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Structure is essential to function

https://pdb101.rcsb org/motm/72
Medical Research Council: Mitochondrial Biology Unit

(Creative commons attribution license)

Determining a protein’s native structure is the critical first step in understanding function

Tools of structure determination:
- X-Ray crystallography
- Electron microscopy 
- Nuclear Magnetic Resonance 

(NMR)

PDBID 1vre

Proteins and 
their functions 
are dynamic
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Project Motivation
● Nuclear Magnetic Resonance (NMR) is a vital 

tool in the biocomputational space
● Chemical shift gives insight into the physical 

structure of the protein
● Predicting chemical shift has important uses in 

scientific areas such as drug discovery

Our goal:

● To expedite the prediction of estimation of 
NMR chemical-shifts of large macromolecular 
complexes by manyfold

● To allow chemical shift predictions for larger 
scale structures
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Proteins are biopolymers made 
of amino acid monomers

Primary structure: sequence of amino acids . . . 

Sequence is organized into secondary structure 
by Hydrogen bonding

Tertiary structure is formed from grouping 
secondary structures: 

Quaternary structure convolves 
organized tertiary structures:

Phe Ala Met Leu Gln Trp Glu
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Parts Per Million (PPM)_ONE

• Parametrize a new empirical knowledge-

based chemical shift predictor of protein 

backbone atoms

• Accepts a single static 3D protein 

structure (PDB format) as input

• Emulates local protein dynamics

• Outputs chemical shift prediction with 

high accuracy
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PPM_One: a static protein structure based chemical shift predictor

Dawei Li, Rafael Brüschweiler, Journal of Biomolecular NMR. July 2015, Volume 62, Issue 3, pp 403–409

https://link.springer.com/journal/10858
https://link.springer.com/journal/10858/62/3/page/1


Semiempirical chemical shift prediction 
Treats chemical shift as a sum of differentiable functions which depend on internal coordinates

Higher dimensional data (3D cartesian) maps to lower dimensional 
internal coordinates

(α) !"# + %"& + '"( + )" = 0
(β) !,# + %,& + ',( + ), = 0

cosΨ = 1" 2 1,
1" 1,

δ456789:; = <" + <, cos θ + <> + <?cos θ + <@

e.g., dihedral angle:

which is then passed to a CS function:

where p are fit parameters assigned on a 
per-residue basis 
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Using OpenACC
• OpenACC, directive based parallel 

programming model used to accelerate 
code on heterogenous systems

• Implemented by PGI, GCC, and Cray 
(until 2.0)

• PGI community editions are free 
(licensed) to use, latest version 18.10 

https://www.pgroup.com/products/community.htm
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Serial Profile Visual
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Other Contains:
● File I/O
● PDB 

Structure 
Initialization

● Data error 
correction

• Profiled code using PGPROF
– Without any 

optimizations
• Gave a baseline snapshot of 

the code
– Identified hotspots 

within the code
– Identified functions that 

are potential bottlenecks
• Obtained large overview 

without needing to read 
thousands of lines of code



Optimization in steps
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getselect
23%

• Looking into optimizing the 
serial code prior to 
parallelizing it



Serial Optimization (getselect)
getselect originally 
accounted for 25% of 
the codes runtime. After 
optimization, it takes 
less than 1%.
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// Pseudocode for getselect function

for( ... )   // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

} // Pseudocode for getselect function

c2=pdb->getselect(":1-%@allheavy");
for( ... )   // Large loop
{

traj->get_contact(c1,c2,&result);
}



Serial Optimizations (other smaller optimizations)

● Filtering Functions
○ Filter objects from a large list
○ Written to be C++ friendly, but was overall very inefficient
○ Runtime for filtering functions went from 5+ minutes down to 1 

second in some cases
● Replacing C++ Vectors

○ C++ Standard Data Structure
○ Replace with basic arrays
○ No meaningful impact on performance (sequentially)
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Serial Profile After Optimizations
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Most compute intensive
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Accelerating get_contact
• get_contact is called many times 

in the code
• The “pos” vector actually only 

contains 3 values; x, y, z 
coordinates

• The “used” vector contains all of 
the atoms in the structure

• GPU focused, we collapsed the 
outer loop
• Now we compute 3 contacts 

simultaneously
• We also combined all calls to 

get_contact into one large 
function called get_all_contacts
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for(i=1;i<index_size-1;i++)
{

...
traj->get_contact(c1,c2,&result);
...

}

// For x,y,z coordinate
for(i=0;i<(int)pos.size();i++)
{

...
// For every atom
for(j=0;j<(int)used.size();j++)
{

// Calculate contact
...

}
result->push_back(contact);

}

Inside of the get_contact function



Accelerating get_contact

● Large outer-loop 
covers all individual 
get_contact calls

● Inner-loop still iterates 
over all atoms

● Now calculating 3 
different contacts 
simultaneously

● Writing contacts to 
one large results array 
to be used later
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#pragma acc parallel loop private(...) \
present(..., results[0:results_size]) copyin(...)
for(i=1;i<index_size-1;i++)
{

...

#pragma acc loop reduction(+:contact1, +:contact2, \
+:contact3) private(...)
for(j=0;j<c2_size;j++)
{

// Calculate contact1, contact2, contact3
}
...
results[((i-1)*3)+0]=contact1;
results[((i-1)*3)+1]=contact2;
results[((i-1)*3)+2]=contact3;

}



Next most compute intensive
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get_hbond
14%



Acceleration of gethbond
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#pragma acc parallel
{
#pragma acc loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
} // end parallel region

Gang and vector directives 
allow us to implement 
multiple levels of loop 
parallelism.

The innermost loop is 
typically very small, and 
would provide no benefit in 
parallelizing, so we mark it 
as “sequential”



Acceleration of gethbond
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#pragma acc parallel
{
#pragma acc loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
} // end parallel region

if(hbond[i].type==1){
#pragma acc atomic update
effect_arr[nid].n_length+=d;
#pragma acc atomic update
effect_arr[nid].n_phi+=phi;
#pragma acc atomic update
effect_arr[nid].n_psi+=psi

}
if(hbond[j].type==1){

#pragma acc atomic update
effect_arr[cid].c_lengh+=d;
#pragma acc atomic update
effect_arr[cid].c_phi+=phi;
#pragma acc atomic update
effect_arr[cid].c_psi+=psi;

}



And the next most… 
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Data Movement
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CPU 
Memory

GPU  Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

GPU

IO Bus

• Allocate memory on host 
first (main memory)

• Create copy of our data on 
the device (GPU memory)

• Ensure that the correct 
data is on the GPU when 
we need it
• And vice versa



Experimental Datasets 
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Results
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Experimental Setup
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Results
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Results
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Results Takeaway

• Of 134s on V100, 110s spent on data preprocessing; rewriting code 
could bring it ~13x on V100 GPU over 32-core CPU 

• On V100 GPU, 67x compared to the optimized serial code 
• On 32 E5-2698 dual socket Xeon cores, ~21x compared to the 

optimized serial code 
• Compared to a fully-utilized 32 E5-2698 dual socket Xeon cores, 

V100 achieves ~3.4X
• Single source code maintained using OpenACC on both multicore as 

well as GPU 
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Scientific Impact

• TTBOOK first work on accelerated prediction of chemical shift
• Accelerated PPM_One is being used during an MD simulation 

to predict shifts at every timestep and validate the structure
• Following advances in imaging techniques such as cryo-

electron microscopy (cryo-EM), empirical data for very large 
biological complexes/structures enables in silico study thereof, 
giving weight/significance to such studies and creating a need 
for software and tools that can handle the size and complexity 
of these structures.
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