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Abstract—There is growing interest in using standard lan-
guage constructs for accelerated computing, avoiding the need
for (often vendor-specific) external APIs. These constructs
hold the potential to be more portable and much more
‘future-proof’. For Fortran codes, the current focus is on
the do concurrent (DC) loop. While there have been
some successful examples of GPU-acceleration using DC for
benchmark and/or small codes, its widespread adoption will
require demonstrations of its use in full-size applications. Here,
we look at the current capabilities and performance of using
DC in a production application called Magnetohydrodynamic
Algorithm outside a Sphere (MAS). MAS is a state-of-the-art
model for studying coronal and heliospheric dynamics, is over
70,000 lines long, and has previously been ported to GPUs
using MPI+OpenACC. We attempt to eliminate as many of its
OpenACC directives as possible in favor of DC. We show that
using the NVIDIA nvfortran compiler’s Fortran 202X pre-
view implementation, unified managed memory, and modified
MPI launch methods, we can achieve GPU acceleration across
multiple GPUs without using a single OpenACC directive.
However, doing so results in a slowdown between 1.25x and
3x. We discuss what future improvements are needed to avoid
this loss, and show how we can still retain close to the original
code’s performance while reducing the number of OpenACC
directives by a factor of five.

Keywords-accelerated computing; Fortran; OpenMP;
OpenACC; do concurrent; standard language parallelism

I. INTRODUCTION

The use of accelerators (such as GPUs) has become
ubiquitous in high-performance computing. This is due to
their power efficiency and compact performance (i.e. one
accelerator can perform as well as multiple CPU compute
nodes). However, developing and/or porting codes to run on
accelerators continues to be a challenge, especially while
maintaining portability. Due to the historical lack of direct
support for accelerators in the base standard languages (such
as C, C++, and Fortran), a plethora of (often vendor-specific)
accelerator APIs, libraries, and language extensions have
been created over the years, each with varying degrees of
support, portability, and software level (e.g. high-level front
ends to low-level direct device programming). These include
CUDA, RocM, OpenCL, SYCL, KOKOS, RAJA, DPC++,
PROTO, OpenMP, and OpenACC [1]–[4]. For legacy codes,
as well as for new codes wanting maximum portability,

longevity, and code readability, directive-based solutions
such as OpenMP and OpenACC have often been preferred
over other options. This is because the directives appear as
special comments in the code, allowing it to continue to
compile and run on previous hardware/software setups, as
the directives will simply be ignored. Even with the great
feature set of directive-based programming models, they can
still make source code difficult to read and require too much
training for the domain scientists to be able to develop
and modify the code without breaking acceleration (often
leading to multiple code bases). Also, the specification for
the directive models can change frequently, and cross-vendor
support can be unpredictable.

Recently, the use of standard language parallelism for
accelerated computing has been gaining popularity. This
includes C++ parallel algorithms [5], [6], Fortran’s do
concurrent [7], [8], and drop-in replacements for
python’s numpy1. These new language features have the
potential to eliminate (or greatly limit) the need for external
acceleration APIs, and could be more portable and ‘future-
proof’. Future portability is assured since any compiler that
supports the base language version, must compile and run
the code correctly (although not necessarily efficiently).

Here, we focus exclusively on Fortran and its do
concurrent (DC) construct for GPU acceleration. DC
is an alternative construct to the standard do loop which
indicates that the loop has no data dependencies and can
be computed out-of-order2. This can be used to hint to a
compiler that the loop is likely (but may not be) paral-
lelizable. How this parallelism is mapped at a low level
is left to the compiler to decide, with many using pre-
existing directive-based mappings (treating DC as if it were
a collapsed OpenACC/MP parallel loop).

While there have been some promising results in using DC
for accelerated computing (see the next section), how well
they will extend to much larger codes is an open question.
To help answer this, in this paper we describe porting our
large in-production solar MHD code from OpenACC to DC.

