
ORNL is managed by UT-Battelle LLC for the US Department of Energy

KokkACC: 
Enhancing Kokkos with OpenACC

PhD. Pedro Valero-Lara, 

Computer Scientist at Programming Systems Group 
valerolarap@ornl.gov

OpenACC Webinar

https://dblp.org/pid/07/9764.html
https://www.linkedin.com/in/pedro-valero-lara/
https://www.ornl.gov/staff-profile/pedro-valero-lara
https://scholar.google.com/citations?user=GkEqWEUAAAAJ&hl=en
https://www.researchgate.net/profile/Pedro-Valero-Lara
https://orcid.org/0000-0002-1479-4310


22 Open slide master to edit

Motivation

• Programming productivity!



33 Open slide master to edit

Descriptive (Agnostic) VS Prescriptive (Device Specific)

A software paradigm in which no particular programming model is promoted

“Teaching principles rather than programing models features”

“Interoperable across the systems and there are no prejudices towards using a 
specific technology, model, methodology or data”

“A technology that can be used with any type of system, regardless of 
underlying systems' technology or architecture”

Less complicated programs are often more performing

Proactive, not reactive



44 Open slide master to edit

• Open-source performance portability C++ template and metaprogramming

• It is implemented as a template library on top of:

– CUDA, HIP, OpenMP, OpenMP Target, HPX, SYCL, etc, and now OpenACC too!!

• Target back end must be defined at compilation time

– (KOKKOS_DEVICE=OpenACC)

• It can only use one back end/device at a time 

https://github.com/kokkos/kokkos

Kokkos



55 Open slide master to edit

• Memory management is composed by:

– Kokkos_malloc and Kokkos views

• Data parallel execution:

– parallel_for, parallel_reduce and parallel_scan

– 3 different APIs

• Single Range, Multi-Dimensional Range and Hierarchical Parallelism

– Each Kokkos construct has:

• Number of iterations

• A C++ Lambda that acts like a function

Kokkos Programing Model



66 Open slide master to edithttps://github.com/kokkos/kokkos/tree/develop/core/src/OpenACC

• Both models attempts to 

be architecture agnostic

• Strong connection 

between Kokkos front-end 

and OpenACC

specification

• All this makes easy the 

implementation, 

maintainability and 

sustainability of the 

OpenACC back end

KokkACC Implementation



77 Open slide master to edit

• ORNL SUMMIT

– 1x NVIDIA C100 GPU (16GB)

– CUDA (CUDA 11.0.3)

– OpenMP Target (LLVM 15.0.0)

– OpenACC (NVHPC 21.3)

• Mini-benchmarks

• LULESH

• MiniFE

• LAMMPS-SNAP

Performance Evaluation on SUMMIT



88 Open slide master to edit

• Time

• Occupancy

• #Instructions

• Block size

• Warps

• Bandwidth

o Global memory (RAM)

o L2

o L1

o Shared memory

“Low-Level” Performance Evaluation on SUMMIT



99 Open slide master to edit

• Intel and AMD CPUs

• Mini-benchmarks (AXPY on top, DOT on bottom)

Performance on CPUs



1010 Open slide master to edit

• sKokkos decides which device (CPU or GPU) is better at runtime 
(at the very beginning)

• Kokkos::set_device(tunning factor)

– Tuning factor: number of operations, nnz elements, size of the grid, etc.

– CPU performance = Tuning factor/CPU flops

– GPU performance = Tuning factor/GPU flops + GPU overhead

sKokkos: Enabling Kokkos with Transparent Device 
Selection on Heterogeneous Systems

https://code.ornl.gov/5pv/skokkos



1111 Open slide master to edit

• Two different heterogeneous systems (ExCL ORNL):

– Equinox: 1x Intel Xeon E5-2698 v4 20-Core CPU + 1x NVIDIA V100 GPU

– Zenith: 1x AMD Ryzen 3970X 32-Core CPU + 1x NVIDIA GeForce RTX 3090 GPU

• Mini-benchmarks:

sKokkos Performance: Mini-benchmarks



1212 Open slide master to edit

• Two different mini-apps (tunning factors):

– Lulesh: Stencil computation on the 3D domain (size of the domain)

– MiniFE: Conjugate Gradient (#nnz)

– LBM: Lattice-Boltzmann Method (#operations)

sKokkos Performance: Mini-apps



1313 Open slide master to edit

• Next, we highlight why it is possible to provide competitive or even better performance using a high-
level and high programming productivity descriptive (pragma-based) model (OpenACC) than using a
low-level prescriptive (device-specific) model (CUDA) for C++ Metaprogramming solutions (Kokkos).

