
QUANTUM ESPRESSO: One Further Step toward the Exascale
Ivan Carnimeo,* Fabio Affinito, Stefano Baroni, Oscar Baseggio, Laura Bellentani, Riccardo Bertossa,
Pietro Davide Delugas, Fabrizio Ferrari Ruffino, Sergio Orlandini, Filippo Spiga, and Paolo Giannozzi

Cite This: https://doi.org/10.1021/acs.jctc.3c00249 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We review the status of the QUANTUM ESPRESSO
software suite for electronic-structure calculations based on plane
waves, pseudopotentials, and density-functional theory. We high-
light the recent developments in the porting to GPUs of the main
codes, using an approach based on OpenACC and CUDA FORTRAN

offloading. We describe, in particular, the results achieved on linear-
response codes, which are one of the distinctive features of the
QUANTUM ESPRESSO suite. We also present extensive performance
benchmarks on different GPU-accelerated architectures for the main
codes of the suite.

1. INTRODUCTION
High-performance computing (HPC) is approaching the
exascale, that is, 1018 floating-point operations per seconds
(flops). This means that calculations that took hundreds of
hours 30 years ago could now be performed in tens of seconds,
at least in principle. HPC has thus become a strategic asset for
industrial and technological development of countries. Several
exascale and pre-exascale machines are in the preproduction
state or already fully operational. For such a class of machines,
graphics processing unit (GPU) acceleration has become a de
facto standard, and almost all of the first five entries in the
Top5001 list of supercomputers are currently based on GPU
acceleration.

This context has proved to be particularly fertile for
molecular and material sciences that have evolved in parallel
with the advances in computer science. Nowadays, most of the
main codes for molecular and material modeling are
accelerated or are in the process of being ported to accelerated
architectures. In this respect, the QUANTUM ESPRESSO
software suite2−5 can boast a long experience: the first
accelerated working version dates back to several years ago
(2017), and the release qe-6.4 (March 2019) was the first one
to be officially distributed by the QUANTUM ESPRESSO
FOUNDATION

6 having a GPU counterpart for the most
important core functionalities. This first porting phase,
covering only the main self-consistent code PWSCF, is
described in ref 2.

Since then, a great effort has been devoted to the
improvement of the GPU version of PWSCF and to the porting
of the other codes of the suite to GPU-accelerated
architectures. The latest release of QUANTUM ESPRESSO,

namely, qe-7.2, enables GPU execution of the linear-response
codes: PHONON,7,8 turboEELS,9,10 turboLanczos,11,12 HP,13−15

and of the molecular-dynamics code CP.16

The aim of this work is thus dual: on the one hand, we want
to disclose some important developments done in the GPU
porting of QUANTUM ESPRESSO since the first article2 was
published. On the other hand, we also want to provide more
detailed information�that is missing in the literature�about
performances of the codes of the suite on the current state-of-
art HPC supercomputers, highlighting advantages, drawbacks,
and the most effective parallelization schemes for GPU
execution.

The structure of this paper is as follows: Section 2 describes
the main new developments of the codes, together with the
general philosophy and the technical approach followed for the
porting; Section 3 presents selected benchmark tests on GPU
for some of the main codes (PWSCF, PHONON, turboEELS,
CP) of the QUANTUM ESPRESSO suite; Section 4 contains our
conclusions.

2. CODE DEVELOPMENT
2.1. General Philosophy. Our approach has been

developed within the separation of concerns2 philosophy:
ideally, method developers in science departments and

Special Issue: Electronic Structure Theory Packages of
Today and Tomorrow

Received: March 5, 2023

Articlepubs.acs.org/JCTC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jctc.3c00249

J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d

vi
a

21
6.

22
8.

12
7.

12
9

on
 O

ct
ob

er
 2

, 2
02

3
at

 2
1:

14
:1

7
(U

T
C

).
Se

e
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ivan+Carnimeo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabio+Affinito"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefano+Baroni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oscar+Baseggio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+Bellentani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Riccardo+Bertossa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pietro+Davide+Delugas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pietro+Davide+Delugas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabrizio+Ferrari+Ruffino"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergio+Orlandini"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filippo+Spiga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paolo+Giannozzi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.3c00249&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/current?ref=pdf
https://pubs.acs.org/toc/jctcce/current?ref=pdf
https://pubs.acs.org/toc/jctcce/current?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

research laboratories should be concerned with the calculation
of physical properties, disregarding architectural details,
whereas scientists and research engineers in IT departments
and HPC centers should focus on low-level mathematical and
system libraries. Separation of concerns is the overarching
guideline for the action of the EU MAX Centre of Excellence
(CoE) for HPC Applications,17 whose mission is to foster the
porting of important community codes for quantum materials
modeling to heterogeneous architectures. The MAX way to
separation of concerns is to refactor community codes into a
software stack of conceptually distinct�though in practice
partially overlapping�components. The core of the code is a
quantum engine whose main purpose is to perform Hamiltonian
builds, i.e., the application of the Hamiltonian operator to
molecular/Bloch orbitals and related operations, and to solve
the quantum-mechanical equations that determine them and
their response to external perturbations. The quantum engine
is complemented by various property calculators, designed to
evaluate specific properties and to simulate specific processes
of molecular and extended systems. Both the quantum engine

and the property calculators leverage a number of modules and
mathematical and system libraries. Modules are homogeneous
software components that share the same coding style and
naming conventions and may share global variables with other
modules, with the quantum engine and property calculators.
Modules are not designed for extended portability and their
adoption in third-party software in general requires the
adoption of at least some of the internal data structures of
QUANTUM ESPRESSO. Domain-specific mathematical libraries
address various general-purpose mathematical operations (e.g.,
three-dimensional fast Fourier transforms, linear algebra based
on both factorization and iterative techniques, minimization
and extrapolation to self-consistency, etc.). Ideally, libraries
should not rely on any global variables but trade data with the
calling program units only through well-designed public
application programming interfaces (APIs). Although do-
main-specific libraries are specialized for and take advantage
of the specific features of plane-wave electronic-structure
codes, they can be easily adopted by third-party codes without
major concerns about their internal data structure. Finally,

Figure 1. Progression of GPU porting over the different versions of the QUANTUM ESPRESSO suite. In gray and orange are the nonported and
ported features, respectively.

Figure 2. Comparison between CUDA FORTRAN and OpenACC codes.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

system libraries perform various low-level tasks, including the
offload of data to hardware accelerators, the management of
inter- and intranode data communications, etc. System libraries
play a key role in our sustainable model of software
development and maintenance. By abstracting as much as
possible data management and communications, it is possible
to maintain a large code base largely independently of the
underlying hardware architecture, thus avoiding or dramatically
limiting code duplication and freeing the developers of high-
level software layers from the need to operate with hardware-
specific directives.2

2.2. GPU Porting. In Figure 1 a brief summary of the
progress of the porting of the QUANTUM ESPRESSO suite over
subsequent releases is shown, starting from release qe-6.4
(March, 2019) to the last qe-7.2 version (March 2023).

Earlier versions of the suite were accelerated using a
programming model fully based on the CUDA FORTRAN

language, that, on the one hand, provided significant speed-ups
with respect to the nonaccelerated counterpart but, on the
other hand, intrinsically required duplication of code and
variables, on host and device sides (see, for example, the
pseudocode in Figure 2). As a consequence, for each
accelerated portion of the native FORTRAN code, a number of
“_gpu.f90” files were created that included GPU counterparts
of the original subroutines and modules.

Figure 3 shows a steady increase in the number of lines of
“_gpu.f90” files with an increasing number of CUDA FORTRAN

(”cuf”) kernels, until the end of 2020. As the number and size
of the “_gpu.f90” files increased, the maintenance burden also
increased accordingly, hampering the porting of new features.
Furthermore, as mentioned in the previous section, QUANTUM

ESPRESSO is a community code where people with different
backgrounds are encouraged to contribute. Since developers
with no or little experience on GPU programming tend to add
features only to the CPU pathway of the codes, the two
pathways easily tend to diverge, and it becomes very difficult to
keep them aligned in the long term and to identify and fix bugs.

