IVERSITY or
EIAWARE

OpenACC Validation and Verification
Testsuite

Sunita Chandrasekaran, UDEL, BNL (scandra@udel.edu)
Aaron Jarmusch and Christian Munley, UDEL

Computational Research and Programming Lab

Project Members:

UDEL: Aaron Liu, Will Gunter, Daniel Horta, Vaidhyanathan
Ravichandran

ORNL: Joel Denny

12/7/23 Thank you OpenACC organization for supporting our work

mailto:scandra@udel.edu

NIVERSITYox
%I:‘In\\"\"}\RE

OpenACC Validation & Verification Testsuite

Goal Revealing ambiguities in the OpenACC Specification
oa

Create unit tests to
validate & verify
compilers’
implementation of
the OpenACC
specification

Determining missing implementation of a feature

Highlighting unmentioned restriction of a feature

Evaluating implementations for multiple target
platforms

20 & ©

|dentifying and reporting compiler bugs

Jarmusch, A. M., Liu, A., Munley, C., Horta, D.,Ravichandran, V., Denny, J., & Chandrasekaran, S. (2022). Analysis of Validating and Verifying
OpenACC Compilers 3.0 and Above, 2022 Workshop on Accelerator Programming Using Directives (WACCPD), (pp. 1-10), IEEE.

Friedline, K. Chandrasekaran, S. Lopez, Graham M., Hernandez, O. OpenACC 2.5 Validation Testsuite targeting multiple architectures. (pp.2
557-575), 2nd (PA3MA) co-located with ISC, Germany, 2017. Springer International Publishing

NIVERSITYor
EIAWARE

Links to resources

Open Source V&V Suite
— https://github.com/OpenACCUserGroup/OpenACCV-V

Website with results populated

— https://crpl.cis.udel.edu/oaccvv/

Example guide OpenACC

— https://github.com/OpenACC/openacc-examples
Practice codes

— https://github.com/Vaidh10/OpenACC-Practicecodes

https://github.com/OpenACCUserGroup/OpenACCV-V
https://github.com/Vaidh10/OpenACC-Practicecodes

NIVERSITYox
%I:‘In\\"\"}\RE

Status of OpenACC Testsuite Coverage

94 % 84% - OpenACC Version 3.3

100% - OpenACC Version 3.2
93% - OpenACC Version 3.1

95% - OpenACC Version 3.0
100% - OpenACC Version 2.7

OVERALL coverage up to OpenACC
Version 3.3

Results page:
https://crpl.cis.udel.edu/oaccvv/results/

440 Fortran }

439 C tests 452 C++ tests
tests

JIVERSITY o
e

Results

These results were last reviewed September 14, 2023

To get a quick overview of the results, please refer to the Summary tab. For in-depth analysis of runtime errors and other details, please check out
the Results tab. The filter functionality only works on the Results tab.

Filter o Compiler results (CR) Runtime results (RR)

results - | Choose from v| ‘ Choose from V’ | Choose from VI | Choose from v| ‘ Choose from VI

Summary Results

Test Name System NVC NVC GCC GCC Cray Cray Clacc Clacc
Name 231 231 122 122 1500 1500 #4879%9e9 #4879%e9
CR RR CR RR CR RR CR RR
1 acc_async_test.c Perlmutter Pass Pass - - - - - -
2 acc_async_test.c Crusher - - Fail Fail - - - -

2 acc asvnce test e Stimmit - - Fail Fail - - - -

NIVERSITYor
EIAWARE

Example - gang dimensions

for(inti=0;i<n;i++) {
for(intj=0;j<n;j++) {
arrl[i][j] = rand() / (real_t)(RAND_MAX / 10);
arr2[i][j] = arr1[i][j] + 1;
}
}
#pragma acc parallel num_gangs(n,n)
#pragma acc loop gang(dim:2)
for (inti=0;i<n;i++)
{
#pragma acc loop gang(dim:1)
for (intj=0;j < n;j++)
{
arrd[i][j] = arrl[i][j] + 1;
}
}
for(inti=0;i<n;i++) {
for(intj=0;j<n;j++) {
if (fabs(arri[i][j] - arr2[i][j]) > PRECISION) {
err=1;
}
}
}

3
o

g 33 33

g3 R

e Allowed three dimensions of gang parallelism:

— Defined multiple levels of gang-redundant and gang-partitioned execution modes. See
Section 1.2

— Allowed multiple values in the num_gangs clauses on the parallel construct. See
Section 2.5.10.

— Allowed a dim argument to the gang clause on the loop construct. See Section 2.9.2.

— Allowed a dim argument to the gang clause on the routine directive. See Sec-
tion 2.15.1.

— Changed the launch event information to include all three gang dimension sizes. See
Section 5.2.2.