• C++ Metaprogramming solutions, like Kokkos, relay on C++ lambdas. C++ lambdas are defined by
application programmers and can express any operation.

• Device-specific solutions like CUDA weren’t designed to work at lambda level originally. CUDA Kokkos
back-end relays on CUDA developers, who don’t know which operations will be computed by GPU
kernels, but they must take decisions about size of CUDA blocks, memory usage, synchronization, etc.
This makes the optimization of these solutions extremely difficult or even impossible.

• OpenACC backend relays on compiler, which can work at “lambda” level and take the best decisions
depending on the operations defined by C++ lambdas and application developers and increasing the
programming productivity

9/7/2023SC22 | Dallas, TX | hpc accelerates. 13

Descriptive (Agnostic) VS Prescriptive (Device Specific)



1414 Open slide master to edit

• OpenACC vs CUDA (NVIDIA GPU):

– Competitive performance for Single Range

– Better performance for Multi-Dimensional

– Competitive performance for Hierarchical Parallelism parallel_for and worse performance for
parallel_reduce

– Competitive/better performance on mini-apps (LULESH, miniFE, LAMPS-SNAP)

• OpenACC vs OpenMP Target (NVIDIA GPU):

– Better performance in most of the cases tested.

• OpenACC vs OpenMP (Intel and AMD CPUs):

– Similar performance on Intel and AMD CPUs than OpenMP

• sKokkos:

– Enabling Kokkos with Transparent Device Selection on Heterogeneous Systems

– Transparent device selection on two different heterogeneous systems and three mini-apps (LULESH,
miniFE, LBM)

• Future/Ongoing Efforts:

– Support for multi-GPU and distributed memory

Conclusions and Future Work



1515 Open slide master to edit

• KokkACC team: Seyong Lee, Joel Denny, Marc Gonzalez-Tellada, Jeffrey Vetter, Pedro Valero-Lara.

• Best paper award at WACCPD@SC’22

• ECP Proteas-TUNE project (https://www.exascaleproject.org/research-project/proteas-tune/)

• This research used resources of the Oak Ridge Leadership Computing Facility and the Experimental 
Computing Laboratory at the Oak Ridge National Laboratory, which is supported by DOE’s Office of 
Science under Contract No. DE-AC05-00OR22725. This research was supported in part by the 
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the DOE’s Office of Science 
andthe National Nuclear Security Administration. This work has been authored by UT-Battelle LLC 
under Contract No. DE-AC05-00OR22725 with the DOE. 

Acknowledgments



ORNL is managed by UT-Battelle LLC for the US Department of Energy

KokkACC: 
Enhancing Kokkos with OpenACC

PhD. Pedro Valero-Lara, 

Computer Scientist at Programming Systems Group 
valerolarap@ornl.gov

OpenACC Webinar

Thanks!!
Questions??

https://dblp.org/pid/07/9764.html
https://www.linkedin.com/in/pedro-valero-lara/
https://www.ornl.gov/staff-profile/pedro-valero-lara
https://scholar.google.com/citations?user=GkEqWEUAAAAJ&hl=en
https://www.researchgate.net/profile/Pedro-Valero-Lara
https://orcid.org/0000-0002-1479-4310

	Slide 1: KokkACC:  Enhancing Kokkos with OpenACC
	Slide 2: Motivation
	Slide 3: Descriptive (Agnostic) VS Prescriptive (Device Specific)
	Slide 4
	Slide 5: Kokkos Programing Model
	Slide 6: KokkACC Implementation
	Slide 7: Performance Evaluation on SUMMIT
	Slide 8: “Low-Level” Performance Evaluation on SUMMIT
	Slide 9: Performance on CPUs
	Slide 10: sKokkos: Enabling Kokkos with Transparent Device Selection on Heterogeneous Systems
	Slide 11: sKokkos Performance: Mini-benchmarks
	Slide 12: sKokkos Performance: Mini-apps
	Slide 13: Descriptive (Agnostic) VS Prescriptive (Device Specific)
	Slide 14: Conclusions and Future Work
	Slide 15: Acknowledgments
	Slide 16: KokkACC:  Enhancing Kokkos with OpenACC

