
The OpenACC R©
1

Application Programming Interface2

Version 3.03

OpenACC-Standard.org4

November, 20195

The OpenACC R© API

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,6

no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form7

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express8

written permission of the authors.9

c© 2011-2019 OpenACC-Standard.org. All rights reserved.10

2

The OpenACC R© API

Contents11

1. Introduction 912

1.1. Scope . 913

1.2. Execution Model . 914

1.3. Memory Model . 1115

1.4. Language Interoperability . 1316

1.5. Conventions used in this document . 1317

1.6. Organization of this document . 1418

1.7. References . 1419

1.8. Changes from Version 1.0 to 2.0 . 1620

1.9. Corrections in the August 2013 document . 1721

1.10. Changes from Version 2.0 to 2.5 . 1722

1.11. Changes from Version 2.5 to 2.6 . 1823

1.12. Changes from Version 2.6 to 2.7 . 1924

1.13. Changes from Version 2.7 to 3.0 . 2025

1.14. Topics Deferred For a Future Revision . 2126

2. Directives 2327

2.1. Directive Format . 2328

2.2. Conditional Compilation . 2429

2.3. Internal Control Variables . 2430

2.3.1. Modifying and Retrieving ICV Values . 2431

2.4. Device-Specific Clauses . 2532

2.5. Compute Constructs . 2733

2.5.1. Parallel Construct . 2734

2.5.2. Kernels Construct . 2835

2.5.3. Serial Construct . 3036

2.5.4. if clause . 3237

2.5.5. self clause . 3238

2.5.6. async clause . 3239

2.5.7. wait clause . 3240

2.5.8. num gangs clause . 3241

2.5.9. num workers clause . 3242

2.5.10. vector length clause . 3343

2.5.11. private clause . 3344

2.5.12. firstprivate clause . 3345

2.5.13. reduction clause . 3346

2.5.14. default clause . 3447

2.6. Data Environment . 3548

2.6.1. Variables with Predetermined Data Attributes 3549

2.6.2. Variables with Implicitly Determined Data Attributes 3550

3

The OpenACC R© API

2.6.3. Data Regions and Data Lifetimes . 3651

2.6.4. Data Structures with Pointers . 3652

2.6.5. Data Construct . 3753

2.6.6. Enter Data and Exit Data Directives . 3854

2.6.7. Reference Counters . 4055

2.6.8. Attachment Counter . 4156

2.7. Data Clauses . 4157

2.7.1. Data Specification in Data Clauses . 4258

2.7.2. Data Clause Actions . 4359

2.7.3. deviceptr clause . 4660

2.7.4. present clause . 4661

2.7.5. copy clause . 4762

2.7.6. copyin clause . 4763

2.7.7. copyout clause . 4864

2.7.8. create clause . 4965

2.7.9. no create clause . 4966

2.7.10. delete clause . 5067

2.7.11. attach clause . 5068

2.7.12. detach clause . 5169

2.8. Host Data Construct . 5170

2.8.1. use device clause . 5271

2.8.2. if clause . 5272

2.8.3. if present clause . 5273

2.9. Loop Construct . 5274

2.9.1. collapse clause . 5375

2.9.2. gang clause . 5476

2.9.3. worker clause . 5477

2.9.4. vector clause . 5578

2.9.5. seq clause . 5579

2.9.6. auto clause . 5580

2.9.7. tile clause . 5681

2.9.8. device type clause . 5682

2.9.9. independent clause . 5683

2.9.10. private clause . 5784

2.9.11. reduction clause . 5785

2.10. Cache Directive . 6186

2.11. Combined Constructs . 6287

2.12. Atomic Construct . 6388

2.13. Declare Directive . 6789

2.13.1. device resident clause . 6990

2.13.2. create clause . 6991

2.13.3. link clause . 7092

2.14. Executable Directives . 7193

2.14.1. Init Directive . 7194

2.14.2. Shutdown Directive . 7295

2.14.3. Set Directive . 7396

2.14.4. Update Directive . 7497

2.14.5. Wait Directive . 7798

4

The OpenACC R© API

2.14.6. Enter Data Directive . 7799

2.14.7. Exit Data Directive . 77100

2.15. Procedure Calls in Compute Regions . 77101

2.15.1. Routine Directive . 77102

2.15.2. Global Data Access . 80103

2.16. Asynchronous Behavior . 80104

2.16.1. async clause . 80105

2.16.2. wait clause . 81106

2.16.3. Wait Directive . 82107

2.17. Fortran Optional Arguments . 83108

3. Runtime Library 85109

3.1. Runtime Library Definitions . 85110

3.2. Runtime Library Routines . 86111

3.2.1. acc get num devices . 86112

3.2.2. acc set device type . 87113

3.2.3. acc get device type . 87114

3.2.4. acc set device num . 88115

3.2.5. acc get device num . 88116

3.2.6. acc get property . 89117

3.2.7. acc init . 90118

3.2.8. acc shutdown . 91119

3.2.9. acc async test . 91120

3.2.10. acc async test device . 92121

3.2.11. acc async test all . 92122

3.2.12. acc async test all device . 93123

3.2.13. acc wait . 93124

3.2.14. acc wait device . 94125

3.2.15. acc wait async . 95126

3.2.16. acc wait device async . 95127

3.2.17. acc wait all . 96128

3.2.18. acc wait all device . 96129

3.2.19. acc wait all async . 96130

3.2.20. acc wait all device async . 97131

3.2.21. acc get default async . 97132

3.2.22. acc set default async . 98133

3.2.23. acc on device . 98134

3.2.24. acc malloc . 99135

3.2.25. acc free . 99136

3.2.26. acc copyin . 100137

3.2.27. acc create . 101138

3.2.28. acc copyout . 102139

3.2.29. acc delete . 103140

3.2.30. acc update device . 104141

3.2.31. acc update self . 105142

3.2.32. acc map data . 105143

3.2.33. acc unmap data . 106144

3.2.34. acc deviceptr . 106145

5

The OpenACC R© API

3.2.35. acc hostptr . 107146

3.2.36. acc is present . 107147

3.2.37. acc memcpy to device . 107148

3.2.38. acc memcpy from device . 108149

3.2.39. acc memcpy device . 108150

3.2.40. acc attach . 109151

3.2.41. acc detach . 109152

3.2.42. acc memcpy d2d . 110153

4. Environment Variables 113154

4.1. ACC DEVICE TYPE . 113155

4.2. ACC DEVICE NUM . 113156

4.3. ACC PROFLIB . 113157

5. Profiling Interface 115158

5.1. Events . 115159

5.1.1. Runtime Initialization and Shutdown . 116160

5.1.2. Device Initialization and Shutdown . 116161

5.1.3. Enter Data and Exit Data . 117162

5.1.4. Data Allocation . 117163

5.1.5. Data Construct . 118164

5.1.6. Update Directive . 118165

5.1.7. Compute Construct . 118166

5.1.8. Enqueue Kernel Launch . 119167

5.1.9. Enqueue Data Update (Upload and Download) 119168

5.1.10. Wait . 120169

5.2. Callbacks Signature . 120170

5.2.1. First Argument: General Information . 121171

5.2.2. Second Argument: Event-Specific Information 122172

5.2.3. Third Argument: API-Specific Information 125173

5.3. Loading the Library . 126174

5.3.1. Library Registration . 127175

5.3.2. Statically-Linked Library Initialization 128176

5.3.3. Runtime Dynamic Library Loading . 128177

5.3.4. Preloading with LD PRELOAD . 129178

5.3.5. Application-Controlled Initialization . 130179

5.4. Registering Event Callbacks . 130180

5.4.1. Event Registration and Unregistration . 131181

5.4.2. Disabling and Enabling Callbacks . 132182

5.5. Advanced Topics . 133183

5.5.1. Dynamic Behavior . 134184

5.5.2. OpenACC Events During Event Processing 135185

5.5.3. Multiple Host Threads . 135186

6. Glossary 137187