IVERSITY or
EIAWARE

Infrastructure Overview

Git Clone Fig. 1: Overview of the infrastructure

System Information —P[Initial Testsuite Call I

https://github.com/OpenACCUser |sesfsmmesmmo

Summit 1 [ConfigA | Confige | ConfigC |

.]
G rO U p / O p e n AC CV_V . g | t Config Name | Config Info | Config ID Test Fitters: ACC_VERSION=2.0 INCLUDE_TAGS=compatibility-features
Config A 1
— ConfigB 2 Test Directive
Config C 3

I—- Test Files List acc_copyin.c test's tags
T1 acc_copyin.c
Tost List Info | Test Let D Sl
] ; T2| acc_copyin F90
iE

Edit config
Compiler, flags, output format,

——

»

o, 0 . .
conditional compilation, etc Resot
Test Name | Test List ID TestID Index
e ooy T T B Config A[Config B[Config C
acc-copym r 3 3 3 Results [Resuns lResults
acc:conym q 1 T4 2
lacc_copyin.cf 1 T5 3
. - [- ‘—I
Complication Result Runtime Results
R u n t h e pyt h O n I n fra St r u Ct u re Stderr Stdout |retumn code| command | Config ID Stderr Stdout return code | System ID

0 1 0 1

python3 infrastructure.py - g T o -
c=<config_input_file> -o=<output_file> g f

https://github.com/OpenACCUserGroup/OpenACCV-V.git
https://github.com/OpenACCUserGroup/OpenACCV-V.git

IVERSITY or

- -

Change the Config

OpenACCV-V /init_config.txt (&

¥ chrismun fixed config file typo

| Code I Blame 181 lines (139 loc) -+ 5.61 KB

0 NG R W N R

NN RNNRNRERBR R R B R B R
FWNPRPS®OW®ONOOH»WNROS

!Welcome to the OpenACC Validation Suite Configuration File

5be87aa - 5 months ago @ History

Raw O & 2 - [

#You can add comments either with the '!' or '#' symbols if you would like.
ITo this end, I will give examples of how to use each of the settings that are configurable in the config file.
#If you would like one to be active, uncomment it and customize it :)

IThe first settings are the compiler settings. Just set this to whatever you want to be invoked as the compiler
IIf you don't have these set up in your path, you can also give full paths to be used

ICC:gcc
ICPP:g++
'FC:gfortran

!In addition to these, you will want to add some flags.

ISome of the features in the infrastructure use C Pre-Processor directives, so please make sure that is enabled.

IIf enabling them is impossible, the infrastructure will be unable to detect which portions of the tests are causing

!compilation/runtime errors.

ICCFlags:~fopenacc -cpp -1lm -foffload='~1m"
ICPPFlags:~fopenacc -cpp -1m -foffload='-1m'
!FCFlags:-fopenacc -cpp -1m -foffload='~1m’

!Below are a few more things that should probably be specified.
ITestDir:/home/<user>/0OpenACCV-V/Tests
1BuildDir/home/<user>/0OpenACCV~V/Build

The script will do its best, but sometimes it will

Required: Compilers,
compiler flags, output
format

Optional: runAllTests,
conditional compilation,
etc

IVERSITY or
EIAWARE

NVIDIA nve

OpenACC NVC and GCC V&V
results

500
400
300
200

nvhpc 23.11 on Perimutter (A100s)

100

0

" 1331 Total Tests
1095 Tests Pass

236 Tests Fail (Compiler/Runtime)

Perlmutter GCC

M Fail M Pass
gcc 12.1.1 on Perimutter (A100s)

400

300

1331 Total Tests
1051 Tests Pass
280 Tests Fails (Compiler/Runtime)

200

100

0

NIVERSITYor
EIAWARE

Frontier Cray

300
200

100

Clacc

300
200

100

OpenACC V&YV results

Cray Fortran 16.0.1 Frontier (AMD MI250x)

440 Total Tests
304 Tests Pass
136 Tests Fails (Compiler/Runtime)

Clacc Perlmutter (September) (NVIDIA A100s)

439 Total Tests
227 Tests Pass
212 Tests Fails (Compiler/Runtime)

10

NIVERSITYor
EIAWARE

Could we automate subsets of V&V tests?
How do we do so? Pros and Cons

11

NIVERSITYox
EIAWARE

LLMs for compiler implementations’ validation -
Opportunities

e Standard specification evolves
e Programmers must learn and adapt: regular development

e Could we use LLMs to automate?
— Programmers’ time could be relieved from writing simple

unit/functional tests and better spent writing

corner/regression/unique test cases
— Or could we use LLMs for these too? We are NOT there

yet!!

12

NIVERSITYox
EIAWARE

LLMs for compiler implementations’ validation -
Challenges

Prompts? Fine-tune? Train new LLMs?