1https://developer.nvidia.com/cunumeric
2https://flang.llvm.org/docs/DoConcurrent.html
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The paper is organized as follows: Sec. II describes related
work on using Fortran standard parallelism for accelerated
computing. We then introduce the MAS solar MHD code
in Sec. III. In Sec. IV we describe how we successively
reduce the number of OpenACC directives using DC and the
resulting six code versions used for testing. The test problem,
computational environment, and performance results are
described in Sec. V. We summarize the results and use them
to assess the current status and future potential of Fortran
standard parallelism for large HPC codes in Sec. VI.

II. RELATED WORK

The use of DC for accelerated computing is a very recent
capability. The first compiler to support it was NVIDIA’s
HPC SDK in November of 2020 3, and the most recent is
the Intel IFX compiler in 2022.

Due to the novelty of DC support for GPUs, there are
only a few examples of its use in the literature (such as a
spherical surface diffusion tool called DIFFUSE [9], and an
implementation of the BabelStream benchmark [10]). There
are additional works in progress, including a chemistry
mini-app called CCSD(T)4, a CFD weather mini-app called
MiniWeather5, a hydrodynamics mini-app called CloverLeaf
6, and a conjugate gradient solver used in Solar physics
called POT3D7.

While these implementations are promising (and many
yielded on-par performance with other acceleration
methods), they are all small-to-medium codes/mini-
apps/benchmarks. Here, we explore applying the lessons
learned from these first studies to a large, in-production
application called MAS.

III. THE MAS SOLAR MHD MODEL

The Magnetohydrodynamic Algorithm outside a Sphere
(MAS) code is an in-production MHD model with over
20 years of ongoing development used extensively in Solar
physics research [11]–[17]. The code is included in the
Corona-Heliosphere (CORHEL) software suite [18], [19]
hosted at NASA’s Community Coordinated Modeling Cen-
ter (CCMC)8 allowing users to generate quasi-steady-state
MHD solutions of the corona and heliosphere, as well as
simulate solar storms in the form of coronal mass ejections
propagating from the Sun to Earth [20], [21]. MAS is
written in Fortran (≈ 70, 000 lines) and parallelized with
MPI+OpenACC [22]. It can run simulations containing over
three hundred million grid cells [23], [24] and exhibits
performance scaling to thousands of CPU cores or dozens of

3https://developer.nvidia.com/blog/
accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/

4https://www.youtube.com/watch?v=DrvI2gw3tnI
5https://github.com/mrnorman/miniWeather/tree/main/fortran
6https://github.com/UoB-HPC/cloverleaf doconcurrent
7https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41318
8https://ccmc.gsfc.nasa.gov

GPUs [22], [25]. The MAS code uses a logically rectangular
non-uniform staggered spherical grid and finite-difference
discretizations with a combination of explicit and implicit
time-stepping methods9. The code is highly memory-bound,
with its performance typically proportional to the hardware’s
memory bandwidth.

IV. FROM OPENACC TO DO CONCURRENT

Here we describe our implementations of replacing
OpenACC with DC. Our strategy results in six separate code
versions, starting with the current OpenACC MAS imple-
mentation. These versions arise due to several considerations
including (not) avoiding code refactoring, (in)adherence
to the current Fortran specification, (not) using experi-
mental compiler features, and trade-offs between reducing
OpenACC directives and performance. Among the versions,
we were able to achieve a working code with zero OpenACC
directives (Code 5).

Support for using DC for accelerated computing is in
its infancy. Several vendors have announced future plans
to support it, but only NVIDIA and Intel have working
implementations, with NVIDIA’s HPC SDK’s nvfortran
being the more mature of the two. As our current GPU
implementation of MAS uses OpenACC and is tested with
NVIDIA GPUs, we exclusively use the nvfortran com-
piler and NVIDIA GPUs in this work.