6

The OpenACC R© API

A. Recommendations for Implementors 141188

A.1. Target Devices . 141189

A.1.1. NVIDIA GPU Targets . 141190

A.1.2. AMD GPU Targets . 141191

A.1.3. Multicore Host CPU Target . 142192

A.2. API Routines for Target Platforms . 142193

A.2.1. NVIDIA CUDA Platform . 143194

A.2.2. OpenCL Target Platform . 144195

A.3. Recommended Options . 145196

A.3.1. C Pointer in Present clause . 145197

A.3.2. Autoscoping . 145198

Index 147199

7

The OpenACC R© API

8

The OpenACC R© API 1.1. Scope

1. Introduction200

This document describes the compiler directives, library routines, and environment variables that201

collectively define the OpenACCTM Application Programming Interface (OpenACC API) for writ-202

ing parallel programs in C, C++, and Fortran that run identified regions in parallel on multicore203

CPUs or attached accelerators. The method described provides a model for parallel programming204

that is portable across operating systems and various types of multicore CPUs and accelerators. The205

directives extend the ISO/ANSI standard C, C++, and Fortran base languages in a way that allows206

a programmer to migrate applications incrementally to parallel multicore and accelerator targets207

using standards-based C, C++, or Fortran.208

The directives and programming model defined in this document allow programmers to create appli-209

cations capable of using accelerators without the need to explicitly manage data or program transfers210

between a host and accelerator or to initiate accelerator startup and shutdown. Rather, these details211

are implicit in the programming model and are managed by the OpenACC API-enabled compilers212

and runtime environments. The programming model allows the programmer to augment informa-213

tion available to the compilers, including specification of data local to an accelerator, guidance on214

mapping of loops for parallel execution, and similar performance-related details.215

1.1. Scope216

This OpenACC API document covers only user-directed parallel and accelerator programming,217

where the user specifies the regions of a program to be targeted for parallel execution. The remainder218

of the program will be executed sequentially on the host. This document does not describe features219

or limitations of the host programming environment as a whole; it is limited to specification of loops220

and regions of code to be executed in parallel on a multicore CPU or an accelerator.221

This document does not describe automatic detection of parallel regions or automatic offloading222

of regions of code to an accelerator by a compiler or other tool. This document does not describe223

splitting loops or code regions across multiple accelerators attached to a single host. While future224

compilers may allow for automatic parallelization or automatic offloading, or parallelizing across225

multiple accelerators of the same type, or across multiple accelerators of different types, these pos-226

sibilities are not addressed in this document.227

1.2. Execution Model228

The execution model targeted by OpenACC API-enabled implementations is host-directed execu-229

tion with an attached parallel accelerator, such as a GPU, or a multicore host with a host thread that230

initiates parallel execution on the multiple cores, thus treating the multicore CPU itself as a device.231

Much of a user application executes on a host thread. Compute intensive regions are offloaded to an232

accelerator or executed on the multiple host cores under control of a host thread. A device, either233

9

The OpenACC R© API 1.2. Execution Model

an attached accelerator or the multicore CPU, executes parallel regions, which typically contain234

work-sharing loops, kernels regions, which typically contain one or more loops that may be exe-235

cuted as kernels, or serial regions, which are blocks of sequential code. Even in accelerator-targeted236

regions, the host thread may orchestrate the execution by allocating memory on the accelerator de-237

vice, initiating data transfer, sending the code to the accelerator, passing arguments to the compute238

region, queuing the accelerator code, waiting for completion, transferring results back to the host,239

and deallocating memory. In most cases, the host can queue a sequence of operations to be executed240

on a device, one after the other.241

Most current accelerators and many multicore CPUs support two or three levels of parallelism.242

Most accelerators and multicore CPUs support coarse-grain parallelism, which is fully parallel exe-243

cution across execution units. There may be limited support for synchronization across coarse-grain244

parallel operations. Many accelerators and some CPUs also support fine-grain parallelism, often245

implemented as multiple threads of execution within a single execution unit, which are typically246

rapidly switched on the execution unit to tolerate long latency memory operations. Finally, most247

accelerators and CPUs also support SIMD or vector operations within each execution unit. The248

execution model exposes these multiple levels of parallelism on a device and the programmer is249

required to understand the difference between, for example, a fully parallel loop and a loop that250

is vectorizable but requires synchronization between statements. A fully parallel loop can be pro-251

grammed for coarse-grain parallel execution. Loops with dependences must either be split to allow252

coarse-grain parallel execution, or be programmed to execute on a single execution unit using fine-253

grain parallelism, vector parallelism, or sequentially.254

OpenACC exposes these three levels of parallelism via gang, worker, and vector parallelism. Gang255

parallelism is coarse-grain. A number of gangs will be launched on the accelerator. Worker paral-256

lelism is fine-grain. Each gang will have one or more workers. Vector parallelism is for SIMD or257

vector operations within a worker.258

When executing a compute region on a device, one or more gangs are launched, each with one or259

more workers, where each worker may have vector execution capability with one or more vector260

lanes. The gangs start executing in gang-redundant mode (GR mode), meaning one vector lane of261

one worker in each gang executes the same code, redundantly. When the program reaches a loop262

or loop nest marked for gang-level work-sharing, the program starts to execute in gang-partitioned263

mode (GP mode), where the iterations of the loop or loops are partitioned across gangs for truly264

parallel execution, but still with only one worker per gang and one vector lane per worker active.265

