result in an application crash or the
application proceeding, but sending garbage values. To fix this issue, developers must issue an
MPI_Wait before the end of the data region to ensure that it is safe to change or deallocate buf.
The examples below demonstrate how to correctly use host_data with asynchronous MPI calls.

1 #pragma acc data copyin(buf)
2 { // Data in `buf` put on device
3 #pragma acc host_data use_device(buf)
4 { // Device pointer to `buf` passed to MPI
5 MPI_Isend(buf, ..., request);
6 // MPI_Isend immediatly returns to main thread
7 }
8 // Wait to ensure `buf` is safe to deallocate
9 MPI_Wait(request, ...);

10 } // Data in `buf` potentially removed from device

1 !$acc data copyin(buf)
2 ! Data in `buf` put on device
3 !$acc host_data use_device(buf)
4 ! Device pointer to `buf` passed to MPI
5 call MPI_Isend(buf, ...)
6 ! MPI_Isend immediatly returns to main thread
7 !$acc end host_data
8 ! Wait to ensure `buf` is safe to deallocate
9 call MPI_Wait(request, ...)

10 !$acc end data
11 ! Data in `buf` potentially removed from device

CHAPTER 6. OPENACC INTEROPERABILITY 56

6.2 Using Device Pointers
Because there is already a large ecosystem of accelerated applications using languages such as
CUDA or OpenCL, it may also be necessary to add an OpenACC region to an existing accelerated
application. In this case the arrays may be managed outside of OpenACC and already exist on the
device. For this case OpenACC provides the deviceptr data clause, which may be used where any
data clause may appear. This clause informs the compiler that the variables specified are already
device on the device and no other action needs to be taken on them. The example below uses the
acc_malloc function, which allocates device memory and returns a pointer, to allocate an array
only on the device and then uses that array within an OpenACC region.

1 void saxpy(int n, float a, float * restrict x, float * restrict y)
2 {
3 #pragma acc kernels deviceptr(x,y)
4 {
5 for(int i=0; i<n; i++)
6 {
7 y[i] += a*x[i];
8 }
9 }

10 }
11 void set(int n, float val, float * restrict arr)
12 {
13 #pragma acc kernels deviceptr(arr)
14 {
15 for(int i=0; i<n; i++)
16 {
17 arr[i] = val;
18 }
19 }
20 }
21 int main(int argc, char **argv)
22 {
23 float *x, *y, tmp;
24 int n = 1<<20;
25

26 x = acc_malloc((size_t)n*sizeof(float));
27 y = acc_malloc((size_t)n*sizeof(float));
28

29 set(n,1.0f,x);
30 set(n,0.0f,y);
31

32 saxpy(n, 2.0, x, y);
33 acc_memcpy_from_device(&tmp,y,(size_t)sizeof(float));
34 printf("%f\n",tmp);
35 acc_free(x);
36 acc_free(y);

CHAPTER 6. OPENACC INTEROPERABILITY 57

37 return 0;
38 }

1 module saxpy_mod
2 contains
3 subroutine saxpy(n, a, x, y)
4 integer :: n
5 real :: a, x(:), y(:)
6 !$acc parallel deviceptr(x,y)
7 y(:) = y(:) + a * x(:)
8 !$acc end parallel
9 end subroutine

10 end module

Notice that in the set and saxpy routines, where the OpenACC compute regions are found,
each compute region is informed that the pointers being passed in are already device point-
ers by using the deviceptr clause. This example also uses the acc_malloc, acc_free, and
acc_memcpy_from_device routines for memory management. Although the above example uses
acc_malloc and acc_memcpy_from_device, which are provided by the OpenACC specification for
portable memory management, a device-specific API may have also been used, such as cudaMalloc
and cudaMemcpy.

6.3 Obtaining Device and Host Pointer Addresses
OpenACC provides the acc_deviceptr and acc_hostptr function calls for obtaining the device
and host addresses of pointers based on the host and device addresses, respectively. These routines
require that the addresses actually have corresponding addresses, otherwise they will return NULL.

1 double * x = (double*) malloc(N*sizeof(double));
2 #pragma acc data create(x[:N])
3 {
4 double * device_x = (double*) acc_deviceptr(x);
5 foo(device_x);
6 }

6.4 Additional Vendor-Specific Interoperability Features
The OpenACC specification suggests several features that are specific to individual vendors. While
implementations are not required to provide the functionality, it’s useful to know that these features
exist in some implementations. The purpose of these features are to provide interoperability with
the native runtime of each platform. Developers should refer to the OpenACC specification and
their compiler’s documentation for a full list of supported features.