For these reasons, we switched to an alternative porting
model, mainly based on OpenACC, which also exploits

OpenACC/CUDA FORTRAN interoperability. The main
advantage of this approach, as briefly shown in Figure 2, is
that in this case host and device copies of the variables are
managed by directives and are referenced as the same variable
in the parent code, thus allowing us to have a unique source
code for both CPU and GPU compilation and execution. In
this way, the general structure of the code tends to remain
consistent even in the case of features added only on the CPU
side. Notably, CUDA FORTRAN has not been completely
removed but it has been retained in those cases for which it led
to a clear advantage. For example, it can be useful when the
differences between CPU and GPU architectures can be better
exploited using different algorithms, e.g., in case of large loops
batched on the cache size or Fast Fourier Transforms (FFT),
where in the CPU execution one band at time is processed,
whereas the heavy internal parallelism of GPU encourages us
to process many bands at once. Another example is for
FORTRAN interfaces (see Figure 2), where the “device” attribute
allows us to trigger specific host or device procedures (there is
not an equivalent within the OpenACC framework). The latter
case is especially helpful when general libraries call system-
specific backends of numerical libraries, which are specialized
for host or device execution. For example, the abc interface
referenced in Figure 2 can be representative of FFTXlib or
LAXlib, which internally call different host or device specific
numerical backends (e.g., cuFFT or cuSOLVER, referenced as
cpu_backend and gpu_backend) to respectively perform FFTs
and solve eigenproblems. Also, inside UtilXlib, different MPI
backends can be linked. OpenACC/CUDA FORTRAN inter-
operability has also been exploited to progressively substitute
CUDA FORTRAN portions with OpenACC directives, avoiding
the rewriting of an entire new code from scratch. After the
adoption of this approach in release qe-6.8 (beginning 2021)
the number of lines of code contained in the duplicated
“_gpu.f90” files dropped down as the number of OpenACC
directives increased, even with an increased number of ported
features (compare Figures 3 and 1). For example, in the latest
qe-7.2 release, the linear-response codes (PHONON, tur-
boEELS) are ported to GPU, but the number of lines in the
“_gpu.f90” files decreased by more than 10000 with respect to
the previous qe-7.1 release.

After this refactoring, the code is more clearly separated into
conceptually different layers with different scopes. In Figure 2
an “upper” layer of code can be schematically identified, which
contains most of the physics of the calculation, is strongly
based on OpenACC directives, and is quite agnostic of the
underlying computational architecture. Developers with no or
little experience in GPU programming can easily continue to
work here. A lower layer of code (represented by the abc
interface and subroutine) is based on more specific procedures
that specialize the computation for CPU and/or GPU
architectures. These procedures can be easily called in a
simple way from the parent code. Internally, these procedures
further specialize execution, calling numerical specific libraries
(represented by cpu_backend and gpu_backend) that are used
as the final backends of the computation and whose
development is the domain of computer scientists and deeply
specialized programmers. This is in line with the aforemen-
tioned separation of concerns philosophy,2,17 described in the
previous section.

2.3. Eigensolver. The default GPU implementation2 of the
eigenvalue solver is based on the cuSOLVER library: real and
complex Hamiltonian matrices are diagonalized with the

Figure 3. Estimate of CUDA FORTRAN and OpenACC directives in
the QUANTUM ESPRESSO codes over the years, where the reference
release version has been specified along the red line. Black line refers
to the left y-axis, red and blue lines refer to the right y-axis, and “acc
kernels” includes both OpenACC kernels and parallel directives.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

generalized eigenvalue problems using a single GPU. Although
very fast, this approach is limited by the available GPU
memory, becoming problematic for very large matrices (e.g.,
dimension beyond ∼7000 on a V100 NVIDIA GPU with
16GB VRAM). Moreover, the computational cost of a dense
eigenproblem solution scales as N()3 and may become
sizable for large matrices.

A recently implemented alternative approach (not yet
available in the production version) of a parallel dense-matrix
eigensolver on GPU is based on the Eigenvalue soLvers for
Petascale Applications (ELPA)18 library. ELPA implements
two types of distributed eigensolvers: one-stage (ELPA1) and
two-stage (ELPA2) diagonalization methods. The latter
algorithm is the most suitable for distributed-memory
architectures because it scales more efficiently, as global
communications are not required, and it has a faster
computational part.

The ELPA library relies on the matrix layout defined by the
ScaLAPACK library for parallel linear algebra; thus, it can be
used as a drop-in improvement in ScaLAPACK-based
applications like QUANTUM ESPRESSO.

2.4. Exchange−Correlation Library. Starting from the
qe-6.8 version, the code for computing exchange−correlation
(XC) kernels of QUANTUM ESPRESSO was encapsulated into
an independent library that also supports the usage of other
external XC libraries in a flexible way. The aim of this
refactoring was twofold: to ease the maintenance and the
development (notably, the addition of new functionals) of the
XC code and to seamlessly integrate the functionalities of the
popular Libxc library19 into QUANTUM ESPRESSO. The XC
library can be used by other electronic-structure softwares as
well.

The library covers the local-density (LDA), generalized-
gradient (GGA), and meta-GGA families of XC functionals. It
is interfaced to QUANTUM ESPRESSO through a set of wrapper
routines, which call either the internally provided functionals
or the ones from Libxc, depending on the input choice.
Therefore, the library consists of a few main routines that
provide the energy, potential, and potential derivatives on the
density grid and a number of initialization and setting routines
that manage additional dependencies. The library allows any
combination of internal and external (Libxc) functional forms.

The computational cost of the XC library is typically a small
fraction of the total. Nonetheless a GPU porting allows one to
avoid data movement and to significantly improve the
performance in the exchange−correlation potential calculation.
The simplicity of the driving algorithm: one main loop running
over the density grid, where the routines computing the
functional are called at each point, ensures optimal speed-up
with little intervention (a few OpenACC directives) on the
code. The input density (and possibly its derivatives) and the
output energy and potential arrays of the main XC routines are
assumed to be present on device memory, depending upon the
value of a logical optional variable. If the latter is false (or
omitted), then the offload is done internally to the library so
that the developer is not forced to care about the offloading.

2.5. Hybrid Functionals. The computation of the Fock
operator for hybrid functionals20−22 is still a hard task for
plane-wave-based codes. In this respect, a couple of major
advances have been included in the QUANTUM ESPRESSO
suite in the last years. In 2017, a new scheme for the parallel
computation of exact exchange based on a band-pair
parallelization approach was proposed by Barnes et al.23 and

integrated in the QUANTUM ESPRESSO suite. More or less in
the same period, Lin developed a new method based on an
Adaptively Compressed Exchange (ACE) operator24,25 that
allowed us to tear down the computational time of the self-
consistent field (SCF) step with no loss of accuracy. Such a
method was then implemented26 in the QUANTUM ESPRESSO
suite with some minor modifications, together with a variant
that exploits orbital localization27,28 to further reduce the
computational burden. Benchmark tests showed a dramatic
decrease in computational time to solution with respect to
previous implementations. On top of these methodological
developments, the entire exact-exchange code has been ported
to GPU.2

Recently, the implementation of hybrid functionals in
QUANTUM ESPRESSO has been improved with some minor
changes. Every time the ACE projector is updated during an
SCF calculation, it is also written on disk, in the same format
used for wave functions I/O, so that it can be read to speed-up
subsequent runs. The overall amount of memory and I/O
bandwidth required for storing the ACE projector is quite
relevant but generally affordable, as it is comparable to the
memory needed for storing the wave functions. This feature is
particularly useful in case one large calculation with an hybrid
functional is stopped or crashes before reaching convergence,
for example, due to wall time limit policies of the queue
systems of HPC centers. In this case, the calculation can be
recovered by reading the ACE projector and the wave
functions from disk and restarting the calculation from the
last (previously stopped or crashed) outer iteration, skipping
the first exact exchange calculation of the restart.