When only one worker is active, in either GR or GP mode, the program is in worker-single mode266

(WS mode). When only one vector lane is active, the program is in vector-single mode (VS mode).267

If a gang reaches a loop or loop nest marked for worker-level work-sharing, the gang transitions to268

worker-partitioned mode (WP mode), which activates all the workers of the gang. The iterations269

of the loop or loops are partitioned across the workers of this gang. If the same loop is marked for270

both gang-partitioning and worker-partitioning, then the iterations of the loop are spread across all271

the workers of all the gangs. If a worker reaches a loop or loop nest marked for vector-level work-272

sharing, the worker will transition to vector-partitioned mode (VP mode). Similar to WP mode, the273

transition to VP mode activates all the vector lanes of the worker. The iterations of the loop or loops274

will be partitioned across the vector lanes using vector or SIMD operations. Again, a single loop275

may be marked for one, two, or all three of gang, worker, and vector parallelism, and the iterations276

of that loop will be spread across the gangs, workers, and vector lanes as appropriate.277

The program starts executing with a single initial host thread, identified by a program counter and278

10

The OpenACC R© API 1.3. Memory Model

its stack. The initial host thread may spawn additional host threads, using OpenACC or another279

mechanism, such as with the OpenMP API. On a device, a single vector lane of a single worker of a280

single gang is called a device thread. When executing on an accelerator, a parallel execution context281

is created on the accelerator and may contain many such threads.282

The user should not attempt to implement barrier synchronization, critical sections or locks across283

any of gang, worker, or vector parallelism. The execution model allows for an implementation that284

executes some gangs to completion before starting to execute other gangs. This means that trying285

to implement synchronization between gangs is likely to fail. In particular, a barrier across gangs286

cannot be implemented in a portable fashion, since all gangs may not ever be active at the same time.287

Similarly, the execution model allows for an implementation that executes some workers within a288

gang or vector lanes within a worker to completion before starting other workers or vector lanes,289

or for some workers or vector lanes to be suspended until other workers or vector lanes complete.290

This means that trying to implement synchronization across workers or vector lanes is likely to fail.291

In particular, implementing a barrier or critical section across workers or vector lanes using atomic292

operations and a busy-wait loop may never succeed, since the scheduler may suspend the worker or293

vector lane that owns the lock, and the worker or vector lane waiting on the lock can never complete.294

Some devices, such as a multicore CPU, may also create and launch additional compute regions,295

allowing for nested parallelism. In that case, the OpenACC directives may be executed by a host296

thread or a device thread. This specification uses the term local thread or local memory to mean the297

thread that executes the directive, or the memory associated with that thread, whether that thread298

executes on the host or on the accelerator. The specification uses the term local device to mean the299

device on which the local thread is executing.300

Most accelerators can operate asynchronously with respect to the host thread. Such devices have one301

or more activity queues. The host thread will enqueue operations onto the device activity queues,302

such as data transfers and procedure execution. After enqueuing the operation, the host thread can303

continue execution while the device operates independently and asynchronously. The host thread304

may query the device activity queue(s) and wait for all the operations in a queue to complete.305

Operations on a single device activity queue will complete before starting the next operation on the306

same queue; operations on different activity queues may be active simultaneously and may complete307

in any order.308

1.3. Memory Model309

The most significant difference between a host-only program and a host+accelerator program is that310

the memory on an accelerator may be discrete from host memory. This is the case with most current311

GPUs, for example. In this case, the host thread may not be able to read or write device memory312

directly because it is not mapped into the host thread’s virtual memory space. All data movement313

between host memory and accelerator memory must be performed by the host thread through system314

calls that explicitly move data between the separate memories, typically using direct memory access315

(DMA) transfers. Similarly, it is not valid to assume the accelerator can read or write host memory,316

though this is supported by some accelerators, often with significant performance penalty.317

The concept of discrete host and accelerator memories is very apparent in low-level accelerator318

programming languages such as CUDA or OpenCL, in which data movement between the memories319

can dominate user code. In the OpenACC model, data movement between the memories can be320

implicit and managed by the compiler, based on directives from the programmer. However, the321

11

The OpenACC R© API 1.4. Language Interoperability

programmer must be aware of the potentially discrete memories for many reasons, including but322

not limited to:323

• Memory bandwidth between host memory and accelerator memory determines the level of324

compute intensity required to effectively accelerate a given region of code.325

• The user should be aware that a discrete device memory is usually significantly smaller than326

the host memory, prohibiting offloading regions of code that operate on very large amounts327

of data.328

• Host addresses stored to pointers on the host may only be valid on the host; addresses stored329

to pointers in accelerator memory may only be valid on that device. Explicitly transferring330

pointer values between host and accelerator memory is not advised. Dereferencing host point-331

ers on an accelerator or dereferencing accelerator pointers on the host is likely to be invalid332

on such targets.333

OpenACC exposes the discrete memories through the use of a device data environment. Device data334

has an explicit lifetime, from when it is allocated or created until it is deleted. If a device shares335

memory with the local thread, its device data environment will be shared with the local thread. In336

that case, the implementation need not create new copies of the data for the device and no data337

movement need be done. If a device has a discrete memory and shares no memory with the local338

thread, the implementation will allocate space in device memory and copy data between the local339

memory and device memory, as appropriate. The local thread may share some memory with a340

device and also have some memory that is not shared with that device. In that case, data in shared341

memory may be accessed by both the local thread and the device. Data not in shared memory will342

be copied to device memory as necessary.343

Some accelerators (such as current GPUs) implement a weak memory model. In particular, they do344

not support memory coherence between operations executed by different threads; even on the same345

execution unit, memory coherence is only guaranteed when the memory operations are separated346

by an explicit memory fence. Otherwise, if one thread updates a memory location and another reads347

the same location, or two threads store a value to the same location, the hardware may not guarantee348

the same result for each execution. While a compiler can detect some potential errors of this nature,349

it is nonetheless possible to write a compute region that produces inconsistent numerical results.350