The procedure for porting the current OpenACC imple-
mentation of MAS (Code 1) to DC is done in several steps.
We first try to avoid base code changes and adhere to the
current Fortran 2018 specification, incrementally swapping
out OpenACC directives with DC, until we arrive at two ver-
sions, one with optimized manual data management (Code
2), and one with automatic data management (Code 3). We
then use the compiler’s Fortran 202X preview features to
further reduce the number of OpenACC directives and only
use automatic data management (Code 4). By using special
compiler flags, alternate code launch scripts, and minimal
base code changes, we are able to make a working version
that has zero OpenACC directives (Code 5). To improve
performance, we also create a version of Code 5 with the
OpenACC manual data management directives added back
in (Code 6).

In Table I we summarize all six code versions that will
be discussed in this section.

A. Code 1 [A]: Current OpenACC Implementation

We start with the current GPU production branch of MAS.
This is an extension of the code developed in Ref. [22],
with added OpenACC directives to accelerate the full set
of physics models used in the CORHEL software suite.
It is fully portable with CPU compilers as it does not
use any OpenACC API calls. It has 73,842 lines of code

9https://www.predsci.com/mas



Table I
SUMMARY OF ALL MAS CODE VERSIONS DEVELOPED AND TESTED.

Code
Version

Code description and
nvfortran GPU compiler flags

Total
Lines

$acc
Lines

0: CPU Original CPU-only version 69874 ∅

1: A
Original OpenACC
implementation
-acc=gpu -gpu=cc80

73865 1458

2: AD

OpenACC for DC-incompatible
loops and data management,
DC for remaining loops
-acc=gpu -stdpar=gpu
-gpu=cc80,nomanaged

71661 540

3: ADU

OpenACC for DC-incompatible
loops, DC for remaining loops,
Unified memory
-acc=gpu -stdpar=gpu
-gpu=cc80,managed

71269 162

4: AD2XU

OpenACC for for functionality
, DC2X for remaining loops,
Unified memory
-acc=gpu -stdpar=gpu
-gpu=cc80,managed

70868 55

5: D2XU

DC2X for all loops,
some code modifications,
Unified memory
-stdpar=gpu -gpu=cc80
-Minline=reshape,name:s2c,
boost,interp,c2s,sv2cv

68994 ∅

6: D2XAd

DC2X for all loops,
some code modifications,
OpenACC for data management
-acc=gpu -stdpar=gpu
-gpu=cc80,nomanaged
-Minline=reshape,name:s2c,
boost,interp,c2s,sv2cv

71623 277

including 1,458 !$acc directive comments. The distribution
of OpenACC directive types is summarized in Table. II.

Table II
OPENACC DIRECTIVES IN ORIGINAL

GPU BRANCH OF MAS (CODE 1).

OpenACC directive type # of lines
parallel, loop 997
data management:

enter, exit, update,
host_data, declare

320

atomic 34
routine 12
kernels 6
wait 6
set device_num 1
continuation lines (!$acc&)

(spread across all directive types) 82

Total 1458

B. Code 2 [AD]: OpenACC for DC-incompatible loops and
data management, DC for remaining loops)

In this first pass at replacing OpenACC with DC, we strive
to maintain as much performance and portability as possible,
with as few code changes as possible (other than converting
do loops into DC).

A typical nested do loop with OpenACC directives as
used in the MAS is shown in Listing 1. The same loop using
DC is shown in Listing 2. Besides eliminating OpenACC
directives, the DC loop is also much more compact, reducing
the number of lines of code overall.

!$acc parallel default(present)
!$acc loop collapse(3)
do k=1,n3

do j=1,n2
do i=1,n1
Computation using array(i,j,k)

enddo
enddo

enddo
!$acc end parallel

Listing 1. Standard do loop with OpenACC in the MAS code

do concurrent (k=1,n3,j=1:n2,i=1:n1)
Computation using array(i,j,k)

enddo
Listing 2. Equivalent loop to Listing 1 using DC

To ensure that the modified code will still work for CPU-
only runs with any compiler vendor/version that currently
works with the code, we adhere to the Fortran 2018 stan-
dard. This excludes the use of the upcoming Fortran 202X
reduce clause on DC loops, leaving all reduction loops
to use OpenACC. Also, since some major compilers do
not yet support DC affinity clauses such as private and
shared (and some are good at detecting proper affinity
automatically), we do not make use of these clauses. Array
reductions in the current MAS code use OpenACC atomic
directives to allow for full parallelization as shown in
Listing 3.

