MS 125 Computational Tools and Precision Medicine

ELAWARE.

Room: 206A 9:45 AM - 11:25 AM

9:45-10:05 Acceleration of Prediction of Chemical Shift Structures

Sunita Chandrasekaran and Juan Perilla, University of Delaware, U.S.

10:10-10:30 In Situ Data Analytics for Next Generation Molecular Dynamics Workflows

Michela Taufer, University of Tennessee, U.S.

10:35-10:55 Challenges for Analysis and Visualization of Atomic-detail Simulations of Minimal Cells *John E. Stone*, University of Illinois at Urbana-Champaign, U.S.

11:00-11:20 Capabilities, Collaboration and Cancer: Co-design for Advanced Computing Solutions for Cancer Eric Stahlberg, National Cancer Institute, U.S.; *George Zaki*, Frederick National Lab for Cancer Research, U.S.

Acceleration of Prediction of Chemical Shift Structures

Sunita Chandrasekaran, Asst. Prof. Dept. of CIS, UDEL Juan Perilla, Asst. Prof. Dept. of Chemistry, UDEL <u>schandra@udel.edu</u>

Feb 26, SIAM CSE 2019

Structure is essential to function

IVERSITY OF ELAWARE

Determining a protein's native structure is the critical first step in understanding function

Tools of structure determination:

- X-Ray crystallography
- Electron microscopy
- Nuclear Magnetic Resonance

(NMR)

PDBID 1vre

https://pdb101.rcsb org/motm/72 Medical Research Council: Mitochondrial Biology Unit (Creative commons attribution license)

Project Motivation

- Nuclear Magnetic Resonance (NMR) is a vital tool in the biocomputational space
- Chemical shift gives insight into the physical structure of the protein
- Predicting chemical shift has important uses in scientific areas such as drug discovery

Our goal:

- To expedite the prediction of estimation of NMR chemical-shifts of large macromolecular complexes by manyfold
- To allow chemical shift predictions for larger scale structures

Proteins are biopolymers made of amino acid monomers

IVERSITY OF FLAWARE,

I III R H H O НH

R

Tertiary structure is formed from grouping secondary structures:

Quaternary structure convolves organized tertiary structures:

Parts Per Million (PPM)_ONE

IVERSITY OF FLAWARE

- Parametrize a new empirical knowledgebased chemical shift predictor of protein backbone atoms
- Accepts a single static 3D protein structure (PDB format) as input
- Emulates local protein dynamics
- Outputs chemical shift prediction with high accuracy

ATOM	1	Ν	MET	Α	144	16.219	4.268	2.223	1.00	0.00	N
ATOM	2	CA	MET	Α	144	14.894	4.097	2.883	1.00	0.00	С
ATOM	3	С	MET	Α	144	13.976	5.251	2.488	1.00	0.00	С
ATOM	4	0	MET	Α	144	13.839	6.226	3.225	1.00	0.00	0
ATOM	5	СВ	MET	Α	144	15.082	4.077	4.402	1.00	0.00	С
ATOM	6	CG	MET	Α	144	15.859	2.822	4.805	1.00	0.00	С
ATOM	7	SD	MET	Α	144	16.042	2.778	6.605	1.00	0.00	S
ATOM	8	CE	MET	Α	144	16.943	1.212	6.703	1.00	0.00	С
ATOM	9	H1	MET	Α	144	16.141	4.979	1.468	1.00	0.00	н
ATOM	10	H2	MET	Α	144	16.523	3.361	1.816	1.00	0.00	н
ATOM	11	H3	MET	Α	144	16.917	4.586	2.924	1.00	0.00	н
ATOM	12	HA	MET	Α	144	14.453	3.164	2.565	1.00	0.00	н
ATOM	13	HB2	MET	Α	144	15.632	4.955	4.708	1.00	0.00	н
ATOM	14	HB3	MET	Α	144	14.116	4.070	4.885	1.00	0.00	н
ATOM	15	HG2	MET	Α	144	15.321	1.945	4.476	1.00	0.00	н
ATOM	16	HG3	MET	Α	144	16.835	2.840	4.344	1.00	0.00	н
ATOM	17	HE1	MET	Α	144	16.382	0.441	6.202	1.00	0.00	н
ATOM	18	HE2	MET	Α	144	17.078	0.941	7.741	1.00	0.00	н
ATOM	19	HE3	MET	Α	144	17.907	1.322	6.226	1.00	0.00	н
ATOM	20	Ν	TYR	Α	145	13.350	5.130	1.321	1.00	0.00	N
ATOM	21	CA	TYR	Α	145	12.448	6.172	0.838	1.00	0.00	С
ATOM	22	С	TYR	Α	145	11.480	6.592	1.940	1.00	0.00	С
ATOM	23	0	TYR	Α	145	11.464	7.751	2.353	1.00	0.00	0
ATOM	24	СВ	TYR	Α	145	11.672	5.657	-0.383	1.00	0.00	С