Similarly, some accelerators implement a weak memory model for memory shared between the351

host and the accelerator, or memory shared between multiple accelerators. Programmers need to352

be very careful that the program uses appropriate synchronization to ensure that an assignment or353

modification by a thread on any device to data in shared memory is complete and available before354

that data is used by another thread on the same or another device.355

Some current accelerators have a software-managed cache, some have hardware managed caches,356

and most have hardware caches that can be used only in certain situations and are limited to read-357

only data. In low-level programming models such as CUDA or OpenCL languages, it is up to the358

programmer to manage these caches. In the OpenACC model, these caches are managed by the359

compiler with hints from the programmer in the form of directives.360

12

The OpenACC R© API 1.4. Language Interoperability

1.4. Language Interoperability361

The specification supports programs written using OpenACC in two or more of Fortran, C, and362

C++ languages. The parts of the program in any one base language will interoperate with the parts363

written in the other base languages as described here. In particular:364

• Data made present in one base language on a device will be seen as present by any base365

language.366

• A region that starts and ends in a procedure written in one base language may directly or367

indirectly call procedures written in any base language. The execution of those procedures368

are part of the region.369

1.5. Conventions used in this document370

Some terms are used in this specification that conflict with their usage as defined in the base lan-371

guages. When there is potential confusion, the term will appear in the Glossary.372

Keywords and punctuation that are part of the actual specification will appear in typewriter font:373

#pragma acc

Italic font is used where a keyword or other name must be used:374

#pragma acc directive-name

For C and C++, new-line means the newline character at the end of a line:375

#pragma acc directive-name new-line

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is376

followed by ellipses:377

#pragma acc directive-name [clause [[,] clause]. . .] new-line

In this spec, a var (in italics) is one of the following:378

• a variable name (a scalar, array, or composite variable name);379

• a subarray specification with subscript ranges;380

• an array element;381

• a member of a composite variable;382

• a common block name between slashes.383

Not all options are allowed in all clauses; the allowable options are clarified for each use of the term384

var.385

To simplify the specification and convey appropriate constraint information, a pqr-list is a comma-386

separated list of pqr items. For example, an int-expr-list is a comma-separated list of one or more387

integer expressions, and a var-list is a comma-separated list of one or more vars. The one exception388

is clause-list, which is a list of one or more clauses optionally separated by commas.389

13

The OpenACC R© API 1.7. References

#pragma acc directive-name [clause-list] new-line

1.6. Organization of this document390

The rest of this document is organized as follows:391

Chapter 2 Directives, describes the C, C++, and Fortran directives used to delineate accelerator392

regions and augment information available to the compiler for scheduling of loops and classification393

of data.394

Chapter 3 Runtime Library, defines user-callable functions and library routines to query the accel-395

erator features and control behavior of accelerator-enabled programs at runtime.396

Chapter 4 Environment Variables, defines user-settable environment variables used to control be-397

havior of accelerator-enabled programs at execution.398

Chapter 5 Profiling Interface, describes the OpenACC interface for tools that can be used for profile399

and trace data collection.400

Chapter 6 Glossary, defines common terms used in this document.401

Appendix A Recommendations for Implementors, gives advice to implementers to support more402

portability across implementations and interoperability with other accelerator APIs.403

1.7. References404

Each language version inherits the limitations that remain in previous versions of the language in405

this list.406

• American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).407

• ISO/IEC 9899:1999, Information Technology – Programming Languages – C, (C99).408

• ISO/IEC 9899:2011, Information Technology – Programming Languages – C, (C11).409

The use of the following C11 features may result in unspecified behavior.410

– Threads411

– Thread-local storage412

– Parallel memory model413

– Atomic414

• ISO/IEC 9899:2018, Information Technology – Programming Languages – C, (C18).415

The use of the following C18 features may result in unspecified behavior.416

– Thread related features417

• ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.418

• ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, (C++11).419

The use of the following C++11 features may result in unspecified behavior.420

14

The OpenACC R© API 1.7. References

– Extern templates421

– copy and rethrow exceptions422

– memory model423

– atomics424

– move semantics425

– range based loops426

– std::thread427

– thread-local storage428

• ISO/IEC 14882:2014, Information Technology – Programming Languages – C++, (C++14).429

• ISO/IEC 14882:2017, Information Technology – Programming Languages – C++, (C++17).430

• ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran – Part431

1: Base Language, (Fortran 2003).432

• ISO/IEC 1539-1:2010, Information Technology – Programming Languages – Fortran – Part433

1: Base Language, (Fortran 2008).434

The use of the following Fortran 2008 features may result in unspecified behavior.435

– Coarrays436

– Do concurrent437

– Simply contiguous arrays rank remapping to rank>1 target438

– Allocatable components of recursive type439

– The block construct440

– Polymorphic assignment441

• ISO/IEC 1539-1:2018, Information Technology – Programming Languages – Fortran – Part442

1: Base Language, (Fortran 2018).443

The use of the following Fortran 2018 features may result in unspecified behavior.444

– Interoperability with C445

∗ C functions declared in ISO Fortran binding.h446

∗ Assumed rank447

– All additional parallel/coarray features448

• OpenMP Application Program Interface, version 5.0, Novemeber 2018449

• NVIDIA CUDATM C Programming Guide, version 10.1, May 2019450

• The OpenCL Specification, version 2.2, Khronos OpenCL Working Group, July 2019451