CHAPTER 6. OPENACC INTEROPERABILITY 58

6.4.1 Asynchronous Queues and CUDA Streams (NVIDIA)
As demonstrated in the next chapter, asynchronous work queues are frequently an important way
to deal with the cost of PCIe data transfers on devices with distinct host and device memory. In
the NVIDIA CUDA programming model asynchronous operations are programmed using CUDA
streams. Since developers may need to interoperate between CUDA streams and OpenACC queues,
the specification suggests two routines for mapping CUDA streams and OpenACC asynchronous
queues.

The acc_get_cuda_stream function accepts an integer async id and returns a CUDA stream object
(as a void*) for use as a CUDA stream.

The acc_set_cuda_stream function accepts an integer async handle and a CUDA stream object
(as a void*) and maps the CUDA stream used by the async handle to the stream provided.

With these two functions it’s possible to place both OpenACC operations and CUDA operations
into the same underlying CUDA stream so that they will execute in the appropriate order.

6.4.2 CUDA Managed Memory (NVIDIA)
NVIDIA added support for CUDA Managed Memory, which provides a single pointer to memory
regardless of whether it is accessed from the host or device, in CUDA 6.0. In many ways managed
memory is similar to OpenACC memory management, in that only a single reference to the memory
is necessary and the runtime will handle the complexities of data movement. The advantage that
managed memory sometimes has it that it is better able to handle complex data structures, such as
C++ classes or structures containing pointers, since pointer references are valid on both the host
and the device. More information about CUDA Managed Memory can be obtained from NVIDIA.
To use managed memory within an OpenACC program the developer can simply declare pointers
to managed memory as device pointers using the deviceptr clause so that the OpenACC runtime
will not attempt to create a separate device allocation for the pointers.

It is also worth noting that the NVIDIA HPC compiler (formerly PGI compiler) has direct support
for using CUDA Managed Memory by way of a compiler option. See the compiler documentation
for more details.

6.4.3 Using CUDA Device Kernels (NVIDIA)
The host_data directive is useful for passing device memory to host-callable CUDA kernels. In
cases where it’s necessary to call a device kernel (CUDA __device__ function) from within an
OpenACC parallel region it’s possible to use the acc routine directive to inform the compiler that
the function being called is available on the device. The function declaration must be decorated
with the acc routine directive and the level of parallelism at which the function may be called. In
the example below the function f1dev is a sequential function that will be called from each CUDA
thread, so it is declared acc routine seq.

1 // Function implementation
2 extern "C" __device__ void
3 f1dev(float* a, float* b, int i){
4 a[i] = 2.0 * b[i];

CHAPTER 6. OPENACC INTEROPERABILITY 59

5 }
6

7 // Function declaration
8 #pragma acc routine seq
9 extern "C" void f1dev(float*, float* int);

10

11 // Function call-site
12 #pragma acc parallel loop present(a[0:n], b[0:n])
13 for(int i = 0; i < n; ++i)
14 {
15 // f1dev is a __device__ function build with CUDA
16 f1dev(a, b, i);
17 }

Chapter 7

Advanced OpenACC Features

This chapter will discuss OpenACC features and techniques that do not fit neatly into other sections
of the guide. These techniques are considered advanced, so readers should feel comfortable with
the features discussed in previous chapters before proceeding to this chapter.

7.1 Asynchronous Operation
In a previous chapter we discussed the necessity to optimize for data locality to reduce the cost
of data transfers on systems where the host and accelerator have physically distinct memories.
There will always be some amount of data transfers that simply cannot be optimized away and still
produce correct results. After minimizing data transfers, it may be possible to further reduce the
performance penalty associated with those transfers by overlapping the copies with other operations
on the host, device, or both. This can be achieved with OpenACC using the async clause. The
async clause can be added to parallel, kernels, and update directives to specify that once
the associated operation has been sent to the accelerator or runtime for execution the CPU may
continue doing other things, rather than waiting for the accelerator operation to complete. This
may include enqueing additional accelerator operations or computing other work that is unrelated
to the work being performed by the accelerator. The code below demonstrates adding the async
clause to a parallel loop and an update directive that follows.