PPM_One: a static protein structure based chemical shift predictor Dawei Li, Rafael Brüschweiler, <u>Journal of Biomolecular NMR. J</u>uly 2015, Volume 62, I<u>ssue 3,</u> pp 403–409

Semiempirical chemical shift prediction

Treats chemical shift as a sum of differentiable functions which depend on internal coordinates $\delta_{CSpredicted} = \delta_{HBond} + \delta_{Dihedral} + \delta_{Ring\ Current} + \delta_{Magn\ Anisotropy} + \delta_{Electric}$

Higher dimensional data (3D cartesian) maps to lower dimensional **internal coordinates**

e.g., dihedral angle:

Using OpenACC

ELAWARE.

- OpenACC, directive based parallel programming model used to accelerate code on heterogenous systems
- Implemented by PGI, GCC, and Cray (until 2.0)
- PGI community editions are free (licensed) to use, latest version 18.10

https://www.pgroup.com/products/community.htm

Serial Profile Visual

ELAWARE.

- Profiled code using PGPROF
 - Without any optimizations
- Gave a baseline snapshot of the code
 - Identified hotspots within the code
 - Identified functions that are potential bottlenecks
- Obtained large overview without needing to read thousands of lines of code

Optimization in steps

ELAWARE.

Looking into optimizing the serial code prior to parallelizing it

Serial Optimization (getselect)

ELAWARE.

Serial Optimizations (other smaller optimizations)

NIVERSITY OF FLAWARE

- Filtering Functions
 - Filter objects from a large list
 - Written to be C++ friendly, but was overall very inefficient
 - Runtime for filtering functions went from 5+ minutes down to 1
 second in some cases
- Replacing C++ Vectors
 - C++ Standard Data Structure
 - Replace with basic arrays
 - No meaningful impact on performance (sequentially)

ELAWARE.

Serial Profile After Optimizations

Most compute intensive

ELAWARE.

Accelerating get_contact

NIVERSITY OF ELAWARE

- get_contact is called many times in the code
- The "pos" vector actually only contains 3 values; x, y, z coordinates
- The "used" vector contains all of the atoms in the structure
- GPU focused, we collapsed the outer loop
 - Now we compute 3 contacts simultaneously
- We also combined all calls to get_contact into one large function called get_all_contacts

Inside of the get_contact function

Accelerating get_contact

FILAWARE.

- Large outer-loop covers all individual get_contact calls
- Inner-loop still iterates
 over all atoms
- Now calculating 3 different contacts simultaneously
- Writing contacts to one large results array to be used later

Next most compute intensive

ELAWARE.

Acceleration of gethbond

ELAWARE.

Acceleration of gethbond

DIVERSITY OF ELAWARE.

And the next most...

Data Movement

- Allocate memory on host first (main memory)
- Create copy of our data on the device (GPU memory)
- Ensure that the correct data is on the GPU when we need it
 - And vice versa

Experimental Datasets

ELAWARE.

ELAWARE.

3D printed

UNIVERSITY OF ELAWARE.

Serial (Unoptimized)		
Serial (Optimized)		
Multicore (32 Xeon cores)		
NVIDIA PASCAL P100 GPU		
NVIDIA VOLTA V100 GPU		

Experimental Setup

WIVERSITY OF ELAWARE.