15

The OpenACC R© API 1.8. Changes from Version 1.0 to 2.0

1.8. Changes from Version 1.0 to 2.0452

• _OPENACC value updated to 201306453

• default(none) clause on parallel and kernels directives454

• the implicit data attribute for scalars in parallel constructs has changed455

• the implicit data attribute for scalars in loops with loop directives with the independent456

attribute has been clarified457

• acc_async_sync and acc_async_noval values for the async clause458

• Clarified the behavior of the reduction clause on a gang loop459

• Clarified allowable loop nesting (gang may not appear inside worker, which may not ap-460

pear within vector)461

• wait clause on parallel, kernels and update directives462

• async clause on the wait directive463

• enter data and exit data directives464

• Fortran common block names may now appear in many data clauses465

• link clause for the declare directive466

• the behavior of the declare directive for global data467

• the behavior of a data clause with a C or C++ pointer variable has been clarified468

• predefined data attributes469

• support for multidimensional dynamic C/C++ arrays470

• tile and auto loop clauses471

• update self introduced as a preferred synonym for update host472

• routine directive and support for separate compilation473

• device_type clause and support for multiple device types474

• nested parallelism using parallel or kernels region containing another parallel or kernels re-475

gion476

• atomic constructs477

• new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; vector-478

single, vector-partitioned; thread479

• new API routines:480

– acc_wait, acc_wait_all instead of acc_async_wait and acc_async_wait_all481

– acc_wait_async482

– acc_copyin, acc_present_or_copyin483

– acc_create, acc_present_or_create484

– acc_copyout, acc_delete485

16

The OpenACC R© API 1.9. Corrections in the August 2013 document

– acc_map_data, acc_unmap_data486

– acc_deviceptr, acc_hostptr487

– acc_is_present488

– acc_memcpy_to_device, acc_memcpy_from_device489

– acc_update_device, acc_update_self490

• defined behavior with multiple host threads, such as with OpenMP491

• recommendations for specific implementations492

• clarified that no arguments are allowed on the vector clause in a parallel region493

1.9. Corrections in the August 2013 document494

• corrected the atomic capture syntax for C/C++495

• fixed the name of the acc_wait and acc_wait_all procedures496

• fixed description of the acc_hostptr procedure497

1.10. Changes from Version 2.0 to 2.5498

• The _OPENACC value was updated to 201510; see Section 2.2 Conditional Compilation.499

• The num_gangs, num_workers, and vector_length clauses are now allowed on the500

kernels construct; see Section 2.5.2 Kernels Construct.501

• Reduction on C++ class members, array elements, and struct elements are explicitly disal-502

lowed; see Section 2.5.13 reduction clause.503

• Reference counting is now used to manage the correspondence and lifetime of device data;504

see Section 2.6.7 Reference Counters.505

• The behavior of the exit data directive has changed to decrement the dynamic reference506

counter. A new optional finalize clause was added to set the dynamic reference counter507

to zero. See Section 2.6.6 Enter Data and Exit Data Directives.508

• The copy, copyin, copyout, and create data clauses were changed to behave like509

present_or_copy, etc. The present_or_copy, pcopy, present_or_copyin,510

pcopyin, present_or_copyout, pcopyout, present_or_create, and pcreate511

data clauses are no longer needed, though will be accepted for compatibility; see Section 2.7512

Data Clauses.513

• Reductions on orphaned gang loops are explicitly disallowed; see Section 2.9 Loop Construct.514

• The description of the loop auto clause has changed; see Section 2.9.6 auto clause.515

• Text was added to the private clause on a loop construct to clarify that a copy is made516

for each gang or worker or vector lane, not each thread; see Section 2.9.10 private clause.517

• The description of the reduction clause on a loop construct was corrected; see Sec-518

tion 2.9.11 reduction clause.519

17

The OpenACC R© API 1.11. Changes from Version 2.5 to 2.6

• A restriction was added to the cache clause that all references to that variable must lie within520

the region being cached; see Section 2.10 Cache Directive.521

• Text was added to the private and reduction clauses on a combined construct to clarify522

that they act like private and reduction on the loop, not private and reduction523

on the parallel or reduction on the kernels; see Section 2.11 Combined Constructs.524

• The declare create directive with a Fortran allocatable has new behavior; see Sec-525

tion 2.13.2 create clause.526

• New init, shutdown, set directives were added; see Section 2.14.1 Init Directive, 2.14.2527

Shutdown Directive, and 2.14.3 Set Directive.528

• A new if_present clause was added to the update directive, which changes the behavior529

when data is not present from a runtime error to a no-op; see Section 2.14.4 Update Directive.530

• The routine bind clause definition changed; see Section 2.15.1 Routine Directive.531

• An acc routine without gang/worker/vector/seq is now defined as an error; see532

Section 2.15.1 Routine Directive.533

• A new default(present) clause was added for compute constructs; see Section 2.5.14534

default clause.535

• The Fortran header file openacc_lib.h is no longer supported; the Fortran module openacc536

should be used instead; see Section 3.1 Runtime Library Definitions.537

• New API routines were added to get and set the default async queue value; see Section 3.2.21538

acc get default async and 3.2.22 acc set default async.539

• The acc_copyin, acc_create, acc_copyout, and acc_delete API routines were540

changed to behave like acc_present_or_copyin, etc. The acc_present_or_ names541

are no longer needed, though will be supported for compatibility. See Sections 3.2.26 and fol-542

lowing.543

• Asynchronous versions of the data API routines were added; see Sections 3.2.26 and follow-544

ing.545

• A new API routine added, acc_memcpy_device, to copy from one device address to546

another device address; see Section 3.2.37 acc memcpy to device.547

• A new OpenACC interface for profile and trace tools was added; see Chapter 5 Profiling Interface.548

1.11. Changes from Version 2.5 to 2.6549

• The _OPENACC value was updated to 201711.550

• A new serial compute construct was added. See Section 2.5.3 Serial Construct.551

• A new runtime API query routine was added. acc_get_property may be called from552

the host and returns properties about any device. See Section 3.2.6.553

• The text has clarified that if a variable is in a reduction which spans two or more nested loops,554

each loop directive on any of those loops must have a reduction clause that contains the555

variable; see Section 2.9.11 reduction clause.556

18

The OpenACC R© API 1.12. Changes from Version 2.6 to 2.7

• An optional if or if_present clause is now allowed on the host_data construct. See557