The feature mentioned above is also very useful for band-
structure calculations. In this case, one usually needs to
perform a very heavy SCF calculation on a large and dense
uniform (Monkhorst−Pack29) grid, including many virtual
orbitals to compute unoccupied band energies. Then one
resorts to some interpolation scheme, e.g., using Wannier
functions,30−32 to compute the band structure for the desired
k-points. With the new feature, the heavy SCF can be split into
two steps: a cheaper SCF run on occupied bands only and a
subsequent non-SCF run including also virtual orbitals, thus
avoiding the evaluation of the ACE operator on the virtual
manifold at each SCF outer iteration. Noteworthy, since the
virtual orbitals are not included in the first SCF step, in the
non-SCF procedure the ACE potential is first read from file
and used as is for a first diagonalization; then it is updated with
the new virtual orbitals and a second diagonalization is
performed to get correct virtual band energies. Currently, it is
not yet possible to perform the non-SCF calculation on a set of
k-points different from the one used in the previous SCF run.

As a last remark, a computationally inexpensive method33,34

has been recently implemented in order to interpolate band
structures directly from SCF or non-SCF calculations on
uniform Monkhorst−Pack grids. This method is based on a
fitting algorithm that minimizes a roughness function across
the entire Brillouin zone and can be used as a quick alternative
to using the Wannier functions.35−37

2.6. Parallelism and Data Distribution. Different levels
of parallelism, based on both the message-passing interface
(MPI) library and on multithreading, are currently imple-
mented in the QUANTUM ESPRESSO suite. They can be
flexibly combined together on the basis of the particular
molecular system under study and the hardware architecture.
In the following, the different parallelization schemes are

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

briefly summarized with a focus on accelerated architectures, in
order to facilitate the discussion of the performance on GPU in
Section 3. More details about parallelism in QUANTUM

ESPRESSO can be found in the original works2−5 and other
more tailored publications.38

The diagram in Figure 4 shows in a simplified way how the
main types of parallelism implemented in the QUANTUM

ESPRESSO codes are interconnected with each other in a
prototypical execution. The outermost level of parallelism is
the image parallelism, whereby different MPI ranks run
different instances of a given calculation, and the communi-
cations are mostly performed through filesystem I/O. This
scheme is very useful for algorithms that expose a natural
parallelism based on repeated clearly distinguishable tasks that
need to communicate with each other only to some very small
extent. This is the case, for example, of Nudged Elastic Band
(NEB)39−41 calculations, where each image computes an
independent geometry along the transition pathway. Geo-
metries are connected by springs, and each image has to
communicate only forces to the others. Another example is
phonon calculations, where different images can concurrently
solve different sets of Sternheimer equations42 for different
irreducible representations of nuclear displacements and/or for
different wavevectors q.

Other levels of parallelism are pools, band groups, and plane-
wave schemes (the latter also often referred to as R&G), that
hierarchically distribute memory and computational load of
those parts of the code that depend on the number of k-points
(Nk), bands (Nb) and plane waves (NPW), respectively.
Pool parallelism can be used for all systems described by

more than one k-point and/or nondegenerate spin channels. In
this case, the total number of MPI ranks available for the
calculation, for example, Ntot, is divided into Npools groups
(pools) of Ntot/Npools ranks each. Npools distinct R&G data

structures are allocated and distributed among their respective
pools’ groups and operate over separated sets of preassigned k-
points. The efficiency of this type of parallelism�which is
similarly exploited in many quantum-chemistry codes�relies
on the fact that the communications among the pools are
limited because the code performs most of the operations
autonomously within each eigenspace of the translational
symmetry group. For example, in Figure 4 communications
among pools are graphically represented by summations over k-
points only at the end of the execution and are not required by
FFT and diagonalization steps. A typical example in the
QUANTUM ESPRESSO suite is the Kohn-Sham solver
(KS_Solver) library, where the Kohn−Sham equations are
solved independently for each k-point and most of the
communications among pools are needed only once the Kohn−
Sham orbitals are found, to obtain the total electronic energy
and density. In this respect, recalling the example in Figure 4,
one particularly efficient setup is when all ranks belonging to
the same pool are executed on the same node (e.g., one pool
per node, two pools per node, etc.), because internode
communications are avoided in FFT and diagonalization
steps. Furthermore, concerning GPU calculations, since each
GPU is internally massively parallel (e.g., the V100 architecture
has 5120 CUDA cores, for an overall peak double-precision
performance of 7.8 TFLops), in many cases it is feasible to
move the whole R&G parallelism within one single GPU,
removing most of the communication overhead and yielding a
significant performance boost. In Figure 4, it is evident that
using one rank per pool drastically reduces also intranode
communications in FFT and diagonalization steps.
Band group parallelism works on conceptually similar

grounds to the pool parallelism, also for systems where the
latter cannot be used. The total number of ranks Ntot, or the
total number of Ntot/Npools ranks inside each pool, is further

Figure 4. Sample execution flow with 2 images and four k-points, distributed in 2 pools and 24 total ranks. Global operations are represented in
black, operations involving images, pools, and R&G groups are represented in red, dark blue, and light blue, respectively, and GPU acceleration and
OpenMP multithreading are in the green box. Closed boxes represent operations that require communications among images (Filesystem access),
pools (sum over k-points), and R&G groups (FFT, diagonalization).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

divided into Nbg band groups, each composed of Ntot/Npools/
Nbg MPI ranks.

Finally, the ranks can also be used to distribute the data
structures that depend on the number of plane waves (R&G).
This latter parallelization is very effective in particular from the
point of view of memory requirements, as it allows us to
distribute memory along the largest dimension of the data
structures. For example, in Figure 4, the plane-waves of each
pool are distributed among 6 ranks.

As a general remark that will be often relevant for the
following benchmarks, increasing the number of pools when
possible is beneficial for performance but requires more
memory, whereas decreasing the number of pools and
increasing the dimension of each pool group with R&G
parallelism is beneficial for memory consumption.

Another important level of parallelism, compatible with all
the aforementioned ones, is related to the most important
linear algebra operations (most noticeably diagonalization and
matrix−matrix product) that are performed using distributed
linear algebra libraries, e.g., SCALAPACK, ELPA.

Finally, OpenMP multithreading (OMP) can be used to
accelerate loops at the finest level, inside each rank (see the
green box in Figure 4). In case of CPU-only calculations, OMP
threads can be effectively exploited especially when many
nodes are needed for memory reasons, but deploying all the
available CPU cores with MPI ranks leads to communication
overheads. The optimal number of OMP threads can vary
depending on the particular molecular system size and node
configuration. From our experience based on the current HPC
architectures, a good choice is usually to associate 2 to 8 OMP-
threads per MPI rank.

In the case of GPU-accelerated calculations, a good practice
is to bind the number of MPI ranks to the number of available
GPUs, so as to work with one MPI rank per GPU. Other
choices, involving GPU oversubscription, are usually less
convenient. In this case, since usually HPC architectures are
provided with more CPU cores than GPUs per node, OMP
threads can be used to deploy all of the remaining CPU cores
not deployed with MPI ranks. The effect on performance is
however small if the GPU porting is effective, as usually only a
small fraction of the computational workload is executed on
the CPU.

3. CODE PERFORMANCE ON SELECTED BENCHMARK
TESTS

In this section we report some results on computational
performance of the main codes of the QUANTUM ESPRESSO
suite on GPU-accelerated machines, in terms of times, speed-
up, and parallel efficiency.

Reference “CPU” and “GPU” calculations have been
performed respectively on Galileo100 and Marconi100 clusters
at CINECA, whereas for some selected very large systems we
also used a third cluster, Selene, made of NVIDIA DGX A100
nodes, each with 8 GPUs. Table 1 briefly summarizes the main
technical features of the three clusters.

The speed-up S for an arbitrary number of ranks n, with
respect to a reference minimum number of ranks nmin, is
defined as

n
t n

t n
()

()
()

min

=
(1)

where t(n) and t(nmin) are wall times, whereas the parallel
efficiency ε is

n
t n

t n
n

n
()

()
()

min min
= ·

(2)

The latter is a number in the interval [0,1], where ε = 1 is the
ideal efficiency corresponding to a perfect speed-up in which
t(n) is exactly t(nmin)/n.