!$acc parallel default(present)
!$acc loop collapse(2)
do j=1,n2

do i=1,n1
!$acc atomic update

sum0(i)=sum0(i)+array(i,j)*...
enddo

enddo
!$acc end parallel

Listing 3. Example of array reduction loop in MAS

In order to use DC for the loop and remain within specifica-
tion, we would need to rewrite the loops (as an outer parallel
DC loop, with an inner sequential loop). Since at this point
we want to avoid as many code changes as possible, and
such a change may affect performance, we also leave the
array reduction loops as OpenACC loops.

Some of our parallel loops contain calls to functions/rou-
tines. In OpenACC, these must be declared at a specified



level of parallelism using the routine directive. The
Fortran specification requires that function/routine called in
a DC loop must be ‘pure’. Those within our loops are pure,
but the current NVIDIA compiler does not yet support them
in DC GPU offload loops without leaving in the OpenACC
routine directives.

Another issue we faced is the use of OpenACC’s
kernels construct. While kernels can be used on
regular do loops, it can also be used to contain Fortran array-
syntax operations and Fortran intrinsics such as MINVAL. In
these cases, in order to use DC, we would have to expand the
operations into explicit loops. In our updated port of MAS to
use OpenACC, we have already done this in most cases. In
this DC version, we want to avoid additional code changes,
so for now we leave in the remaining few kernels regions.

There are two features of OpenACC that are not present
in DC which could lead to possible performance losses.
The first is ‘kernel fusion’. In OpenACC, one can have
multiple data independent loops in a parallel region,
which the compiler can then compile into a single GPU
compute kernel. When converting these loops into DC loops,
the compiler has to create separate GPU kernels for each
loop. Since kernels have launch overheads, this can lower
performance (especially for frequently called small kernels).
The second feature is asynchronous kernel launches. In
OpenACC, one can use the async clause to launch a kernel
but allow the code to continue (where it can compute things
on the CPU, and/or launch other asynchronous kernels).
DC currently has no way to tell the compiler to use an
asynchronous kernel launch. Therefore, if a code relies on
heavy use of async, using DC may reduce performance.
In the case of the MAS code, we do not make heavy use
of async, so we do not expect this to be too much of a
problem.

From our previous experience in porting OpenACC to
DC [7], we learned that using manual data management
yields better performance than relying on unified managed
memory (UM) capabilities. Unified managed memory is
an NVIDIA feature that will automatically page data to
and from the GPU and CPU for GPU-accelerated codes10.
This eases the burden of the programmer by not requiring
manual management of the data movement. However, using
UM has some drawbacks, such as possible performance
degradation and using too much GPU memory. While the
performance drop from using UM can be quite small, when
used with CUDA-aware MPI calls (as done in MAS), they
can be higher. Also, UM is not part of either the Fortran
or OpenACC specifications. For these reasons, we do not
use UM in this version (AD), leaving the OpenACC data
management directives intact.

In the end, for this version (AD) of the code, we have
reduced the number of OpenACC directives from 1458 to

10https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm

540, an almost three-fold reduction.

C. Code 3 [ADU]: OpenACC for DC-incompatible loops,
DC for remaining loops, Unified memory

For this version (ADU) of the code, we substantially
reduce the number of OpenACC directives by using unified
managed memory. As discussed above, UM is not part of the
Fortran or OpenACC specification, and without manual data
movement, each OpenACC and DC kernel would default to
GPU-CPU data migration, causing a huge performance drop.
Due to this, multiple vendors have created a unified memory
management system (UM for NVIDIA, Unified Shared
Memory for Intel OneAPI11, and Smart Access Memory for
AMD12). Since unified memory management systems are
ubiquitous, we feel relying on UM is an acceptable decrease
in portability for this version (ADU).