Section 2.8 Host Data Construct.558

• A new no_create data clause is now allowed on compute and data constructs. See Sec-559

tion 2.7.9 no create clause.560

• The behavior of Fortran optional arguments in data clauses and in routine calls has been561

specified; see Section 2.17 Fortran Optional Arguments.562

• The descriptions of some of the Fortran versions of the runtime library routines were simpli-563

fied; see Section 3.2 Runtime Library Routines.564

• To allow for manual deep copy of data structures with pointers, new attach and detach be-565

havior was added to the data clauses, new attach and detach clauses were added, and566

matching acc_attach and acc_detach runtime API routines were added; see Sections567

2.6.4, 2.7.11-2.7.12 and 3.2.40-3.2.41.568

• The Intel Coprocessor Offload Interface target and API routine sections were removed from569

the Section A Recommendations for Implementors, since Intel no longer produces this prod-570

uct.571

1.12. Changes from Version 2.6 to 2.7572

• The _OPENACC value was updated to 201811.573

• The specification allows for hosts that share some memory with the device but not all memory.574

The wording in the text now discusses whether local thread data is in shared memory (memory575

shared between the local thread and the device) or discrete memory (local thread memory that576

is not shared with the device), instead of shared-memory devices and non-shared memory577

devices. See Sections 1.3 Memory Model and 2.6 Data Environment.578

• The text was clarified to allow an implementation that treats a multicore CPU as a device,579

either an additional device or the only device.580

• The readonly modifier was added to the copyin data clause and cache directive. See581

Sections 2.7.6 and 2.10.582

• The term local device was defined; see Section 1.2 Execution Model and the Glossary.583

• The term var is used more consistently throughout the specification to mean a variable name,584

array name, subarray specification, array element, composite variable member, or Fortran585

common block name between slashes. Some uses of var allow only a subset of these options,586

and those limitations are given in those cases.587

• The self clause was added to the compute constructs; see Section 2.5.5 self clause.588

• The appearance of a reduction clause on a compute construct implies a copy clause for589

each reduction variable; see Sections 2.5.13 reduction clause and 2.11 Combined Constructs.590

• The default(none) and default(present) clauses were added to the data con-591

struct; see Section 2.6.5 Data Construct.592

• Data is defined to be present based on the values of the structured and dynamic reference593

counters; see Section 2.6.7 Reference Counters and the Glossary.594

19

The OpenACC R© API 1.13. Changes from Version 2.7 to 3.0

• The interaction of the acc_map_data and acc_unmap_data runtime API calls on the595

present counters is defined; see Section 2.7.2, 3.2.32, and 3.2.33.596

• A restriction clarifying that a host_data construct must have at least one use_device597

clause was added.598

• Arrays, subarrays and composite variables are now allowed in reduction clauses; see599

Sections 2.9.11 reduction clause and 2.5.13 reduction clause.600

• Changed behavior of ICVs to support nested compute regions and host as a device semantics.601

See Section 2.3.602

1.13. Changes from Version 2.7 to 3.0603

• Updated _OPENACC value to 201911.604

• Updated the normative references to the most recent standards for all base langauges. See605

Section 1.7.606

• Changed the text to clarify uses and limitations of the device_type clause and added607

examples; see Section 2.4.608

• Clarified the conflict between the implicit copy clause for variables in a reduction clause609

and the implicit firstprivate for scalar variables not in a data clause but used in a610

parallel or serial construct; see Sections 2.5.1 and 2.5.3.611

• Required at least one data clause on a data construct, an enter data directive, or an exit612

data directive; see Sections 2.6.5 and 2.6.6.613

• Added text describing how a C++ lambda invoked in a compute region and the variables614

captured by the lambda are handled; see Section 2.6.2.615

• Added a zeromodifier to create and copyout data clauses that zeros the device memory616

after it is allocated; see Sections 2.7.7 and 2.7.8.617

• Added a new restriction on the loop directive allowing only one of the seq, independent,618

and auto clauses to appear; see Section 2.9.619

• Added a new restriction on the loop directive disallowing a gang, worker, or vector620

clause to appear if a seq clause appears; see Section 2.9.621

• Allowed variables to be modified in an atomic region in a loop where the iterations must622

otherwise be data independent, such as loops with a loop independent clause or a loop623

directive in a parallel construct; see Sections 2.9.2, 2.9.3, 2.9.4, and 2.9.9.624

• Clarified the behavior of the auto and independent clauses on the loop directive; see625

Sections 2.9.6 and 2.9.9.626

• Clarified that an orphaned loop construct, or a loop construct in a parallel construct627

with no auto or seq clauses is treated as if an independent clause appears; see Sec-628

tion 2.9.9.629

• For a variable in a reduction clause, clarified when the update to the original variable is630

complete, and added examples; see Section 2.9.11.631

• Clarified that a variable in an orphaned reduction clause must be private; see Section 2.9.11.632

20

The OpenACC R© API 1.14. Topics Deferred For a Future Revision

• Required at least one clause on a declare directive; see Section 2.13.633

• Added an if clause to init, shutdown, set, and wait directives; see Sections 2.14.1,634

2.14.2, 2.14.3, and 2.16.3.635

• Required at least one clause on a set directive; see Section 2.14.3.636

• Added a devnum modifier to the wait directive and clause to specify a device to which the637

wait operation applies; see Section 2.16.3.638

• Allowed a routine directive to include a C++ lambda name or to appear before a C++639

lambda definition, and defined implicit routine directive behavior when a C++ lambda is640

called in a compute region or an accelerator routine; see Section 2.15.641

• Added runtime API routine acc_memcpy_d2d for copying data directly between two de-642

vice arrays on the same or different devices; see Section 3.2.42.643

• Defined the values for the acc_construct_t and acc_device_api enumerations for644

cross-implementation compatibility; see Sections 5.2.2 and 5.2.3.645

• Changed the return type of acc_set_cuda_stream from int (values were not specified)646

to void; see Section A.2.1.647

• Edited and expanded Section 1.14 Topics Deferred For a Future Revision.648

1.14. Topics Deferred For a Future Revision649

The following topics are under discussion for a future revision. Some of these are known to650

be important, while others will depend on feedback from users. Readers who have feedback or651

want to participate may post a message at the forum at www.openacc.org, or may send email to652

technical@openacc.org or feedback@openacc.org. No promises are made or implied that all these653

items will be available in the next revision.654

• Directives to define implicit deep copy behavior for pointer-based data structures.655

• Defined behavior when data in data clauses on a directive are aliases of each other.656

