
MS 125
Computational Tools and Precision Medicine

1

Room: 206A 9:45 AM - 11:25 AM

9:45-10:05 Acceleration of Prediction of Chemical Shift Structures
Sunita Chandrasekaran and Juan Perilla, University of Delaware, U.S.
10:10-10:30 In Situ Data Analytics for Next Generation Molecular Dynamics Workflows
Michela Taufer, University of Tennessee, U.S.
10:35-10:55 Challenges for Analysis and Visualization of Atomic-detail Simulations of Minimal Cells
John E. Stone, University of Illinois at Urbana-Champaign, U.S.
11:00-11:20 Capabilities, Collaboration and Cancer: Co-design for Advanced Computing Solutions for
Cancer Eric Stahlberg, National Cancer Institute, U.S.; George Zaki, Frederick National Lab for Cancer
Research, U.S.

Acceleration of Prediction of Chemical Shift
Structures

Sunita Chandrasekaran, Asst. Prof. Dept. of CIS, UDEL
Juan Perilla, Asst. Prof. Dept. of Chemistry, UDEL

schandra@udel.edu

Feb 26, SIAM CSE 2019

2

mailto:schandra@udel.edu

Structure is essential to function

https://pdb101.rcsb org/motm/72
Medical Research Council: Mitochondrial Biology Unit

(Creative commons attribution license)

Determining a protein’s native structure is the critical first step in understanding function

Tools of structure determination:
- X-Ray crystallography
- Electron microscopy
- Nuclear Magnetic Resonance

(NMR)

PDBID 1vre

Proteins and
their functions
are dynamic

3

https://pdb101.rcsb.org/motm/72

Project Motivation
● Nuclear Magnetic Resonance (NMR) is a vital

tool in the biocomputational space
● Chemical shift gives insight into the physical

structure of the protein
● Predicting chemical shift has important uses in

scientific areas such as drug discovery

Our goal:

● To expedite the prediction of estimation of
NMR chemical-shifts of large macromolecular
complexes by manyfold

● To allow chemical shift predictions for larger
scale structures

4

Proteins are biopolymers made
of amino acid monomers

Primary structure: sequence of amino acids . . .

Sequence is organized into secondary structure
by Hydrogen bonding

Tertiary structure is formed from grouping
secondary structures:

Quaternary structure convolves
organized tertiary structures:

Phe Ala Met Leu Gln Trp Glu

5

Parts Per Million (PPM)_ONE

• Parametrize a new empirical knowledge-

based chemical shift predictor of protein

backbone atoms

• Accepts a single static 3D protein

structure (PDB format) as input

• Emulates local protein dynamics

• Outputs chemical shift prediction with

high accuracy

6

PPM_One: a static protein structure based chemical shift predictor

Dawei Li, Rafael Brüschweiler, Journal of Biomolecular NMR. July 2015, Volume 62, Issue 3, pp 403–409

https://link.springer.com/journal/10858
https://link.springer.com/journal/10858/62/3/page/1

Semiempirical chemical shift prediction
Treats chemical shift as a sum of differentiable functions which depend on internal coordinates

Higher dimensional data (3D cartesian) maps to lower dimensional
internal coordinates

(α) !"# + %"& + '"(+)" = 0
(β) !,# + %,& + ',(+), = 0

cosΨ = 1" 2 1,
1" 1,

δ456789:; = <" + <, cos θ + <> + <?cos θ + <@

e.g., dihedral angle:

which is then passed to a CS function:

where p are fit parameters assigned on a
per-residue basis

7

Using OpenACC
• OpenACC, directive based parallel

programming model used to accelerate
code on heterogenous systems

• Implemented by PGI, GCC, and Cray
(until 2.0)

• PGI community editions are free
(licensed) to use, latest version 18.10

https://www.pgroup.com/products/community.htm

8

Serial Profile Visual

9

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Other Contains:
● File I/O
● PDB

Structure
Initialization

● Data error
correction

• Profiled code using PGPROF
– Without any

optimizations
• Gave a baseline snapshot of

the code
– Identified hotspots

within the code
– Identified functions that

are potential bottlenecks
• Obtained large overview

without needing to read
thousands of lines of code

Optimization in steps

10

getselect
23%

• Looking into optimizing the
serial code prior to
parallelizing it

Serial Optimization (getselect)
getselect originally
accounted for 25% of
the codes runtime. After
optimization, it takes
less than 1%.

11

// Pseudocode for getselect function

for(...) // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

} // Pseudocode for getselect function

c2=pdb->getselect(":1-%@allheavy");
for(...) // Large loop
{

traj->get_contact(c1,c2,&result);
}

Serial Optimizations (other smaller optimizations)

● Filtering Functions
○ Filter objects from a large list
○ Written to be C++ friendly, but was overall very inefficient
○ Runtime for filtering functions went from 5+ minutes down to 1

second in some cases
● Replacing C++ Vectors

○ C++ Standard Data Structure
○ Replace with basic arrays
○ No meaningful impact on performance (sequentially)

12

Serial Profile After Optimizations

13

get_contact
44%

gethbond
14%

getani
18%

getring
12%

Other
12%

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

BEFORE AFTER

Most compute intensive

14

get_contact
44%

Accelerating get_contact
• get_contact is called many times

in the code
• The “pos” vector actually only

contains 3 values; x, y, z
coordinates

• The “used” vector contains all of
the atoms in the structure

• GPU focused, we collapsed the
outer loop
• Now we compute 3 contacts

simultaneously
• We also combined all calls to

get_contact into one large
function called get_all_contacts

15

for(i=1;i<index_size-1;i++)
{

...
traj->get_contact(c1,c2,&result);
...

