
OpenACC Validation and Verification
Testsuite

Sunita Chandrasekaran, UDEL, BNL (scandra@udel.edu)
Aaron Jarmusch and Christian Munley, UDEL

Computational Research and Programming Lab

Project Members:
UDEL: Aaron Liu, Will Gunter, Daniel Horta, Vaidhyanathan

Ravichandran
ORNL: Joel Denny

Thank you OpenACC organization for supporting our work 12/7/23

mailto:scandra@udel.edu

Goal

Create unit tests to
validate & verify

compilers’
implementation of

the OpenACC
specification

OpenACC Validation & Verification Testsuite
Revealing ambiguities in the OpenACC Specification

Determining missing implementation of a feature

Highlighting unmentioned restriction of a feature

Identifying and reporting compiler bugs

Evaluating implementations for multiple target
platforms

2 crpl.cis.udel.edu/oaccvv

Jarmusch, A. M., Liu, A., Munley, C., Horta, D.,Ravichandran, V., Denny, J., & Chandrasekaran, S. (2022). Analysis of Validating and Verifying
OpenACC Compilers 3.0 and Above, 2022 Workshop on Accelerator Programming Using Directives (WACCPD), (pp. 1-10), IEEE.

Friedline, K. Chandrasekaran, S. Lopez, Graham M., Hernandez, O. OpenACC 2.5 Validation Testsuite targeting multiple architectures. (pp.
557-575), 2nd (P^3MA) co-located with ISC, Germany, 2017. Springer International Publishing 2

Links to resources
• Open Source V&V Suite

– https://github.com/OpenACCUserGroup/OpenACCV-V

• Website with results populated
– https://crpl.cis.udel.edu/oaccvv/

• Example guide OpenACC
– https://github.com/OpenACC/openacc-examples

• Practice codes
– https://github.com/Vaidh10/OpenACC-Practicecodes

3

https://github.com/OpenACCUserGroup/OpenACCV-V
https://github.com/Vaidh10/OpenACC-Practicecodes

Status of OpenACC Testsuite Coverage

94 %
OVERALL coverage up to OpenACC

Version 3.3

84% - OpenACC Version 3.3
100% - OpenACC Version 3.2
93% - OpenACC Version 3.1
95% - OpenACC Version 3.0
100% - OpenACC Version 2.7

Results page:
https://crpl.cis.udel.edu/oaccvv/results/

439 C tests 452 C++ tests 440 Fortran
tests 4

5

Example - gang dimensions
for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {
arr1[i][j] = rand() / (real_t)(RAND_MAX / 10);
arr2[i][j] = arr1[i][j] + 1;

}
}
#pragma acc parallel num_gangs(n,n)
#pragma acc loop gang(dim:2)
for (int i = 0; i < n; i++)
{

#pragma acc loop gang(dim:1)
for (int j = 0; j < n; j++)
{

arr1[i][j] = arr1[i][j] + 1;
}

}
for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {
if (fabs(arr1[i][j] - arr2[i][j]) > PRECISION) {

err = 1;
}

}
}

6

Infrastructure Overview
Git Clone
https://github.com/OpenACCUser

Group/OpenACCV-V.git

Edit config
Compiler, flags, output format,

conditional compilation, etc

Run the python infrastructure
python3 infrastructure.py -

c=<config_input_file> -o=<output_file>
7

https://github.com/OpenACCUserGroup/OpenACCV-V.git
https://github.com/OpenACCUserGroup/OpenACCV-V.git

Change the Config
Required: Compilers,
compiler flags, output
format

Optional: runAllTests,
conditional compilation,
etc

8

OpenACC NVC and GCC V&V
results

nvhpc 23.11 on Perlmutter (A100s)

1331 Total Tests
1095 Tests Pass
236 Tests Fail (Compiler/Runtime)

gcc 12.1.1 on Perlmutter (A100s)

1331 Total Tests
1051 Tests Pass
280 Tests Fails (Compiler/Runtime)

9

10

OpenACC V&V results
Cray Fortran 16.0.1 Frontier (AMD MI250x)

440 Total Tests
304 Tests Pass
136 Tests Fails (Compiler/Runtime)

Clacc Perlmutter (September) (NVIDIA A100s)

439 Total Tests
227 Tests Pass
212 Tests Fails (Compiler/Runtime)

Could we automate subsets of V&V tests?
How do we do so? Pros and Cons

11

LLMs for compiler implementations’ validation -
Opportunities

• Standard specification evolves
• Programmers must learn and adapt: regular development
• Could we use LLMs to automate?

– Programmers’ time could be relieved from writing simple
unit/functional tests and better spent writing
corner/regression/unique test cases

– Or could we use LLMs for these too? We are NOT there
yet!!

12

LLMs for compiler implementations’ validation -
Challenges

• Prompts? Fine-tune? Train new LLMs?
• How to determine the quality of the LLM-generated tests?
• How do we tackle “hallucinations”?
• Watch out for carbon footprint when training LLMs

– (GPT3 carbon emissions equivalent to driving 123 gasoline-
powered cars for a year)

13

Preliminary Findings using LLMs

14

Testsuite Generation for OpenACC w/ LLMS

● OpenAI GPT-3.5, GPT-4
● Meta’s Codellama-34B-Instruct, Phind-Codellama-34B-v2
● Prompt engineering:
○ Prompts built from table of contents of the specification
○ Retrieval Augmented Generation (RAG), one-shot prompt

● Fine-tuning
● Stages of analysis

15

16

Stages
● Stage 1: 95 prompts

○ built from spec. table of content, only in C
○ 5 testsuites generated per LLM (prompt methods, fine-tuning)
○ Each ran, recording compile/runtime fail or pass.
○ Goal: compare methods

● Stage 2: 351 prompts
○ C/C++/Fortran, permutations of compute construct clause tests
○ 1 testsuite per LLM
○ Goal: compare LLMs

● Stage 3 - analyze correctness

Some outcomes
• Meta’s Codellama-34b-Instruct – produced 41 passing tests out of 335
• Phind-Codellama-34b-v2 - produced 95 passing tests
• OpenAI’s GPT 4 - produced 109 passing
• OpenAI’s GPT-3.5-ft - produced 43 passing

1717

Findings

18

• Impressive performance on task, but room for improvement
• Benchmarks indicative of relative LLM performance

– Task-specific benchmark will be useful
• Template > one-shot …
• Performance is very sensitive to prompts
• Sometimes the test is right, sometimes it's not!
• Still need manual intervention

Improvements

19

• Domain specific fine-tuning
• Prompt
• Train HPC code model
• Task-specific benchmark

Summary
• Work in collaboration with OpenACC since 2017
• Compilers have evolved over a period of time
• Project is feedback-driven; input from vendors

matters
• Time to think about which parts of the suite can

be automated and how