In removing the OpenACC data directives, we found that
we could not remove all of them. Specifically, a declare
(and a subsequent update) directive was still needed for
a data element that is used in a function called inside a
GPU kernel region. Additionally, we had to leave in some
enter and exit data movement for derived types. This
was because we are still using OpenACC for reduction loops,
which utilize the default(present) clause. This tells
the compiler that all data is already on the device, and is
added to avoid programming performance errors since it
will fail for any data not on the device. However, when
using UM, even though the arrays within the derived type
are paged to the GPU, the derived type structure itself is
not, as it is static data (not an allocatable or automatic
array which is required for UM paging). Therefore, since
we wish to retain the use of default(present), we
have to manually place the structures on the GPU.

This version (ADU) of the code further reduced the
number of OpenACC directives by over a factor of three
from 540 to 162. Since the only change in this code was the
removal of data directives, its performance is equivalent to
running Code 2 (AD) with UM enabled (in which case all
data directives are ignored). Thus, this version (ADU) can
be used as a test of the effect UM alone has on performance.

D. Code 4 [AD2XU]: OpenACC for functionality, DC2X for
all loops, Unified memory

To see how much further we can reduce the number of
OpenACC directives, in this version (AD2XU) of the code
we allow ourselves to take advantage of NVIDIA’s Fortran
202X preview implementation of the reduce clause on
DC loops. Using reduce breaks the portability of this
version (AD2XU), making it only currently work with the
nvfortran compiler (even on the CPU). However, this
clause is expected to become part of the Fortran standard

11https://www.intel.com/content/www/us/en/developer/articles/
code-sample/dpcpp-usm-code-sample.html

12https://www.amd.com/en/technologies/smart-access-memory



within a year, so its use will eventually be portable (as soon
as all major compilers recognize it).

Using reduce allows us to convert all scalar OpenACC
reduction loops into DC, but for array reductions, direct use
of reduce is not yet supported in nvfortran. However,
due to the underlying compiler mechanisms, we found
that we can use OpenACC atomic directives within DC
loops, in the same manner we have been using them in
the OpenACC loops. Therefore, we have also converted all
array reduction OpenACC loops into DC (while retaining
the atomic directives within them) as shown in Listing 4.

do concurrent (j=1:n2,i=1:n1)
!$acc atomic update

sum0(i)=sum0(i)+array(i,j)*...
enddo

Listing 4. DC version of array reduction from Listing 3

We also were able to convert the few non-reduction loops
that used atomic directives into DC. After this change, all
loops using the derived types are now DC loops, so some
of the few remaining data directives were also able to be
removed.

This version (AD2XU) of the code further reduced the
number of OpenACC directives by more than another fac-
tor of three from 162 to 55. The remaining OpenACC
directives consist of atomic, declare, update, set
device_num, routine, and kernels.

E. Code 5 [D2XU]: DC2X for all loops, some code modi-
fications, Unified memory

Here, we allow ourselves to make use of nvfortran-
specific compiler flags and some modifications to the base
code. This is an attempt to see what is needed to currently
achieve an ‘ideal’ code (in terms of eliminating OpenACC
directives).

As a first step, we eliminated the few remaining kernels
directives by expanding the Fortran intrinsic functions being
used into explicit DC reduction loops. We note that for codes
that have a lot of kernels use, this step could be quite
involved.

Next, we re-wrote all array reduction loops, by flipping
the loop order and using a standard DC on the outer loop,
with a DC reduction on the inner loop as shown in Listing 5.

do concurrent (i=1:n1)
tmp=0.
do concurrent (j=1:n2) reduce(+:tmp)
tmp=tmp+array(i,j)*...

enddo
sum0(i)=tmp

enddo
Listing 5. Modified array reduction from Listing 4, allowing removal of
the atomic directive

This eliminated the need for the OpenACC atomic direc-
tives in these loops. We could have also replaced the inner
loop with a serial do loop or Fortran intrinsic (e.g. SUM).
Indeed, the nvfortran compiler output shows that it se-
rializes the inner DC reduction loop (as it is probably faster
to do that than launch a multitude of tiny kernels). Small
code modifications were also used in a couple of places to
allow the removal of the last few atomic directives.