3.1. Ground State Energy Calculations for Large
Systems. In order to show the performance of the core code
of the QUANTUM ESPRESSO suite, PWSCF, we present here
calculations on a large orthorhombic supercell of chromium
iodide (CrI3) bulk, with 1152 atoms, 7776 electrons, and cell
parameters a = 22.48 au, b/a = 1.67, and c/a = 13.86. This
calculation is part of a larger study of edge magnons,43−45

where interfaces between different crystalline phases are tested
within this large supercell. The LSDA method with collinear
spin polarization has been used, in combination with norm-
conserving pseudopotentials generated with the atomic code,46

with plane-wave kinetic energy cutoff of 60 Ry. A Gaussian
smearing with broadening of 0.01 eV was also used, resulting in
a total number of 4666 Kohn−Sham states. A uniform
Monkhorst−Pack29 grid of 4 × 1 × 1 k-points has been used,
resulting into 3 k-points per spin component.

In Figure 5 the time per iteration of CPU execution on
Galileo100 and GPU execution on Marconi100 and Selene
supercomputers is reported. In each case we picked the best

Table 1. System Specification for the GPU (Marconi100 and Selene) and CPU (Galileo100) Partitions

Cluster Galileo100 Marconi100 Selene
Centre CINECA CINECA NVIDIA Corp
Model Dual-Socket Dell PowerEdge IBM Power AC922 (Whiterspoon) NVIDIA DGX SuperPOD
Nodes 636 980 560
Processors (per

node)
2 × 24 cores Intel Xeon Platinum 8260

@ 2.4 GHz
2 × 16 cores IBM POWER9 AC922 @

2.6(3.1) GHz
2 × 64 cores AMD EPYC 7742 @ 2.25(3.4) GHz

GPUs (per node) 4 × NVIDIA Volta V100 SXM2 (2 pairs),
16 GB HBM2

8 × NVIDIA Ampere A100 SXM4 (with
NVSwitch), 80 GB HBM2e

Cores 48 cores/node 32 cores/node, Hyperthreading x4 128 cores/node
RAM 384 GB/node 256 GB/node 1 TB/node
Node Performance

(peak)
3.53 TFLOPS 32 TFLOPS 82.2 TFLOPS

Network Cards Mellanox Infiniband 100GbE 1 × Mellanox ConnectX-4 EDR (100 Gb/
s)

8 × Mellanox ConnectX-6 HDR (200 Gb/s)

Network Topology Full Fat-tree DragonFly++ Full Fat-tree

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

results in terms of balance between performance and memory
consumption, obtained after running several calculations with
different computational configurations. For CPU calculations
on Galileo100, the setup with 30 nodes (1440 cores) allows an
equally distributed workload of 3 k-points and two spin
channels among 2, 3, or 6 pools. Using fewer nodes, either
performance was inferior or there was not enough memory to
fully test pool parallelism. On the other side, calculations with
32 nodes were affected by the maximum FFT dimension: there
are 1536 FFT grid points along the longest cell dimension (c =
164.81 Å) and exactly 1536 cores, leading to too few plane
waves per rank.

We also tested different combinations of pools, MPI ranks,
and OMP threads, reported in Figure 6. Increasing the number
of pools markedly improves computational times because
calculations for different k-points are decoupled (cf. also Figure
4). When using extreme MPI parallelizations (1 thread per
node, i.e., 1440 ranks), communications among ranks become
predominant, whereas using too many threads leads to too
small pool groups, and loops over G-vectors become more
demanding. These two competitive trends lead to the
nonmonotonic curves with minima shown in Figure 6, also
often found in other benchmarks of the QUANTUM ESPRESSO
codes (as for example here47). Optimal combinations found
here are with 2 or 4 threads and 3 or 6 pools. Data in Figure 5
refer to 2 OMP threads per rank and 6 pools of 5 nodes (120
ranks) each.

On Marconi100, calculations with 16, 32, 64, 80, and 128
nodes were limited by memory requirements even with only
one pool (16 GB is the maximum available for V100 GPU),
and the time reported in Figure 5 refers to 256 nodes with
R&G parallelism only. Eight OMP threads per rank have been
used to fully deploy the CPU cores of the nodes. Despite the
limitations, running on V100 GPU cards is significantly faster
than running on CPU leveraging pool parallelism.

The benchmark executed on Selene overcomes the memory
limitations of the V100 cards thanks to 80 GB of GPU
memory. In fact, bigger GPU memory capacity allows us to run
the full calculation with only 24 GPUs (with 16 OMP threads,

no pools), showing an overall speedup with respect to the
reference CPU execution of about 4×. It is also possible to
fully exploit pool parallelism by increasing the number of nodes
to avoid memory capacity constraints, further improving
performance. For example running on 96 A100 GPUs with 3
pools, the time per iteration drops down from 250 to 76 s,
resulting in a speed-up of about 10× with respect to the CPU
reference calculation and a dramatically smaller amount of
resources employed.

Generally speaking, for PWSCF and most other codes in the
QUANTUM ESPRESSO suite, GPU memory is a quite crucial
parameter. A large GPU memory allows both reduction of the
total number of ranks employed and an increase of the number
of pools, ultimately reducing communications and host−device
synchronizations. On GPU architectures with limited memory,
instead, calculations for large molecular systems may require an
exceedingly large number of nodes.

3.2. Phonons and Vibrational Properties via DFPT
Methods. The entire PHONON code7,8 has been accelerated
using the approach described in Section 2, based on OpenACC
and relying on CUDA FORTRAN modules and libraries inherited
from PWSCF.

In Figure 7 we show the phonon dispersions of the 100
surface of silicon with c(4 × 2) reconstruction (reported
among the most stable ones by a number of previous
studies48,49), simulated using a base centered orthorhombic
primitive cell (a = 2b).48,50 The first Brillouin Zone of the slab
has been sampled with a 8 × 8 × 1 uniform Monkhorst−Pack
mesh29 (21 total symmetry inequivalent k-points), whereas
two different depths have been considered in the third
direction, one with 16 layers of silicon atoms (referred to as
Si(100)-16L hereafter, with 64 atoms per cell) and one with 32
layers (Si(100)-32L, 128 atoms per cell).

The phonon dispersions have been obtained using a
standard procedure based on Fourier interpolation technique,
evaluating the dynamical matrices in reciprocal space on a

Figure 5. Time per SCF iteration of a chromium iodide (CrI3)
orthorhombic supercell (a = 11.89 Å, b = 19.81 Å, c = 164.81 Å),
norm-conserving pseudopotential with core correction, cutoffs 60 and
240 Ry for wave functions and density, respectively. Each SCF
iteration corresponds to a Davidson diagonalization.

Figure 6. Time to the second SCF iteration (initialization + first
iteration) of a chromium iodide (CrI3) orthorhombic supercell (a =
11.89 Å, b = 19.81 Å, c = 164.81 Å), norm-conserving pseudopotential
with core correction, cutoffs 60 and 240 Ry for wave functions and
density, respectively. Different numbers of pools and different threads/
ranks combinations are compared at a fixed number of 1440 total
cores (30 nodes).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

uniform 8 × 8 × 1 grid of q-points, and then interpolating
along the path Γ-Y-X1-S-X, used in another previous work.51

PBE52 functional and norm-conserving pseudopotentials53

with a plane-wave kinetic-energy cutoff of 60 Ry have been
employed. We observe that the depth of the slab is large
enough to recover the periodic structure of the bulk phonons,
resulting in a realistic description of the physical surface of the
material, even with the smaller model with 16 layers.

The computationally most intensive part of the dispersion
calculation is the evaluation of the dynamical matrices in
reciprocal space for all of the necessary q-points. For each q-
point, orbitals and band energies at all (k + q)-points need to
be computed with a non-SCF calculation, and a set of
Sternheimer equations42 has to be solved for each symmetry-
inequivalent perturbation. In the present model systems, the
perturbations are 192 and 381 irreducible representations of
nuclear displacements (irreps hereafter), for Si(100)-16L and

Figure 7. Phonon dispersion and projected density of states of the
silicon (100) surface simulated using the Si(100)-16L model.