How to determine the quality of the LLM-generated tests?

How do we tackle “hallucinations”?

Watch out for carbon footprint when training LLMs

— (GPT3 carbon emissions equivalent to driving 123 gasoline-
powered cars for a year)

13

NIVERSITYox
EIAWARE

Preliminary Findings using LLMs

- Qe We gratefully acknowledge sug
Cornell University member institu

dI X1V > cs > arXiv:2310.04963 Help | Advanced Se

Computer Science > Artificial Intelligence
[Submitted on 8 Oct 2023 (v1), last revised 5 Nov 2023 (this version, v2)]

LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation
Christian Munley, Aaron Jarmusch, Sunita Chandrasekaran

Large language models (LLMs) are a new and powerful tool for a wide span of applications involving natural language and demonstrate impressive code
generation abilities. In this paper, we explore the capabilitity of state-of-the-art LLMs, including closed-source options like OpenAl GPT-4 and open-source
alternatives like Meta Al Codellama, to automatically generate tests and use these tests to validate and verify compiler implementations of a directive-based
programming paradigm, OpenACC. Our approach entails exploring various prompt engineering techniques including a code template, retrieval-augmented
generation (RAG) with code template, expressive prompt using RAG with code template, one-shot example, and RAG with one-shot example. This paper focuses
on (a) exploring the capabilities of the latest LLMs for code generation, (b) investigating prompt and fine tuning methods, and (c) analyzing the outcome of LLMs
generated tests

Subjects: Artificial Intelligence (cs.Al)

Cite as: arXiv:2310.04963 [cs.Al]
(or arXiv:2310.04963v2 [cs.Al] for this version)
https://doi.org/10.48550/arXiv.2310.04963 @

Submission history

From: Sunita Chandrasekaran [view email]

[v1] Sun, 8 Oct 2023 01:43:39 UTC (1,281 KB)
[v2] Sun, 5 Nov 2023 20:53:13 UTC (1,283 KB)

14

NIVERSITYox
EIAWARE

Testsuite Generation for OpenACC w/ LLMS

e OpenAl GPT-3.5, GPT-4
® Meta’s Codellama-34B-Instruct, Phind-Codellama-34B-v2
e Prompt engineering:

O Prompts built from table of contents of the specification
O Retrieval Augmented Generation (RAG), one-shot prompt

® Fine-tuning
e Stages of analysis

15

NIVERSITYox
EIAWARE

Stages

e Stage 1: 95 prompts
O built from spec. table of content, only in C
O 5 testsuites generated per LLM (prompt methods, fine-tuning)
O Each ran, recording compile/runtime fail or pass.
O Goal: compare methods
e Stage 2: 351 prompts
o C/C++/Fortran, permutations of compute construct clause tests
O 1 testsuite per LLM
O Goal: compare LLMs
e Stage 3 - analyze correctness

16

NIVERSITYor
EIAWARE

Some outcomes

Meta’s Codellama-34b-Instruct — produced 41 passing tests out of 335
Phind-Codellama-34b-v2 - produced 95 passing tests
OpenAl’s GPT 4 - produced 109 passing

J .
OpenAl’'s GPT-3.5-ft - produced 43 passing [_ ..
90.00%
80.00%
70.00%
100.00%
0.00% | BN | 0000
80.00% 50.00%
70.00% 40.00%
60.00%
50.00% 30.00%
40.00%
30.00% ® Pass S
20.009% Runtime Fail 10.00%
10.00% = Compile Fail r—
0.00% ® Parsing Eror ' Passing Failing
&
é{\) “?‘v* o"\& e
\,,o" : 2 3‘9\\ Figure 7: Stage 3 results displaying the analysis of a representative subset of
Gﬁb \.f'b 'b"”« generated tests by GPT-4. Green - True pass. Red - False Pass. Blue - Fails with
q&“&‘ (f (32« issues in base language or compiler implementation. Yellow - Fails with incor-
rect OpenACC usage. The analysis shows that most passing tests are ccir;ect

tests, whereas failing tests occur due to various reasons.

NIVERSITYor
Iﬂ)lilf,\\-‘\{»'\lili

Findings

Impressive performance on task, but room for improvement
Benchmarks indicative of relative LLM performance

— Task-specific benchmark will be useful

Template > one-shot ...

Performance is very sensitive to prompts

Sometimes the test is right, sometimes it's not!

Still need manual intervention

18

NIVERSITYox
EIAWARE

Improvements

Domain specific fine-tuning
Prompt

Train HPC code model
Task-specific benchmark

19

NIVERSITYor
EIAWARE

Summary

. Work in collaboration with OpenACC since 2017
. Compilers have evolved over a period of time

. Project is feedback-driven; input from vendors
matters

. Time to think about which parts of the suite can
be automated and how