A remaining set of OpenACC directives are the routine
directives used to declare functions and routines that are
called within a GPU kernel loop. Since all such functions
in MAS are ‘pure’, they should be supported within DC
loops, and further development of the nvfortran compiler
should remove the need for the routine directives. In
the meantime, we use a compiler flag -Minline,name
to specify that those routines need to be in-lined. For one of
the routines, we also needed to specify the reshape inline
option. The compiler refused to inline one of the routines,
forcing us to manually inline it. Luckily, it was only one
routine and not used very many times, but in other codes,
this step could be prohibitive. This step also allowed us to
remove the declare directive for the data elements used
within the in-lined functions.

The last OpenACC directive left is the set
device_num used to select the GPU device based
on the local MPI rank in multi-GPU runs. In order to
remove this directive, we modify how we launch the code.
Instead of launching the code directly (e.g. mpirun ...
./mas ...), we launch a bash script (shown in Listing 6)
that uses an MPI run time environment variable to set an
NVIDIA environment variable, allowing the MPI process
to only see the correct GPU device. The script is invoked
by running mpirun ... ./launch.sh ./mas ....

#!/bin/bash
# Assume 1 GPU per MPI local rank
# Set device for this MPI rank:
export CUDA_VISIBLE_DEVICES="

$OMPI_COMM_WORLD_LOCAL_RANK"
# Execute code:
exec $*

Listing 6. Bash script (launch.sh) used to launch Codes 5 (D2XU)
and 6 (D2XAd).

While this example is specific to the OpenMPI library
(which is bundled with the NV HPC SDK), similar envi-
ronment variables exist in other MPI libraries.

With the previous step completed, we have achieved our
goal of obtaining a version of the code with zero OpenACC
directives that can be run on multiple GPUs. It also allows
us to reduce the size of the code further by removing a series
of duplicate routines that were needed in the OpenACC
implementation. A number of routines in MAS are called
both in the setup phase and the computational portion of the
code. Since the setup phase contains a very large amount of



code but accounts for only a negligible amount of run time,
we did not want to port all of the setup code to GPUs.
This caused a problem since the ported routines assume
the data is on the GPU. Now that we are using unified
managed memory, we can remove the CPU-only versions of
these routines, as the GPU-CPU paging overhead during the
small setup phase should not significantly affect the overall
performance of the code.

F. Code 6 [D2XAd]: DC2X for all loops, some code modi-
fications, OpenACC for data management

As we will see in the next section, the use of UM
has a very bad effect on performance for the MAS code.
Therefore, we add one more version of the code to our
list. In this version (D2XAd), our goal is similar to Code
5 (D2XU) in trying to get the absolute lowest number of
OpenACC directives possible (using experimental features,
code modifications, etc.), but here we also require that the
performance is on par with Code 1 (A) and Code 2 (AD). To
do this, we start with Code 5 (D2XU) and put back in all the
OpenACC manual data movement directives to allow us to
run without using UM (this also required us to put back all
the duplicate CPU-only routines mentioned in the previous
section). We then modified the code to use wrapper routines
for creating and initializing arrays on the GPU, reducing the
number of required data movement directives. The resulting
code has 277 OpenACC directives, which is over 5 times
fewer than our original Code 1 (A), and almost 50% less
than Code 2 (AD), while retaining similar performance (see
next section).