	Very Small (100K) Atoms	Medium (2.1M) Atoms	Large (6.8M) Atoms	Very Large (11M) Atoms	
Serial (Unoptimized)					PGI 18.4.
Serial (Optimized)					Community Edition
Multicore (32 Xeon cores)					
NVIDIA PASCAL P100 GPU					
NVIDIA VOLTA V100 GPU					25

UNIVERSITY OF ELAWARE.

	Very Small (100K) Atoms	Medium (2.1M) Atoms	Large (6.8M) Atoms	Very Large (11M) Atoms
Serial (Unoptimized)	167.11s	3547.07 (1 hour)	7 hours approx.	14 hours approx.
Serial (Optimized)				
Multicore (32 Xeon cores)				
NVIDIA PASCAL P100 GPU				
NVIDIA VOLTA V100 GPU				

UNIVERSITY OF ELAWARE.

	Very Small	Medium	Large	Very Large
	(100K) Atoms	(2.1M) Atoms	(6.8M) Atoms	(11M) Atoms
Serial	167.11s	3547.07	7 hours	14 hours
(Unoptimized)		(1 hour)	approx.	<i>approx.</i>
Serial	32s	2209.64s	2939s	9035s
(Optimized)		(37 min)	(48 min)	(2.5 hours)
Multicore (32 Xeon cores)				
NVIDIA PASCAL P100 GPU				
NVIDIA VOLTA V100 GPU				

UNIVERSITY OF ELAWARE.

	Very Small	Medium	Large	Very Large
	(100K) Atoms	(2.1M) Atoms	(6.8M) Atoms	(11M) Atoms
Serial	167.11s	3547.07	7 hours	14 hours
(Unoptimized)		(1 hour)	approx.	<i>approx.</i>
Serial	32 s	2209.64s	2939s	9035s
(Optimized)		(37 min)	(48 min)	(2.5 hours)
Multicore (32 Xeon cores)	2.93s	109s	172s	427s
NVIDIA PASCAL P100 GPU				
NVIDIA VOLTA V100 GPU				

UNIVERSITY OF ELAWARE.

	Very Small	Medium	Large	Very Large
	(100K) Atoms	(2.1M) Atoms	(6.8M) Atoms	(11M) Atoms
Serial	167.11s	3547.07	7 hours	14 hours
(Unoptimized)		(1 hour)	approx.	approx.
Serial	32s	2209.64s	2939s	9035s
(Optimized)		(37 min)	(48 min)	(2.5 hours)
Multicore (32 Xeon cores)	2.93s	109s	172s	427s
NVIDIA PASCAL P100 GPU	1.72s	36s	69s	170s
NVIDIA VOLTA V100 GPU	1.68s	29s	56s	

UNIVERSITY OF ELAWARE.

	Very Small (100K) Atoms	Medium (2.1M) Atoms	Large (6.8M) Atoms	Very Large (11M) Atoms	
Serial (Unoptimized)	167.11s	3547.07 (1 hour)	7 hours approx.	14 hours approx.	
Serial (Optimized)	32s	2209.64s (37 min)	2939s (48 min)	9035s (2.5 hours)	21x
Multicore (32 Xeon cores)	2.93s	109s	172s	427s	
NVIDIA PASCAL P100 GPU	1.72s	36s	69s	170s	67x ~3.4x
NVIDIA VOLTA V100 GPU	1.68s	29s	56s	<mark>134s</mark>	30

Results Takeaway

NIVERSITY OF FLAWARE

- Of 134s on V100, 110s spent on data preprocessing; rewriting code could bring it ~13x on V100 GPU over 32-core CPU
- On V100 GPU, 67x compared to the optimized serial code
- On 32 E5-2698 dual socket Xeon cores, ~21x compared to the optimized serial code
- Compared to a fully-utilized 32 E5-2698 dual socket Xeon cores, V100 achieves ~3.4X
- Single source code maintained using OpenACC on both multicore as well as GPU

Scientific Impact

FLAWARE

- TTBOOK first work on accelerated prediction of chemical shift
- Accelerated PPM_One is being used during an MD simulation to predict shifts at every timestep and validate the structure
- Following advances in imaging techniques such as cryoelectron microscopy (cryo-EM), empirical data for very large biological complexes/structures enables in silico study thereof, giving weight/significance to such studies and creating a need for software and tools that can handle the size and complexity of these structures.