Figure 8. Scaling over pools and plane waves for one irreducible representation of a phonon calculation at fixed q (0.375, 1.250, 0.000)
a

2= ,
with 128 (k + q)-points. All calculations were done using one image and 8 OMP threads. Computational efficiency is reported on top of each bar.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig8&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Si(100)-32L, respectively. In the PHONON code, this heavy
computational burden can be distributed by using the
parallelization schemes briefly sketched in Section 2.6.
Images can be used to create nearly embarrassingly parallel

tasks, each devoted to the computation of dynamical matrices
for a subset of q-points and irreps. However, perturbations with
q ≠ 0 lower the symmetry of the system and require a number
of symmetry-independent (k + q)-points that depend upon the
q-point. As a consequence, the workload of different images can
be quite unbalanced, and the efficiency of the overall
distribution pattern depends on the particular system. For
example, the present calculation has been distributed over 144
MPI ranks, subdivided in 9 image groups, with total number of
(k + q)-points varying from 21, 68, 72 and 128.

Let us first analyze the performances inside each image group
and analyze how to optimally distribute the available ranks
among pools and R&G groups. Figure 8 panels a−d show the
scaling performance over pools and plane waves of the most
computationally expensive non-SCF and Sternheimer steps
(with 128 (k + q)-points) for one single irrep at a fixed q-point.
The maximum number of usable pools is 64, considering that
each pool must have at least two points, namely, k and k + q.
The R&G parallelism has an upper bound in the number of
planes along the z-direction of the FFT grid: 256 and 512 for
the Si(100)-16L and Si(100)-32L respectively. An arbitrary
number of 8 and 2 OMP threads has been chosen for GPU and
CPU executions, respectively, on the basis of single-node
measurements (not reported here) and empirical observations
reported in Section 2.6.

In all cases, we observe very good efficiencies and speed-ups
when scaling over pools, while using R&G parallelism the
efficiency tends to saturate earlier, with a lower amount of
resources employed. Of course, the price paid for the high
efficiency of the pool parallelism is a less favorable memory
allocation, which is especially important when running on
accelerated architectures. For example, the runs over 256
GPUs shown in Figure 8b,d allocated about 13 GB of GPU
memory when distributed over pools and less than 5 GB when
distributed over plane waves.

In Figure 9a,b a node-based performance comparison
between our “best” CPU and GPU executions is shown,

from 1 (48 cores versus 4 GPUs and 32 physical cores) to 64
nodes (3072 cores versus 256 GPUs and 128 physical cores);
the latter is the maximum number of available nodes for
production. The “best” CPU executions have been done using
one pool, 24 MPI ranks per node and 2 threads per rank, and
have been chosen among a set of single-node tests performed
using different combinations of 1 and 2 pools per node and 1,
2, and 3 OpenMP threads per rank.

Regarding the GPU execution, for the smaller Si(100)-16L
model, the optimal runs are those with one pool per GPU with
no R&G parallelism�i.e., up to 16(64) nodes(GPUs)�that
minimize communications among GPUs. Above 16(64)
nodes(GPUs), the performance decreases to 3× due to the
use of the additional plane-wave groups needed when pool
parallelism is saturated.

For the larger Si(100)-32L model, the number of plane
waves does not fit into one GPU memory. The best
performances are obtained with one pool per node, with an
R&G distribution of 4 ranks per pool. The maximum CPU/
GPU speed-up achieved is around 5 for the smaller system and
4 for the larger system.

Once we now know how to configure parallelism inside a
single image, we can move forward analyzing parallelism on
multiple images. Figure 10 displays the times to solution to
compute one full dynamical matrix on GPU, at one fixed q-
point, including all the irreps of Si(100)-16L. Based on the
previous discussion, R&G parallelism has not been used, and
only images and pools have been varied, at a fixed pool size of
one. Besides the obvious consideration that the calculations
run faster on more nodes, an interesting aspect is that even at a
fixed number of nodes, the choice of internal parallelism can
play an important role for performance. This is especially
evident for the most “extreme” computational setup, with 192
nodes, that shows variations in the computational times of
more than 100% when changing the internal distribution of
resources. If we transpose these variations in terms of GPU
hours, the waste of resources due to a suboptimal choice of
parallelism becomes even more dramatic. Noticeably, we
observe that the best performance in Figure 10 is obtained
when the available computational resources are balanced
between pools and images (bars in the middle), whereas more

Figure 9. Time to solution and CPU/GPU speed-up of a phonon calculation at fixed q (0.375, 1.250, 0.000)
a

2= , with 128 (k + q)-points and
one irreducible representation, using one image and different combinations of pools and R&G groups (pools:R&G). GPU and CPU calculations
have been performed with 8 and 2 OMP threads, respectively, to optimize the respective performance.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

“extreme” allocations, where one or the other parallelism is
overloaded, tend to lead to a less favorable performance.

In summary, although it is very difficult to state a priori what
is the best parallelization scheme for a generic system, we can
draw some general guidelines from our benchmark study that
are helpful in the choice of the parallelization scheme of
PHONON calculations for accelerated architectures. First of all,
R&G parallelism is less efficient than the other schemes for
performance, but it can be very helpful for coping with
memory limitations. Then, whenever possible, it is a good
strategy to balance resource allocation among pools and images
using the smallest possible number of R&G processes.

3.3. EELS Line Shapes via TD-DFPT Methods. The
turboEELS code is used to simulate the electron energy loss
(EELS) and the inelastic X-ray scattering spectra in periodic
solids, using two methods based on the Liouville−Lanczos
scheme11,12 and Sternheimer equations.9,10 Both methods have
been recently ported to GPU using the approach described in
Section 2.

In Figure 11 the contribution to the EELS spectrum arising
from the imaginary part of the dielectric function is shown for
the Si(100)-16L model system described in Section 3.2, using
a transferred momentum of |q| = 0.005 Ry along the [011]
direction. The spectral line shape has been computed using the
Lanczos approach,11,12 with a Lorentzian broadening of η =
0.0035 Ry for the charge-density susceptibility (loss function)
and 20000 iterations. Along the line shape, single spectral
transitions computed with the Sternheimer method9,10 are
shown, showing consistency between the two approaches.
Noticeably, the spectral line shape is in fair agreement with the
overall EELS spectrum obtained in more accurate and
extensive studies.48,49,54

A turboEELS calculation with Lanczos scheme involves two
main computationally intensive parts, namely, a non-SCF step,
to compute wave functions and band energies at (k + q)-
points, and a following Lanczos chains step. Images are not
available here, and the calculation can be distributed by using
pools and R&G parallelism only.

In Figure 12a−d scaling over pools and plane waves of the
two main steps of an EELS calculation are shown. Regarding
the non-SCF step, we hereby note that, analogously to the
phonon dispersion case discussed in the previous section, the
chosen transferred momentum breaks all the crystal
symmetries, resulting in a total number of 128 (k + q)-points
(i.e., 64 k-points from the full 8 × 8 × 1 Monkhorst−Pack
grid29 plus the equivalent (k + q)-point ones). The scaling of
the non-SCF step for the EELS spectrum is thus fully
comparable to the one discussed in Figure 8a,b, with similar
speed-ups and efficiencies.

Also the speed-up of the Lanczos chain step is very good,
especially for the larger system (Figure 12d), where it reaches
the ideal value of 16 when 256 GPUs are used.

In Figure 13a,b the node-based CPU/GPU comparison is
shown, and we observe that the turboEELS code shows
acceleration values of 5 to 6, comparable to the PHONON code.
The “best” CPU executions have been done using one pool, 12
MPI ranks per node and 4 threads per rank, and have been
chosen among a set of single-node tests performed using
different combinations of 1 and 2 pools per node and 1, 2, 4,
and 8 OpenMP threads per rank.

3.4. Time Evolution of Large Systems with Car−
Parrinello Molecular Dynamics. For a detailed description
of the Car−Parrinello (CP) method we refer to the original
work.16

The Car−Parrinello code has been entirely ported to GPU
following the approach described in Section 2, allowing the
user to fully run a CP molecular dynamics simulation with
nonzero initial wave function velocity on a machine with a
GPU architecture.

The new code has been used to compute the superionic
ammonia equation of state shown in Figure 14.55 The color
map represents the density of the system, and its pressure and
temperature are shown, respectively, on the x and y axes. The
superionic ammonia has been modeled with a hexagonal close-
packed cell of volume 1830 Å, with 144 nitrogen and 432
hydrogen atoms (1152 electrons). Norm-conserving pseudo-
potentials53,56 with nonlinear core correction have been used
for both nitrogen and hydrogen atoms. The plane-wave cutoff

Figure 10. Time to solution (seconds) for one full phonon calculation
at fixed q (0.375, 1.250, 0.000)

a
2= , for all the 192 irreducible

representations of the Si(100)-16L model system, 8 OMP threads,
and different MPI parallelization schemes. The parallelization scheme
is highlighted by the labels on top of the columns as images-
(pools:R&G).