V. PERFORMANCE TESTS

A. Test Case

To test the performance of our implementations, we use a
production quasi-steady-state coronal background simulation
from Ref. [26] that uses a full thermodynamic MHD physics
model. The problem is set to a resolution of 36 million
cells and run for the first 24 minutes of its 48 hour physical
simulation time. A visualization of the resulting solution is
shown in Fig. 1. The resolution is chosen to represent a
medium-sized case that can also fit into the memory of a
single NVIDIA A100 (40GB) GPU. For all test runs, the
solutions were validated against that of the original code to
within solver tolerances.

B. Hardware and Software Environment

We test the code versions using a single 8xGPU node
of NCSA’s Delta13 supercomputer. The node is dual-socket,
with two AMD EPYC Milan 7763 CPUs and a total of eight
NVlink-connected NVIDIA A100 (40GB) GPUs, each of
which has a peak theoretical memory bandwidth of 1,555
GB/s. We compile the codes with the NVIDIA HPC SDK’s

13https://delta.ncsa.illinois.edu

Figure 1. Visualization of the MAS solution for the test case. Cuts of
temperature from the last time step are shown and plotted on a stretched
grid.

nvfortran compiler version 22.11 and the OpenMPI
library version 3.1.3 (we did not use OpenMPIv4 with UCX
as its performance and compatibility was not on par with
OpenMPIv3). For our baseline CPU tests, we use the dual-
socket AMD EPYC 7742 CPU nodes on SDSC’s Expanse14

supercomputer, each having a maximum theoretical memory
bandwidth of 381.4 GiB/s (409.5 GB/s). We use GCC’s
gfortran compiler version 10.2.0 with the OpenMPI MPI
library version 4.0.4.

C. Performance Results

Here we test the performance of each of the six code
versions described in Sec. IV. First, we run Code 1 (A)
and Code 2 (AD) on the dual-socket AMD EPYC CPU
nodes on Expanse. Besides giving a baseline performance,
this also checks that using DC does not negatively affect
portability and performance (at least for the specification-
compliant version). The results are shown in Table. III and
show that the DC version of the code runs equivalently to
the original code on the CPUs.

Table III
WALL CLOCK TIME (IN MINUTES) FOR THE TEST PROBLEM RUN ON

DUAL-SOCKET AMD EPYC 7742 CPU NODES.

# Nodes Code 1 (A) Code 2 (AD)
1 725.54 725.53
8 79.58 79.64

The timings for all six versions of the code run from
one to eight NVIDIA A100 (40GB) GPUs on a Delta GPU
node are shown in Fig. 2. We see that Codes 1 (A), 2
(AD), and 6 (D2XAd) exhibit ‘super’ scaling at first, and
then the scaling dips below the ideal rate. However, due
to the initial super scaling, all these codes exhibit better
than or close to ideal scaling at 8 GPUs. We also see that
Codes 2 (AD) and 6 (D2XAd), which use DC, are both

14https://www.sdsc.edu/services/hpc/expanse
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Figure 2. Wall clock time for the test problem run on an 8xA100 (40GB)
GPU node. For each result, the average of three runs is shown, with the
minimum and maximum time runs shown as an error bar.

somewhat slower than Code 1 (A). Possible reasons for this
are kernel fission, loss of asynchronous kernels, and different
compiler offload parameters between the OpenACC and DC
kernels. Code 6 (D2XAd) is also seen to be a bit slower
than Code 2 (AD), which is likely due to additional array
initialization kernels in the wrapper routines in places where
the original code did not initialize the arrays to zero. Codes
3 (ADU), 4 (AD2XU), and 5 (D2XU) have greatly reduced
performance and scaling. In Fig. 3, we show the results for 1
and 8 GPUs, highlighting the MPI overhead time. The MPI
time is greatly increased in the codes that use UM, and the
non-MPI time is increased as well (but to a much smaller
degree). All the codes that exhibit worse performance have
similar timings, and all use UM. Since Code 3 (ADU) is
equivalent to running Code 2 (AD) with UM enabled, these
results indicate that the UM is the cause of the performance
drop, not DC. We confirmed this by running Code 1 (A) and
Code 2 (AD) with UM and got similar timings to Code 3
(ADU). To explore why UM is causing such a large drop in
performance, we ran the NVIDIA NSIGHT Systems profiler
for the 8-GPU run of Code 1 (A) with both manual memory
management and UM. The results are shown in Fig. 4. We
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Figure 3. Run times for the test problem on 1 (top) and 8 (bottom) A100
(40GB) GPUs. For each result, the average of three runs is shown, with
the minimum and maximum wall clock times shown as an error bar. The
MPI time (including all MPI calls, buffer initialization/loading/unloading,
and MPI waiting caused by load imbalance) is shown in maroon, while the
remainder of the wall clock time is shown in green.