1 #pragma acc parallel loop async
2 for (int i=0; i<N; i++)
3 {
4 c[i] = a[i] + b[i]
5 }
6 #pragma acc update self(c[0:N]) async

1 !$acc parallel loop async
2 do i=1,N
3 c(i) = a(i) + b(i)

60

CHAPTER 7. ADVANCED OPENACC FEATURES 61

4 end do
5 !$acc update self(c) async

In the case above, the host thread will enqueue the parallel region into the default asynchronous
queue, then execution will return to the host thread so that it can also enqueue the update, and
finally the CPU thread will continue execution. Eventually, however, the host thread will need
the results computed on the accelerator and copied back to the host using the update, so it must
synchronize with the accelerator to ensure that these operations have finished before attempting to
use the data. The wait directive instructs the runtime to wait for past asynchronous operations to
complete before proceeding. So, the above examples can be extended to include a synchronization
before the data being copied by the update directive proceeds.

1 #pragma acc parallel loop async
2 for (int i=0; i<N; i++)
3 {
4 c[i] = a[i] + b[i]
5 }
6 #pragma acc update self(c[0:N]) async
7 #pragma acc wait

1 !$acc parallel loop async
2 do i=1,N
3 c(i) = a(i) + b(i)
4 end do
5 !$acc update self(c) async
6 !$acc wait

While this is useful, it would be even more useful to expose dependencies into these asynchronous
operations and the associated waits such that independent operations could potentially be executed
concurrently. Both async and wait have an optional argument for a non-negative, integer number
that specifies a queue number for that operation. All operations placed in the same queue will
operate in-order, but operations placed in different queues may operate in any order with respect
to each other. Operations in different queues may, but are not guaranteed to, operate in parallel.
These work queues are unique per-device, so two devices will have distinct queues with the same
number. If a wait is encountered without an argument, it will wait on all previously enqueued
work on that device. The case study below will demonstrate how to use different work queues to
achieve overlapping of computation and data transfers.

In addition to being able to place operations in separate queues, it’d be useful to be able to join
these queues together at a point where results from both are needed before proceeding. This can
be achieved by adding an async clause to an wait. This may seem unintuitive, so the code below
demonstrates how this is done.

1 #pragma acc parallel loop async(1)
2 for (int i=0; i<N; i++)
3 {
4 a[i] = i;
5 }

CHAPTER 7. ADVANCED OPENACC FEATURES 62

6 #pragma acc parallel loop async(2)
7 for (int i=0; i<N; i++)
8 {
9 b[i] = 2*i;

10 }
11 #pragma acc wait(1) async(2)
12 #pragma acc parallel loop async(2)
13 for (int i=0; i<N; i++)
14 {
15 c[i] = a[i] + b[i]
16 }
17 #pragma acc update self(c[0:N]) async(2)
18 #pragma acc wait

1 !$acc parallel loop async(1)
2 do i=1,N
3 a(i) = i
4 end do
5 !$acc parallel loop async(2)
6 do i=1,N
7 b(i) = 2.0 * i
8 end do
9 !$acc wait(1) async(2)

10 !$acc parallel loop async(2)
11 do i=1,N
12 c(i) = a(i) + b(i)
13 end do
14 !$acc update self(c) async(2)
15 !$acc wait

The above code initializes the values contained in a and b using separate work queues so that they
may potentially be done independently. The wait(1) async(2) ensures that work queue 2 does
not proceed until queue 1 has completed. The vector addition is then able to be enqueued to the
device because the previous kernels will have completed prior to this point. Lastly the code waits
for all previous operations to complete. Using this technique we’ve expressed the dependencies of
our loops to maximize concurrency between regions but still give correct results.

Best Practice: The cost of sending an operation to the accelerator for execution is frequently
quite high on offloading accelerators, such as GPUs connected over a PCIe bus to a host CPU.
Once the loops and data transfers within a routine have been tested, it is frequently beneficial to
make each parallel region and update asynchrounous and then place a wait directive after the last
accelerator directive. This allows the runtime to enqueue all of the work immediately, which will
reduce how often the accelerator and host must synchronize and reduce the cost of launching work
onto the accelerator. It is criticial when implementing this optimization that the developer not
leave off the wait after the last accelerator directive, otherwise the code will be likely to produce
incorrect results. This is such a beneficial optimization that some compilers provide a build-time

CHAPTER 7. ADVANCED OPENACC FEATURES 63

option to enable this for all accelerator directives automatically.