Figure 11. Electron energy loss spectrum of the silicon (100) surface,
simulated using the Si(100)-16L model with transferred momentum
|q| = 0.005 Ry along [011], a broadening of 0.01 Ry, and a scissor shift
of +0.5 eV. The solid line shows the line shape calculated using the
Lanczos algorithm (20k coefficient extracted), and red points refer to
Sternheimer calculations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig11&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

was 90 Ry, sufficient for the full convergence of the energy,
forces, and stress tensor. For the highest temperatures, near
3000 K, we used a time step of 0.041 fs, a fictitious electronic
mass of 20 au, and a emass_cutof f of 2.5 Ry. At lower
temperatures, we used larger time steps and electronic masses
in order to speed up calculations. In all cases, we checked that
a good enough conservation of the CP constant of motion was
ensured.

In Figure 15, panels a and b show a node-based comparison
between CPU and GPU scaling properties over plane waves of
the conjugate gradient initialization and velocity Verlet step of
a Car−Parrinello run on the ammonia system. Regarding CPU
computations, we tried different computational setups with 1,
2, 4, and 8 threads per MPI process, and we choose those (2
threads) providing the best performance on Galileo100.

The optimal number of nodes for GPU calculations is 2,
which is still significantly faster than calculations with 1 and a
half nodes and negligibly slower than calculations with 3 nodes,

outperforming roughly by a factor 2 the best CPU
configuration with 9 nodes.

Also in this case, analogously to the PHONON and
turboEELS codes, we found average speed-ups around 5−6
of GPU calculations with respect to the CPU ones.

4. CONCLUSIONS
In this article we have reviewed the current status of the
QUANTUM ESPRESSO suite, with particular focus on the new
developments done in the code since ref 2 was published.

We have first discussed the overall coding philosophy of the
QUANTUM ESPRESSO project and of the GPU porting model,
that has changed since the first versions of the code from a
pure CUDA FORTRAN approach to a mixed interoperable
OpenACC/CUDA FORTRAN scheme. The code refactoring
done using the new scheme effectively allows people who are
not necessarily experienced with GPU coding to keep
contributing to the QUANTUM ESPRESSO project without
the need to learn new languages. The porting experience

Figure 12. Scaling over pools and plane waves of different steps of an EELS calculation with transferred momentum q∥[011], |q| = 0.005 Ry, with
128 (k + q)-points. All calculations done using 8 OMP threads. Computational efficiency is reported on top of each bar.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig12&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

described herein suggests that sometimes code developments
done exclusively targeting performance might have downsides
in terms of code readability and maintainability. It is thus very
important to balance the effort to achieve outstanding
performance gains with other relevant factors, such as
simplicity of the code, ease of programming, and maintenance
burden. In our case, the modularity of the codes also played a
crucial role in the development process, allowing us to split the
huge porting task into many smaller sub tasks and also allowing
many different executables to take advantage of a relatively
limited number of ported modules and libraries.

The GPU porting has significantly progressed in the last
years, and now the most important codes of the suite, namely,
PWSCF, PHONON, turboEELS, turboLanczos, CP, and HP, are
fully operative on heterogeneous architectures.

MPI data distribution and code parallelism schemes
available in the QUANTUM ESPRESSO suite have been also
reviewed in this article, highlighting the aspects related to GPU
execution.

Figure 13. Time to solution and CPU/GPU speed-up of an EELS calculation with transferred momentum q∥[011], |q| = 0.005 Ry, with 128 (k +
q)-points. All calculations done using 8 and 4 OMP threads for GPU and CPU executions, respectively.

Figure 14. Equation of state diagram of ammonia, computed with the
Car−Parrinello method. Each point is a CP run, and the color
represents the density of the system for each particular combination
of pressure and temperature.

Figure 15. Times to solution and CPU/GPU speed-up of different steps of a CP simulation of Ammonia. CPU and GPU calculations done with 2
and 8 OMP threads, respectively.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?fig=fig15&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Extensive benchmark tests have been provided for the main
codes to assess performance and identify best practices for
launching calculations. Results depend to some extent on
factors that are related to the algorithms used in the QUANTUM

ESPRESSO codes and can be considered quite general. For
example, when k-points are present, pool parallelism effectively
allows strong scaling, whereas when massive resources are
employed, it can be beneficial to exploit a fraction of the
available cores as OpenMP threads, in order to reduce
communication bottlenecks. However, performance is also
strongly influenced by many other system-dependent factors,
related to both the molecular system (e.g., symmetry, number
of electrons) and the computational architecture (e.g., inter-
and intranode communication bandwidths, number of RAM
memory channels, CPU clock frequencies, GPU architecture,
host-device communication bandwidths) that can affect
latency and efficiency. With respect to the architectures
employed here, computations on Marconi100 using V100
GPU cards are about four to six times faster than CPU
computations using the same number of nodes on the
Galileo100 cluster. Tests done using A100 cards on the Selene
cluster also suggest even better performance on architectures
based on more modern GPU technologies.

One of the main limitations found in the present version of
the QUANTUM ESPRESSO codes is the difficulty to scale
computations with no k-points, as R&G parallelism suffers
from communication bottlenecks already at a relatively small
number of ranks. In this respect, work is in progress to improve
the current band parallelism and communication protocols in
the MPI libraries of the QUANTUM ESPRESSO suite.

■ AUTHOR INFORMATION
Corresponding Author
Ivan Carnimeo − SISSA, Scuola Internazionale Superiore di
Studi Avanzati, 34136 Trieste, Italy; orcid.org/0009-
0006-8640-9828; Email: icarnimeo@sissa.it

Authors
Fabio Affinito − CINECA, 40033 Casalecchio di Reno, BO,
Italy

Stefano Baroni − SISSA, Scuola Internazionale Superiore di
Studi Avanzati, 34136 Trieste, Italy; CNR-IOM Istituto
dell’Officina dei Materiali, area SISSA, 34136 Trieste, Italy

Oscar Baseggio − SISSA, Scuola Internazionale Superiore di
Studi Avanzati, 34136 Trieste, Italy

Laura Bellentani − CINECA, 40033 Casalecchio di Reno, BO,
Italy

Riccardo Bertossa − SISSA, Scuola Internazionale Superiore
di Studi Avanzati, 34136 Trieste, Italy; orcid.org/0000-
0002-8551-1939

Pietro Davide Delugas − SISSA, Scuola Internazionale
Superiore di Studi Avanzati, 34136 Trieste, Italy

Fabrizio Ferrari Ruffino − CNR-IOM Istituto dell’Officina dei
Materiali, area SISSA, 34136 Trieste, Italy

Sergio Orlandini − CINECA, 00185 Roma, RM, Italy
Filippo Spiga − NVIDIA Corporation, Santa Clara,
California 95051, United States

Paolo Giannozzi − Dipartimento di Scienze Matematiche,
Informatiche e Fisiche (DMIF), Universita ̀ degli Studi di
Udine, 33100 Udine, Italy; CNR-IOM Istituto dell’Officina
dei Materiali, area SISSA, 34136 Trieste, Italy

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.3c00249

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was funded by the European Union through the
MAX "MAterials design at the eXascale" Centre of Excellence
for Supercomputing applications (Grant agreement No.
101093374, co-funded by the European High Performance
Computing joint Undertaking (JU) and participating coun-
tries, and EU H2020-INFRAEDI-2018-1 MAX Grant No.
824143), by the Italian MUR through the PRIN 2017
FERMAT (grant No. 2017KFY7XF) and the National Centre
for HPC, Big Data, and Quantum Computing (grant No.
CN00000013).

■ REFERENCES
(1) https://www.top500.org (last access Jun, 7th 2023).
(2) Giannozzi, P.; Baseggio, O.; Bonfa,̀ P.; Brunato, D.; Car, R.;

Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari
Ruffino, F.; Ferretti, A.; Marzari, N.; Timrov, I.; Urru, A.; Baroni, S.
Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152
(1−11), 154105.