see that the manually managed memory allows for GPU
peer-to-peer data transfers in the MPI halo exchanges, while
the UM performs multiple CPU-GPU transfers, leading to a
slowdown. The UM run also had more overhead as seen
in the larger gaps between kernel launches. Overall, the
manual memory management run completes almost three
full iterations in the same time it takes the UM run to
complete one. The developers at NVIDIA have recognized
this problem, and are working on a way to resolve it15.

VI. SUMMARY AND OUTLOOK

Out of the six code versions we tested, we highlight
three. First, Code 1 (A, our original OpenACC code) is
the best performing version. This is due to manual memory
management, and OpenACC’s ability to have asynchronous
kernel launches, and kernel fusion. The second code we

15Jeff Larkin, NVIDIA Corp. personal correspondence



Figure 4. NVIDIA NSIGHT Systems time profile of viscosity solver iterations in MAS using OpenACC manual memory management (top) and unified
managed memory (bottom) for Code 1 (A) on 8 A100 GPUs. We see that the manually managed memory results in GPU peer-to-peer data transfers within
the MPI halo exchanges, while the unified memory performs multiple CPU-GPU transfers, leading to a slowdown. This, along with more overhead, makes
computing a solver iteration three times slower with unified memory management than with manual memory management.

highlight is Code 5 (D2XU). This code shows the potential
of standard languages as it can run on multiple GPUs with-
out using a single OpenACC directive. Although it suffers
from performance degradation due to UM, we expect this
to be a temporary setback which will be solved with further
development of the compilers, MPI libraries, and system
integration improvements. Code 5 (D2XU) also required us
to inline some functions by hand, use inlining compiler flags,
and use an alternative method for launching the code with
MPI. Some of these requirements are expected to be avoided
with future compiler releases as well. The last code we
highlight is Code 2 (AD). It adheres to the current Fortran
specification, has performance nearly as good as Code 1
(A), can still compile with all major CPU compilers, and
has greatly reduced the number of OpenACC directives from
1458 to 540. It shows that the performance of the DC loops
are competitive with OpenACC as long as one uses manual
GPU-CPU data movement. Adding in some of the Code
5 (D2XU) and Code 6 (D2XAd) modifications (as well as
others) can bring the number of OpenACC directives even
lower, and such a modified version has become our new
production GPU version.

With further development and cross-vendor support, we
hope to eventually have a single code base capable of
running on multiple vendors’ accelerator hardware without
the need for directives at all. This will be extremely valuable
for maintaining a high-performance, portable, accelerated
code, while also allowing domain scientists to develop
it in standard Fortran. Although directives can be more
straightforward to use than low-level APIs, they still require
domain scientists to learn an unfamiliar syntax (and how to
properly utilize it), hindering productivity. With a standard

language approach, they can focus on their implementations,
comfortable in the language (with minor adjustments) they
have been using for decades.

In the meantime, for our codes, we expect to need some
amount of OpenACC support for years to come. We highly
encourage vendors to maintain and/or add such support (as
it is often used instead of OpenMP for GPU applications),
until the standard languages are ready for full cross-vendor,
cross-platform use.
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and P. Saint-Hilaire, “Probing the Solar Magnetic Field with a
Sun-Grazing Comet,” Science, vol. 340, no. 6137, pp. 1196–
1199, Jun. 2013.
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