7.1.1 Case Study: Asynchronous Pipelining of a Mandelbrot Set

Figure 7.1: Mandelbrot Set Output

For this example we will be modifying a simple application that generates a mandelbrot set, such as
the picture shown above. Since each pixel of the image can be independently calculated, the code
is trivial to parallelize, but because of the large size of the image itself, the data transfer to copy
the results back to the host before writing to an image file is costly. Since this data transfer must
occur, it’d be nice to overlap it with the computation, but as the code is written below, the entire
computation must occur before the copy can occur, therefore there is noting to overlap. (Note: The
mandelbrot function is a sequential function used to calculate the value of each pixel. It is left out
of this chapter to save space, but is included in the full examples.)

1 #pragma acc parallel loop
2 for(int y=0;y<HEIGHT;y++) {
3 for(int x=0;x<WIDTH;x++) {
4 image[y*WIDTH+x]=mandelbrot(x,y);
5 }

CHAPTER 7. ADVANCED OPENACC FEATURES 64

6 }
7

8 #pragma acc update self(image[:WIDTH*HEIGHT])

1 !$acc parallel loop
2 do iy=1,width
3 do ix=1,HEIGHT
4 image(ix,iy) = min(max(int(mandelbrot(ix-1,iy-1)),0),MAXCOLORS)
5 enddo
6 enddo
7

8 !$acc update self(image)

Since each pixel is independent of each other, it’s possible to use a technique known as pipelining to
break up the generation of the image into smaller parts, which allows the output from each part to be
copied while the next part is being computed. The figure below demonstrates an idealized pipeline
where the computation and copies are equally sized, but this rarely occurs in real applications. By
breaking the operation into two parts, the same amount of data is transferred, but all but the
first and last transfers can be overlapped with computation. The number and size of these smaller
chunks of work can be adjusted to find the value that provides the best performance.

Figure 7.2: Idealized Pipeline Showing Overlapping of 2 Independent Operations

The mandelbrot code can use this same technique by chunking up the image generation and data
transfers into smaller, independent pieces. This will be done in multiple steps to reduce the likeli-
hood of introducing an error. The first step is to introduce a blocking loop to the calculation, but
keep the data transfers the same. This will ensure that the work itself is properly divided to give

CHAPTER 7. ADVANCED OPENACC FEATURES 65

correct results. After each step the developer should build and run the code to ensure the resulting
image is still correct.

7.1.1.1 Step 1: Blocking Computation

The first step in pipelining the image generation is to introduce a loop that will break the compu-
tation up into chunks of work that can be generated independently. To do this, we will need decide
how many blocks of work is desired and use that to determine the starting and ending bounds for
each block. Next we introduce an additional loop around the existing two and modify the y loop
to only operate within the current block of work by updating its loop bounds with what we’ve
calculated as the starting and ending values for the current block. The modified loop nests are
shown below.

1 int num_blocks = 8;
2 for(int block = 0; block < num_blocks; block++) {
3 int ystart = block * (HEIGHT/num_blocks),
4 yend = ystart + (HEIGHT/num_blocks);
5 #pragma acc parallel loop
6 for(int y=ystart;y<yend;y++) {
7 for(int x=0;x<WIDTH;x++) {
8 image[y*WIDTH+x]=mandelbrot(x,y);
9 }

10 }
11 }
12

13 #pragma acc update self(image[:WIDTH*HEIGHT])

1 num_batches=8
2 batch_size=WIDTH/num_batches
3 do yp=0,num_batches-1
4 ystart = yp * batch_size + 1
5 yend = ystart + batch_size - 1
6 !$acc parallel loop
7 do iy=ystart,yend
8 do ix=1,HEIGHT
9 image(ix,iy) = min(max(int(mandelbrot(ix-1,iy-1)),0),MAXCOLORS)

10 enddo
11 enddo
12 enddo
13

14 !$acc update self(image)

At this point we have only confirmed that we can successfully generate each block of work inde-
pendently. The performance of this step should not be noticably better than the original code and
may be worse.

CHAPTER 7. ADVANCED OPENACC FEATURES 66

7.1.1.2 Step 2: Blocking Data Transfers

The next step in the process is to break up the data transfers to and from the device in the same
way the computation has already been broken up. To do this we will first need to introduce a data
region around the blocking loop. This will ensure that the device memory used to hold the image
will remain on the device for all blocks of work. Since the initial value of the image array isn’t
important, we use a create data clause to allocate an uninitialized array on the device. Next we
use the update directive to copy each block of the image from the device to the host after it has
been calculated. In order to do this, we need to determine the size of each block to ensure that
we update only the part of the image that coincides with the current block of work. The resulting
code at the end of this step is below.