(3) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli,
M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni,
M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.;
Delugas, P.; DiStasio, R. A., Jr; Ferretti, A.; Floris, A.; Fratesi, G.;
Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia,
J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Kucukbenli, E.; Lazzeri, M.;
Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.;
Otero-de-la Roza, A.; Paulatto, L.; Ponce, S.; Rocca, D.; Sabatini, R.;
Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.;
Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S. Advanced
capabilities for materials modelling with QUANTUM ESPRESSO. J.
Phys.: Condens. Matter 2017, 29, 465901.

(4) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.;
Cavazzoni, C.; Ceresoli, D.; do L Chiarotti, G.; Cococcioni, M.; Dabo,
I.; Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.;
Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-
Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.;
Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.;
Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M.
QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. J. Phys.: Condens. Matter
2009, 21, 395502.

(5) Scandolo, S.; Giannozzi, P.; Cavazzoni, C.; de Gironcoli, S.;
Pasquarello, A.; Baroni, S. First-principles codes for computational
crystallography in the Quantum-ESPRESSO package. Zeitschrift für
Kristallographie 2005, 220, 574−579.

(6) QUANTUM ESPRESSO FOUNDATION. https://foundation.
quantum-espresso.org/ (last access Jun, 7th 2023).

(7) Giannozzi, P.; De Gironcoli, S.; Pavone, P.; Baroni, S. Abinitio
Calculation of Phonon Dispersions in Semiconductors. Phys. Rev. B
1991, 43, 7231−7242.

(8) Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P.
Phonons and related crystal properties from density-functional
perturbation theory. Rev. Mod. Phys. 2001, 73, 515−562.

(9) Motornyi, O.; Raynaud, M.; Dal Corso, A.; Vast, N. Simulation
of electron energy loss spectra with the turboEELS and thermo_pw
codes. XXIXTH IUPAP Conference on Computational Physics
CCP2017; 39th IUPAP Conference on Computational Physics
(CCP), Univ Pierre Marie Curie Sorbonne, Paris, France, JUL 09−
13, 2017; IUPAC, 2018.

(10) Motornyi, O.; Vast, N.; Timrov, I.; Baseggio, O.; Baroni, S.; Dal
Corso, A. Electron energy loss spectroscopy of bulk gold with ultrasoft
pseudopotentials and the Liouville-Lanczos method. Phys. Rev. B
2020, 102, 035156 035156.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

M

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ivan+Carnimeo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0006-8640-9828
https://orcid.org/0009-0006-8640-9828
mailto:icarnimeo@sissa.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabio+Affinito"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefano+Baroni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oscar+Baseggio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+Bellentani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Riccardo+Bertossa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8551-1939
https://orcid.org/0000-0002-8551-1939
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pietro+Davide+Delugas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabrizio+Ferrari+Ruffino"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergio+Orlandini"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filippo+Spiga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paolo+Giannozzi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00249?ref=pdf
https://www.top500.org
https://doi.org/10.1063/5.0005082
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1524/zkri.220.5.574.65062
https://doi.org/10.1524/zkri.220.5.574.65062
https://foundation.quantum-espresso.org/
https://foundation.quantum-espresso.org/
https://doi.org/10.1103/PhysRevB.43.7231
https://doi.org/10.1103/PhysRevB.43.7231
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.102.035156
https://doi.org/10.1103/PhysRevB.102.035156
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(11) Walker, B.; Saitta, A. M.; Gebauer, R.; Baroni, S. Efficient
Approach to Time-Dependent Density-Functional Perturbation
Theory for Optical Spectroscopy. Phys. Rev. Lett. 2006, 96, 113001.

(12) Rocca, D.; Gebauer, R.; Saad, Y.; Baroni, S. Turbo charging
time-dependent density-functional theory with Lanczos chains. J.
Chem. Phys. 2008, 128, 154105.

(13) Timrov, I.; Marzari, N.; Cococcioni, M. HP - A code for the
calculation of Hubbard parameters using density-functional perturba-
tion theory. Comput. Phys. Commun. 2022, 279, 108455.

(14) Timrov, I.; Marzari, N.; Cococcioni, M. Hubbard parameters
from density-functional perturbation theory. Phys. Rev. B 2018, 98,
085127.

(15) Timrov, I.; Marzari, N.; Cococcioni, M. Self-consistent
Hubbard parameters from density-functional perturbation theory in
the ultrasoft and projector-augmented wave formulations. Phys. Rev. B
2021, 103, 045141.

(16) Car, R.; Parrinello, M. Unified Approach for Molecular
Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55,
2471−2474.

(17) MAX: Materials at the eXascale. An EU Centre of Excellence for
Supercomputing Applications. http://www.max-centre.eu/ (last access
Jun, 7th 2023).

(18) Yu, V. W.-z.; Moussa, J.; Kus, P.; Marek, A.; Messmer, P.; Yoon,
M.; Lederer, H.; Blum, V. GPU-acceleration of the ELPA2 distributed
eigensolver for dense symmetric and hermitian eigenproblems.
Comput. Phys. Commun. 2021, 262, 107808.

(19) Lehtola, S.; Steigemann, C.; Oliveira, M.; Marques, M. Recent
developments in Libxc - A comprehensive library of functionals for
density functional theory. Software X 2018, 7, 1−5.

(20) Heyd, J.; Scuseria, G.; Ernzerhof, M. Hybrid functionals based
on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207−
8215.

(21) Becke, A. Density-Functional Thermochemistry.3. Ther Role of
Exact Exchange. J. Chem. Phys. 1993, 98, 5648−5652.

(22) Adamo, C.; Barone, V. Toward reliable density functional
methods without adjustable parameters: The PBE0 model. J. Chem.
Phys. 1999, 110, 6158−6170.

(23) Barnes, T. A.; Kurth, T.; Carrier, P.; Wichmann, N.;
Prendergast, D.; Kent, P. R.; Deslippe, J. Improved treatment of
exact exchange in QUANTUM ESPRESSO. Comput. Phys. Commun.
2017, 214, 52−58.

(24) Lin, L. Adaptively Compressed Exchange Operator. J. Chem.
Theory Comput. 2016, 12, 2242−2249.

(25) Lin, L.; Lindsey, M. Convergence of Adaptive Compression
Methods for Hartree-Fock-Like Equations. Commun. Pure Appl. Math
2019, 72, 451−499.

(26) Carnimeo, I.; Baroni, S.; Giannozzi, P. Fast hybrid density-
functional computations using plane-wave basis sets. Electron. struct.
2019, 1, 015009.

(27) Damle, A.; Lin, L.; Ying, L. Compressed Representation of
Kohn-Sham Orbitals via Selected Columns of the Density Matrix. J.
Chem. Theory Comput. 2015, 11, 1463−1469.

(28) Damle, A.; Lin, L.; Ying, L. SCDM-k: Localized orbitals for
solids via selected columns of the density matrix. J. Comput. Phys.
2017, 334, 1−15.

(29) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone
integrations. Phys. Rev. B 1976, 13, 5188−5192.

(30) Marzari, N.; Vanderbilt, D. Maximally localized generalized
Wannier functions for composite energy bands. Phys. Rev. B 1997, 56,
12847−12865.

(31) Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt,
D. Maximally localized Wannier functions: Theory and applications.
Rev. Mod. Phys. 2012, 84, 1419−1475.

(32) Souza, I.; Marzari, N.; Vanderbilt, D. Maximally localized
Wannier functions for entangled energy bands. Phys. Rev. B 2001, 65,
035109.

(33) Koelling, D.; Wood, J. On the interpolation of eigenvalues and
a resultant integration scheme. J. Comput. Phys. 1986, 67, 253−262.

(34) Pickett, W. E.; Krakauer, H.; Allen, P. B. Smooth Fourier
interpolation of periodic functions. Phys. Rev. B 1988, 38, 2721−2726.

(35) Mostofi, A. A.; Yates, J. R.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.;
Marzari, N. wannier90: A tool for obtaining maximally-localised
Wannier functions. Comput. Phys. Commun. 2008, 178, 685−699.