}

// For x,y,z coordinate
for(i=0;i<(int)pos.size();i++)
{

...
// For every atom
for(j=0;j<(int)used.size();j++)
{

// Calculate contact
...

}
result->push_back(contact);

}

Inside of the get_contact function

Accelerating get_contact

● Large outer-loop
covers all individual
get_contact calls

● Inner-loop still iterates
over all atoms

● Now calculating 3
different contacts
simultaneously

● Writing contacts to
one large results array
to be used later

16

#pragma acc parallel loop private(...) \
present(..., results[0:results_size]) copyin(...)
for(i=1;i<index_size-1;i++)
{

...

#pragma acc loop reduction(+:contact1, +:contact2, \
+:contact3) private(...)
for(j=0;j<c2_size;j++)
{

// Calculate contact1, contact2, contact3
}
...
results[((i-1)*3)+0]=contact1;
results[((i-1)*3)+1]=contact2;
results[((i-1)*3)+2]=contact3;

}

Next most compute intensive

17

get_hbond
14%

Acceleration of gethbond

18

#pragma acc parallel
{
#pragma acc loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
} // end parallel region

Gang and vector directives
allow us to implement
multiple levels of loop
parallelism.

The innermost loop is
typically very small, and
would provide no benefit in
parallelizing, so we mark it
as “sequential”

Acceleration of gethbond

19

#pragma acc parallel
{
#pragma acc loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
} // end parallel region

if(hbond[i].type==1){
#pragma acc atomic update
effect_arr[nid].n_length+=d;
#pragma acc atomic update
effect_arr[nid].n_phi+=phi;
#pragma acc atomic update
effect_arr[nid].n_psi+=psi

}
if(hbond[j].type==1){

#pragma acc atomic update
effect_arr[cid].c_lengh+=d;
#pragma acc atomic update
effect_arr[cid].c_phi+=phi;
#pragma acc atomic update
effect_arr[cid].c_psi+=psi;

}

And the next most…

20

get_contact
44%

getani
18%

getring
12%

Data Movement

21

CPU
Memory

GPU Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

GPU

IO Bus

• Allocate memory on host
first (main memory)

• Create copy of our data on
the device (GPU memory)

• Ensure that the correct
data is on the GPU when
we need it
• And vice versa

Experimental Datasets

22

23

3D
printed

Results

24

Serial
(Unoptimized)

Serial
(Optimized)

Multicore
(32 Xeon cores)

NVIDIA PASCAL
P100 GPU

NVIDIA VOLTA
V100 GPU

Experimental Setup

25

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

Serial
(Optimized)

Multicore
(32 Xeon cores)

NVIDIA PASCAL
P100 GPU

NVIDIA VOLTA
V100 GPU

PGI 18.4,
Community
Edition

Results

26

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

Multicore
(32 Xeon cores)

NVIDIA PASCAL
P100 GPU

NVIDIA VOLTA
V100 GPU

Results

27

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 Xeon cores)

NVIDIA PASCAL
P100 GPU

NVIDIA VOLTA
V100 GPU

Results

28

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 Xeon cores)

2.93s 109s 172s 427s

NVIDIA PASCAL
P100 GPU

NVIDIA VOLTA
V100 GPU

Results

29

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 Xeon cores)

2.93s 109s 172s 427s

NVIDIA PASCAL
P100 GPU

1.72s 36s 69s 170s

NVIDIA VOLTA
V100 GPU

1.68s 29s 56s

Results

30

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 Xeon cores)

2.93s 109s 172s 427s

NVIDIA PASCAL
P100 GPU

1.72s 36s 69s 170s

NVIDIA VOLTA
V100 GPU

1.68s 29s 56s 134s

67x
~3.4x

21x

Results Takeaway

• Of 134s on V100, 110s spent on data preprocessing; rewriting code
could bring it ~13x on V100 GPU over 32-core CPU

• On V100 GPU, 67x compared to the optimized serial code
• On 32 E5-2698 dual socket Xeon cores, ~21x compared to the

optimized serial code
• Compared to a fully-utilized 32 E5-2698 dual socket Xeon cores,

V100 achieves ~3.4X
• Single source code maintained using OpenACC on both multicore as

well as GPU
31

Scientific Impact

• TTBOOK first work on accelerated prediction of chemical shift
• Accelerated PPM_One is being used during an MD simulation

to predict shifts at every timestep and validate the structure
• Following advances in imaging techniques such as cryo-

electron microscopy (cryo-EM), empirical data for very large
biological complexes/structures enables in silico study thereof,
giving weight/significance to such studies and creating a need
for software and tools that can handle the size and complexity
of these structures.

32