1 int num_blocks = 8, block_size = (HEIGHT/num_blocks)*WIDTH;
2 #pragma acc data create(image[WIDTH*HEIGHT])
3 for(int block = 0; block < num_blocks; block++) {
4 int ystart = block * (HEIGHT/num_blocks),
5 yend = ystart + (HEIGHT/num_blocks);
6 #pragma acc parallel loop
7 for(int y=ystart;y<yend;y++) {
8 for(int x=0;x<WIDTH;x++) {
9 image[y*WIDTH+x]=mandelbrot(x,y);

10 }
11 }
12 #pragma acc update self(image[block*block_size:block_size])
13 }

1 num_batches=8
2 batch_size=WIDTH/num_batches
3 call cpu_time(startt)
4 !$acc data create(image)
5 do yp=0,NUM_BATCHES-1
6 ystart = yp * batch_size + 1
7 yend = ystart + batch_size - 1
8 !$acc parallel loop
9 do iy=ystart,yend

10 do ix=1,HEIGHT
11 image(ix,iy) = mandelbrot(ix-1,iy-1)
12 enddo
13 enddo
14 !$acc update self(image(:,ystart:yend))
15 enddo
16 !$acc end data

By the end of this step we are calculating and copying each block of the image independently, but
this is still being done sequentially, each block after the previous. The performance at the end of
this step is generally comparable to the original version.

CHAPTER 7. ADVANCED OPENACC FEATURES 67

7.1.1.3 Step 3: Overlapping Computation and Transfers

The last step of this case study is to make the device operations asynchronous so that the inde-
pendent copies and computation can happen simultaneously. To do this we will use asynchronous
work queues to ensure that the computation and data transfer within a single block are in the same
queue, but separate blocks land in different queues. The block number is a convenient asynchronous
handle to use for this change. Of course, since we’re now operating completely asynchronously, it’s
critical that we add a wait directive after the block loop to ensure that all work completes before
we attempt to use the image data from the host. The modified code is found below.

1 int num_blocks = 8, block_size = (HEIGHT/num_blocks)*WIDTH;
2 #pragma acc data create(image[WIDTH*HEIGHT])
3 for(int block = 0; block < num_blocks; block++) {
4 int ystart = block * (HEIGHT/num_blocks),
5 yend = ystart + (HEIGHT/num_blocks);
6 #pragma acc parallel loop async(block)
7 for(int y=ystart;y<yend;y++) {
8 for(int x=0;x<WIDTH;x++) {
9 image[y*WIDTH+x]=mandelbrot(x,y);

10 }
11 }
12 #pragma acc update self(image[block*block_size:block_size]) async(block)
13 }
14 #pragma acc wait

1 num_batches=8
2 batch_size=WIDTH/num_batches
3 call cpu_time(startt)
4 !$acc data create(image)
5 do yp=0,NUM_BATCHES-1
6 ystart = yp * batch_size + 1
7 yend = ystart + batch_size - 1
8 !$acc parallel loop async(yp)
9 do iy=ystart,yend

10 do ix=1,HEIGHT
11 image(ix,iy) = mandelbrot(ix-1,iy-1)
12 enddo
13 enddo
14 !$acc update self(image(:,ystart:yend)) async(yp)
15 enddo
16 !$acc wait
17 !$acc end data

With this modification it’s now possible for the computational part of one block to operate simulta-
neously as the data transfer of another. The developer should now experiment with varying block
sizes to determine what the optimal value is on the architecture of interest. It’s important to note,
however, that on some architectures the cost of creating an asynchronous queue the first time its

CHAPTER 7. ADVANCED OPENACC FEATURES 68

used can be quite expensive. In long-running applications, where the queues may be created once at
the beginning of a many-hour run and reused throughout, this cost is amortized. In short-running
codes, such as the demonstration code used in this chapter, this cost may outweigh the benefit of the
pipelining. Two solutions to this are to introduce a simple block loop at the beginning of the code
that pre-creates the asynchronous queues before the timed section, or to use a modulus operation
to reuse the same smaller number of queues among all of the blocks. For instance, by using the
block number modulus 2 as the asynchronous handle, only two queues will be used and the cost
of creating those queues will be amortized by their reuse. Two queues is generally sufficient to see
a gain in performance, since it still allows computation and updates to overlap, but the developer
should experiment to find the best value on a given machine.