• Clarifying when data becomes present or not present on the device for enter data or exit657

data directives with an async clause.658

• Clarifying the behavior of Fortran pointer variables in data clauses.659

• Allowing Fortran pointer variables to appear in deviceptr clauses.660

• Defining the behavior of data clauses and runtime API routines for pointers that are NULL, or661

Fortran pointer variables that are not associated, or Fortran allocatable variables that662

are not allocated.663

• Support for attaching C/C++ pointers that point to an address past the end of a memory region.664

• Fully defined interaction with multiple host threads.665

• Optionally removing the synchronization or barrier at the end of vector and worker loops.666

• Allowing an if clause after a device_type clause.667

• A shared clause (or something similar) for the loop directive.668

21

http://www.openacc.org
mailto:technical@openacc.org
mailto:feedback@openacc.org

The OpenACC R© API 1.14. Topics Deferred For a Future Revision

• Better support for multiple devices from a single thread, whether of the same type or of669

different types.670

• An auto construct (by some name), to allow kernels-like auto-parallelization behavior671

inside parallel constructs or accelerator routines.672

• A begin declare . . .end declare construct that behaves like putting any global vari-673

ables declared inside the construct in a declare clause.674

• Defining the behavior of parallelism constructs in the base languages when used inside a675

compute construct or accelerator routine.676

• Optimization directives or clauses, such as an unroll directive or clause.677

• Define runtime error behavior and allowing a user-defined error handlers.678

• Extended reductions.679

• Fortran bindings for all the API routines.680

• A linear clause for the loop directive.681

• Allowing two or more of gang, worker, vector, or seq clause on an acc routine682

directive.683

• Requiring the implementation to imply an acc routine directive for procedures called684

within a compute construct or accelerator routine.685

• A single list of all devices of all types, including the host device.686

• A memory allocation API for specific types of memory, including device memory, host pinned687

memory, and unified memory.688

• A restricted, acceptable form of a loop in a loop construct.689

• Bindings to other languages.690

22

The OpenACC R© API 2.1. Directive Format

2. Directives691

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++, Open-692

ACC directives are specified using the #pragma mechanism provided by the language. In Fortran,693

OpenACC directives are specified using special comments that are identified by a unique sentinel.694

Compilers will typically ignore OpenACC directives if support is disabled or not provided.695

2.1. Directive Format696

In C and C++, OpenACC directives are specified with the #pragma mechanism. The syntax of an697

OpenACC directive is:698

#pragma acc directive-name [clause-list] new-line

Each directive starts with #pragma acc. The remainder of the directive follows the C and C++699

conventions for pragmas. White space may be used before and after the #; white space may be700

required to separate words in a directive. Preprocessing tokens following the #pragma acc are701

subject to macro replacement. Directives are case-sensitive.702

In Fortran, OpenACC directives are specified in free-form source files as703

!$acc directive-name [clause-list]

The comment prefix (!) may appear in any column, but may only be preceded by white space704

(spaces and tabs). The sentinel (!$acc) must appear as a single word, with no intervening white705

space. Line length, white space, and continuation rules apply to the directive line. Initial directive706

lines must have white space after the sentinel. Continued directive lines must have an ampersand (&)707

as the last nonblank character on the line, prior to any comment placed in the directive. Continuation708

directive lines must begin with the sentinel (possibly preceded by white space) and may have an709

ampersand as the first non-white space character after the sentinel. Comments may appear on the710

same line as a directive, starting with an exclamation point and extending to the end of the line. If711

the first nonblank character after the sentinel is an exclamation point, the line is ignored.712

In Fortran fixed-form source files, OpenACC directives are specified as one of713

!$acc directive-name [clause-list]

c$acc directive-name [clause-list]

*$acc directive-name [clause-list]

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length, white714

space, continuation, and column rules apply to the directive line. Initial directive lines must have715

23

The OpenACC R© API 2.3. Internal Control Variables

a space or zero in column 6, and continuation directive lines must have a character other than a716

space or zero in column 6. Comments may appear on the same line as a directive, starting with an717

exclamation point on or after column 7 and continuing to the end of the line.718

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued state-719

ments, and statements must not be embedded within continued directives. In this document, free720

form is used for all Fortran OpenACC directive examples.721

Only one directive-name can appear per directive, except that a combined directive name is consid-722

ered a single directive-name. The order in which clauses appear is not significant unless otherwise723

specified. Clauses may be repeated unless otherwise specified. Some clauses have an argument that724

can contain a list.725

2.2. Conditional Compilation726

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is727

the month designation of the version of the OpenACC directives supported by the implementation.728

This macro must be defined by a compiler only when OpenACC directives are enabled. The version729

described here is 201911.730

2.3. Internal Control Variables731

An OpenACC implementation acts as if there are internal control variables (ICVs) that control the732

behavior of the program. These ICVs are initialized by the implementation, and may be given733

values through environment variables and through calls to OpenACC API routines. The program734

can retrieve values through calls to OpenACC API routines.735

The ICVs are:736

• acc-current-device-type-var - controls which type of device is used.737

• acc-current-device-num-var - controls which device of the selected type is used.738

• acc-default-async-var - controls which asynchronous queue is used when none appears in an739

async clause.740

2.3.1. Modifying and Retrieving ICV Values741

The following table shows environment variables or procedures to modify the values of the internal742

control variables, and procedures to retrieve the values:743

24

The OpenACC R© API 2.4. Device-Specific Clauses

ICV Ways to modify values Way to retrieve value

acc-current-device-type-var acc_set_device_type acc_get_device_type

set device_type

ACC_DEVICE_TYPE

acc-current-device-num-var acc_set_device_num acc_get_device_num

set device_num

ACC_DEVICE_NUM

acc-default-async-var acc_set_default_async acc_get_default_async

set default_async

744

The initial values are implementation-defined. After initial values are assigned, but before any745

OpenACC construct or API routine is executed, the values of any environment variables that were746

set by the user are read and the associated ICVs are modified accordingly. There is one copy of747

each ICV for each host thread that is not generated by a compute construct. For threads that are748

generated by a compute construct the initial value for each ICV is inherited from the local thread.749

The behavior for each ICV is as if there is a copy for each thread. If an ICV is modified, then a750

unique copy of that ICV must be created for the modifying thread.751

2.4. Device-Specific Clauses752

OpenACC directives can specify different clauses or clause arguments for different devices using753

the device_type clause. Clauses that precede any device_type clause are default clauses.754