(36) Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y.-S.; Souza, I.;
Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool
for obtaining maximally-localised Wannier functions. Comput. Phys.
Commun. 2014, 185, 2309−2310.

(37) Pizzi, G.; Vitale, V.; Arita, R.; Bluegel, S.; Freimuth, F.;
Geranton, G.; Gibertini, M.; Gresch, D.; Johnson, C.; Koretsune, T.;
Ibanez-Azpiroz, J.; Lee, H.; Lihm, J.-M.; Marchand, D.; Marrazzo, A.;
Mokrousov, Y.; Mustafa, J. I; Nohara, Y.; Nomura, Y.; Paulatto, L.;
Ponce, S.; Ponweiser, T.; Qiao, J.; Thoele, F.; Tsirkin, S. S.;
Wierzbowska, M.; Marzari, N.; Vanderbilt, D.; Souza, I.; Mostofi, A.
A.; Yates, J. R. Wannier90 as a community code: new features and
applications. J. Phys.: Condens. Matter 2020, 32, 165902.

(38) Wagner, M.; Lopez, V.; Morillo, J.; Cavazzoni, C.; Affinito, F.;
Gimenez, J.; Labarta, J. Performance Analysis and Optimization of the
FFTXlib on the Intel Knights Landing Architecture. 2017 46TH
International Conference on Parallel Processing Workshops (ICPPW),
AUG 14−17, 2017; ICPPW, 2017; pp 243−250.

(39) Henkelman, G.; Uberuaga, B.; Jonsson, H. A climbing image
nudged elastic band method for finding saddle points and minimum
energy paths. J. Chem. Phys. 2000, 113, 9901−9904.

(40) Henkelman, G.; Jonsson, H. Improved tangent estimate in the
nudged elastic band method for finding minimum energy paths and
saddle points. J. Chem. Phys. 2000, 113, 9978−9985.

(41) Asgeirsson, V.; Birgisson, B. O.; Bjornsson, R.; Becker, U.;
Neese, F.; Riplinger, C.; Jonsson, H. Nudged Elastic Band Method for
Molecular Reactions Using Energy-Weighted Springs Combined with
Eigenvector Following. J. Chem. Theory Comput. 2021, 17, 4929−
4945.

(42) Sternheimer, R. M. Electronic Polarizabilities of Ions from the
Hartree-Fock Wave Functions. Phys. Rev. 1954, 96, 951−968.

(43) Gorni, T.; Baseggio, O.; Delugas, P.; Baroni, S.; Timrov, I.
turboMagnon - A code for the simulation of spin-wave spectra using
the Liouville-Lanczos approach to time-dependent density-functional
perturbation theory. Comput. Phys. Commun. 2022, 280, 108500.

(44) Gorni, T.; Baseggio, O.; Delugas, P.; Timrov, I.; Baroni, S.
First-principles study of the gap in the spin excitation spectrum of the
CrI3 honeycomb ferromagnet. 2022; https://arxiv.org/abs/2212.
09516.

(45) Delugas, P.; Baseggio, O.; Timrov, I.; Baroni, S.; Gorni, T.
Magnon-phonon interactions enhance the gap at the Dirac point in
the spin-wave spectra of CrI3 2D magnets. 2021; https://arxiv.org/
abs/2105.04531.

(46) Dal Corso, A. Pseudopotentials periodic table: From H to Pu.
Comput. Mater. Sci. 2014, 95, 337−350.

(47) MaX School on Advanced Materials and Molecular Modelling
with QUANTUM ESPRESSO, Day 9, Hands-on on ”QE on HPC and
GPU systems. https://gitlab.com/QEF/materials-for-max-qe2021-
online-school/-/blob/master/Day-9/Handson-IC.pdf (last access
Jun, 7th 2023).

(48) Yoshinobu, J. Physical properties and chemical reactivity of the
buckled dimer on Si(1 0 0). Prog. Surf. Sci. 2004, 77, 37−70.

(49) Hogan, C.; Caramella, L.; Onida, G. Simulation of the
oxidation pathway on Si(100) using high-resolution EELS. Phys.
Status Solidi B 2012, 249, 1132−1139.

(50) Chadi, D. J. Si(100) surfaces: Atomic and electronic structures.
J. Vac. Sci. Technol. 1979, 16, 1290−1296.

(51) Setyawan, W.; Curtarolo, S. High-throughput electronic band
structure calculations: Challenges and tools. Comput. Mater. Sci. 2010,
49, 299−312.

(52) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.

(53) Hamann, D. R. Optimized norm-conserving Vanderbilt
pseudopotentials. Phys. Rev. B 2013, 88, 085117.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

N

https://doi.org/10.1103/PhysRevLett.96.113001
https://doi.org/10.1103/PhysRevLett.96.113001
https://doi.org/10.1103/PhysRevLett.96.113001
https://doi.org/10.1063/1.2899649
https://doi.org/10.1063/1.2899649
https://doi.org/10.1016/j.cpc.2022.108455
https://doi.org/10.1016/j.cpc.2022.108455
https://doi.org/10.1016/j.cpc.2022.108455
https://doi.org/10.1103/PhysRevB.98.085127
https://doi.org/10.1103/PhysRevB.98.085127
https://doi.org/10.1103/PhysRevB.103.045141
https://doi.org/10.1103/PhysRevB.103.045141
https://doi.org/10.1103/PhysRevB.103.045141
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1103/PhysRevLett.55.2471
http://www.max-centre.eu/
https://doi.org/10.1016/j.cpc.2020.107808
https://doi.org/10.1016/j.cpc.2020.107808
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.478522
https://doi.org/10.1016/j.cpc.2017.01.008
https://doi.org/10.1016/j.cpc.2017.01.008
https://doi.org/10.1021/acs.jctc.6b00092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cpa.21784
https://doi.org/10.1002/cpa.21784
https://doi.org/10.1088/2516-1075/aaf7d4
https://doi.org/10.1088/2516-1075/aaf7d4
https://doi.org/10.1021/ct500985f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500985f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcp.2016.12.053
https://doi.org/10.1016/j.jcp.2016.12.053
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1016/0021-9991(86)90261-5
https://doi.org/10.1016/0021-9991(86)90261-5
https://doi.org/10.1103/PhysRevB.38.2721
https://doi.org/10.1103/PhysRevB.38.2721
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1021/acs.jctc.1c00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRev.96.951
https://doi.org/10.1103/PhysRev.96.951
https://doi.org/10.1016/j.cpc.2022.108500
https://doi.org/10.1016/j.cpc.2022.108500
https://doi.org/10.1016/j.cpc.2022.108500
https://arxiv.org/abs/2212.09516
https://arxiv.org/abs/2212.09516
https://arxiv.org/abs/2105.04531
https://arxiv.org/abs/2105.04531
https://doi.org/10.1016/j.commatsci.2014.07.043
https://gitlab.com/QEF/materials-for-max-qe2021-online-school/-/blob/master/Day-9/Handson-IC.pdf
https://gitlab.com/QEF/materials-for-max-qe2021-online-school/-/blob/master/Day-9/Handson-IC.pdf
https://doi.org/10.1016/j.progsurf.2004.07.001
https://doi.org/10.1016/j.progsurf.2004.07.001
https://doi.org/10.1002/pssb.201100732
https://doi.org/10.1002/pssb.201100732
https://doi.org/10.1116/1.570143
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1103/PhysRevB.88.085117
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(54) Farrell, H. H.; Stucki, F.; Anderson, J.; Frankel, D. J.; Lapeyre,
G. J.; Levinson, M. Electronic excitations on Si(100)(2 × 1). Phys.
Rev. B 1984, 30, 721−725.

(55) Bertossa, R. Theory, codes, and numerical simulation of heat
transport in multicomponent systems. Ph.D. thesis, Scuola Inter-
nazionale Superiore di Studi Avanzati, Trieste, 2022.

(56) van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.;
Hamann, D.; Gonze, X.; Rignanese, G.-M. The PseudoDojo: Training
and grading a 85 element optimized norm-conserving pseudopotential
table. Comput. Phys. Commun. 2018, 226, 39−54.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00249
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

O

https://doi.org/10.1103/PhysRevB.30.721
https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1016/j.cpc.2018.01.012
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