Below we see a screenshot showing before and after profiles from applying these changes to the code
on an NVIDIA GPU platform. Similar results should be possible on any acclerated platform. Using
16 blocks and two asynchronous queues, as shown below, roughly a 2X performance improvement
was observed on the test machine over the performance without pipelining.

Figure 7.3: NVIDIA NSight Systems profiler timelines for the original mandelbrot code (Top) and
the pipelined code using 16 blocks over 2 asynchronous queues (Bottom).

7.2 Multi-device Programming
For systems containing more than one accelerator, OpenACC provides an API to make opera-
tions happen on a particular device. In case a system contains accelerators of different types, the
specification also allows for querying and selecting devices of a specific architecture.

7.2.1 acc_get_num_devices()
The acc_get_num_devices() routine may be used to query how many devices of a given architec-
ture are available on the system. It accepts one parameter of type acc_device_t and returns a

CHAPTER 7. ADVANCED OPENACC FEATURES 69

integer number of devices.

7.2.2 acc_get_device_num() and acc_set_device_num()
The acc_get_device_num() routines query the current device that will be used of a given type
and returns the integer identifier of that device. The acc_set_device_num() accepts two pa-
rameters, the desired device number and device type. Once a device number has been set, all
operations will be sent to the specified device until a different device is specified by a later call to
acc_set_device_num().

7.2.3 acc_get_device_type() and acc_set_device_type()
The acc_get_device_type() routine takes no parameters and returns the device type of the current
default device. The acc_set_device_type() specifies to the runtime the type of device that the
runtime should use for accelerator operations, but allows the runtime to choose which device of
that type to use.

OpenACC has recently introduced the set directive, which allows for multi-device program-
ming with less reliance on using the OpenACC API. The set directive can be used to set
the device number and device type that should be used and is functionally equivalent to the
acc_set_device_num() API function. To set the device number, use device_num clause, and to
set the type use the device_type clause.

7.2.4 Multi-device Programming Example
As a example of multi-device programming, it’s possible to further extend the mandelbrot example
used previously to send different blocks of work to different accelerators. In order to make this
work, it’s necessary to ensure that device copies of the data are created on each device. We will do
this by replacing the structured data region in the code with an unstructured enter data directive
for each device, using the acc_set_device_num() function to specify the device for each enter
data. For simplicity, we will allocate the full image array on each device, although only a part of
the array is actually needed. When the memory requirements of the application is large, it will be
necessary to allocate just the pertinent parts of the data on each accelerator.

Once the data has been created on each device, a call to acc_set_device_num() in the blocking
loop, using a simple modulus operation to select which device should receive each block, will sent
blocks to different devices.

Lastly it’s necessary to introduce a loop over devices to wait on each device to complete. Since the
wait directive is per-device, the loop will once again use acc_set_device_num() to select a device
to wait on, and then use an exit data directive to deallocate the device memory. The final code
is below.

1 // Allocate arrays on both devices
2 for (int gpu=0; gpu < 2 ; gpu ++)
3 {
4 acc_set_device_num(gpu,acc_device_nvidia);

CHAPTER 7. ADVANCED OPENACC FEATURES 70

5 #pragma acc enter data create(image[:bytes])
6 }
7

8 // Distribute blocks between devices
9 for(int block=0; block < numblocks; block++)

10 {
11 int ystart = block * blocksize;
12 int yend = ystart + blocksize;
13 acc_set_device_num(block%2,acc_device_nvidia);
14 #pragma acc parallel loop async(block)
15 for(int y=ystart;y<yend;y++) {
16 for(int x=0;x<WIDTH;x++) {
17 image[y*WIDTH+x]=mandelbrot(x,y);
18 }
19 }
20 #pragma acc update self(image[ystart*WIDTH:WIDTH*blocksize]) async(block)
21 }
22

23 // Wait on each device to complete and then deallocate arrays
24 for (int gpu=0; gpu < 2 ; gpu ++)
25 {
26 acc_set_device_num(gpu,acc_device_nvidia);
27 #pragma acc wait
28 #pragma acc exit data delete(image)
29 }

1 batch_size=WIDTH/num_batches
2 do gpu=0,1
3 call acc_set_device_num(gpu,acc_device_nvidia)
4 !$acc enter data create(image)
5 enddo
6 do yp=0,NUM_BATCHES-1
7 call acc_set_device_num(mod(yp,2),acc_device_nvidia)
8 ystart = yp * batch_size + 1
9 yend = ystart + batch_size - 1

10 !$acc parallel loop async(yp)
11 do iy=ystart,yend
12 do ix=1,HEIGHT
13 image(ix,iy) = mandelbrot(ix-1,iy-1)
14 enddo
15 enddo
16 !$acc update self(image(:,ystart:yend)) async(yp)
17 enddo
18 do gpu=0,1
19 call acc_set_device_num(gpu,acc_device_nvidia)

CHAPTER 7. ADVANCED OPENACC FEATURES 71

20 !$acc wait
21 !$acc exit data delete(image)
22 enddo

Although this example over-allocates device memory by placing the entire image array on the device,
it does serve as a simple example of how the acc_set_device_num() routine can be used to operate
on a machine with multiple devices. In production codes the developer will likely want to partition
the work such that only the parts of the array needed by a specific device are available there.
Additionally, by using CPU threads it may be possible to issue work to the devices more quickly
and improve overall performance. Figure 7.3 shows a screenshot of the NVIDIA NSight Systems
showing the mandelbrot computation divided across two NVIDIA GPUs.

Figure 7.4: NVIDIA NSight Systems timeline for multi-device mandelbrot

Appendix A

References

• OpenACC.org
• OpenACC on the NVIDIA Developer Blog
• PGI Insider Newsletter
• OpenACC at the NVIDIA GPU Technology Conference
• OpenACC on Stack Exchange
• OpenACC Community Slack
• OpenACC on the GCC Wiki

72

http://openacc.org
https://developer.nvidia.com/blog/tag/openacc/
https://www.pgroup.com/resources/articles.htm
https://www.nvidia.com/en-us/on-demand/search/?facet.mimetype%5B%5D=event%20session&layout=list&page=1&q=OpenACC&sort=date
http://stackoverflow.com/questions/tagged/openacc
https://www.openacc.org/community#slack
https://gcc.gnu.org/wiki/OpenACC

	Introduction
	Writing Portable Code
	Libraries
	Standard Programming Languages
	Compiler Directives
	Parallel Programming Extensions

	What is OpenACC?
	The OpenACC Accelerator Model
	Benefits and Limitations of OpenACC

	Accelerating an Application with OpenACC
	OpenACC Directive Syntax
	Porting Cycle
	Heterogenous Computing Best Practices

	Case Study - Jacobi Iteration

	Assess Application Performance
	Baseline Profiling
	Additional Profiling
	Case Study - Analysis

	Parallelize Loops
	The Kernels Construct
	The Parallel Construct
	Differences Between Parallel and Kernels
	The Loop Construct
	private
	reduction

	Routine Directive
	C++ Class Functions

	Atomic Operations
	Atomic Example

	Case Study - Parallelize
	Parallel Loop
	Kernels

	Optimize Data Locality
	Data Regions
	Data Clauses
	Shaping Arrays

	Unstructured Data Lifetimes
	C++ Class Data

	Update Directive
	Best Practice: Offload Inefficient Operations to Maintain Data Locality
	Case Study - Optimize Data Locality

	Optimize Loops
	Efficient Loop Ordering
	OpenACC's 3 Levels of Parallelism
	Understanding OpenACC's Three Levels of Parallelism

	Mapping Parallelism to the Hardware
	Collapse Clause
	Routine Parallelism
	Case Study - Optimize Loops

	OpenACC Interoperability
	The Host Data Region
	Asynchronous Device Libraries

	Using Device Pointers
	Obtaining Device and Host Pointer Addresses
	Additional Vendor-Specific Interoperability Features
	Asynchronous Queues and CUDA Streams (NVIDIA)
	CUDA Managed Memory (NVIDIA)
	Using CUDA Device Kernels (NVIDIA)

	Advanced OpenACC Features
	Asynchronous Operation
	Case Study: Asynchronous Pipelining of a Mandelbrot Set

	Multi-device Programming
	acc_get_num_devices()
	acc_get_device_num() and acc_set_device_num()
	acc_get_device_type() and acc_set_device_type()
	Multi-device Programming Example

	References