Clauses that follow a device_type clause up to the end of the directive or up to the next755

device_type clause are device-specific clauses for the device types specified in the device_type756

argument. For each directive, only certain clauses may be device-specific clauses. If a directive has757

at least one device-specific clause, it is device-dependent, and otherwise it is device-independent.758

The argument to the device_type clause is a comma-separated list of one or more device ar-759

chitecture name identifiers, or an asterisk. An asterisk indicates all device types that are not named760

in any other device_type clause on that directive. A single directive may have one or several761

device_type clauses. The device_type clauses may appear in any order.762

Except where otherwise noted, the rest of this document describes device-independent directives, on763

which all clauses apply when compiling for any device type. When compiling a device-dependent764

directive for a particular device type, the directive is treated as if the only clauses that appear are (a)765

the clauses specific to that device type and (b) all default clauses for which there are no like-named766

clauses specific to that device type. If, for any device type, the resulting directive is non-conforming,767

then the original directive is non-conforming.768

The supported device types are implementation-defined. Depending on the implementation and the769

compiling environment, an implementation may support only a single device type, or may support770

multiple device types but only one at a time, or may support multiple device types in a single771

compilation.772

A device architecture name may be generic, such as a vendor, or more specific, such as a partic-773

ular generation of device; see Appendix A Recommendations for Implementors for recommended774

names. When compiling for a particular device, the implementation will use the clauses associated775

with the device_type clause that specifies the most specific architecture name that applies for776

this device; clauses associated with any other device_type clause are ignored. In this context,777

25

The OpenACC R© API 2.4. Device-Specific Clauses

the asterisk is the least specific architecture name.778

Syntax The syntax of the device_type clause is779

device_type(*)

device_type(device-type-list)

The device_type clause may be abbreviated to dtype.780

H H
781

Examples782

• On the following directive, worker appears as a device-specific clause for devices of type783

foo, but gang appears as a default clause and so applies to all device types, including foo.784

#pragma acc loop gang device_type(foo) worker785

• The first directive below is identical to the previous directive except that loop is replaced786

with routine. Unlike loop, routine does not permit gang to appear with worker,787

but both apply for device type foo, so the directive is non-conforming. The second directive788

below is conforming because gang there applies to all device types except foo.789

// non-conforming: gang and worker are not permitted together790

#pragma acc routine gang device_type(foo) worker791

792

// conforming: gang and worker apply to different device types793

#pragma acc routine device_type(foo) worker \794

device_type(*) gang795

• On the directive below, the value of num_gangs is 4 for device type foo, but it is 2 for all796

other device types, including bar. That is, foo has a device-specific num_gangs clause,797

so the default num_gangs clause does not apply to foo.798

!$acc parallel num_gangs(2) &799

!$acc device_type(foo) num_gangs(4) &800

!$acc device_type(bar) num_workers(8)801

• The directive below is the same as the previous directive except that num_gangs(2) has802

moved after device_type(*) and so now does not apply to foo or bar.803

!$acc parallel device_type(*) num_gangs(2) &804

!$acc device_type(foo) num_gangs(4) &805

!$acc device_type(bar) num_workers(8)806

N N807

808

26

The OpenACC R© API 2.5. Compute Constructs

2.5. Compute Constructs809

2.5.1. Parallel Construct810

Summary This fundamental construct starts parallel execution on the current device.811

Syntax In C and C++, the syntax of the OpenACC parallel construct is812

#pragma acc parallel [clause-list] new-line

structured block

and in Fortran, the syntax is813

!$acc parallel [clause-list]

structured block

!$acc end parallel

where clause is one of the following:814

async [(int-expr)]

wait [(int-expr-list)]

num_gangs(int-expr)

num_workers(int-expr)

vector_length(int-expr)

device_type(device-type-list)

if(condition)

self [(condition)]

reduction(operator:var-list)

copy(var-list)

copyin([readonly:]var-list)

copyout([zero:]var-list)

create([zero:]var-list)

no_create(var-list)

present(var-list)

deviceptr(var-list)

attach(var-list)

private(var-list)

firstprivate(var-list)

default(none | present)

Description When the program encounters an accelerator parallel construct, one or more815

gangs of workers are created to execute the accelerator parallel region. The number of gangs, and816

the number of workers in each gang and the number of vector lanes per worker remain constant for817

the duration of that parallel region. Each gang begins executing the code in the structured block818

in gang-redundant mode. This means that code within the parallel region, but outside of a loop819

construct with gang-level worksharing, will be executed redundantly by all gangs.820

27

The OpenACC R© API 2.5. Compute Constructs

One worker in each gang begins executing the code in the structured block of the construct. Note:821

Unless there is a loop construct within the parallel region, all gangs will execute all the code within822

the region redundantly.823

If the async clause does not appear, there is an implicit barrier at the end of the accelerator parallel824

region, and the execution of the local thread will not proceed until all gangs have reached the end825

of the parallel region.826

If there is no default(none) clause on the construct, the compiler will implicitly determine data827

attributes for variables that are referenced in the compute construct that do not have predetermined828

data attributes and do not appear in a data clause on the compute construct, a lexically containing829

data construct, or a visible declare directive. If there is no default(present) clause830

on the construct, an array or composite variable referenced in the parallel construct that does831

not appear in a data clause for the construct or any enclosing data construct will be treated as if832

it appeared in a copy clause for the parallel construct. If there is a default(present)833

clause on the construct, the compiler will implicitly treat all arrays and composite variables without834

predetermined data attributes as if they appeared in a present clause. A scalar variable referenced835

in the parallel construct that does not appear in a data clause for the construct or any enclosing836

data construct will be treated as if it appeared in a firstprivate clause unless a reduction837

would otherwise imply a copy clause for it.838

Restrictions839

• A program may not branch into or out of an OpenACC parallel construct.840

• A program must not depend on the order of evaluation of the clauses, or on any side effects841

of the evaluations.842

• Only the async, wait, num_gangs, num_workers, and vector_length clauses843

may follow a device_type clause.844

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical845

value; in C or C++, the condition must evaluate to a scalar integer value.846

• At most one default clause may appear, and it must have a value of either none or847

present.848

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach849

data clauses are described in Section 2.7 Data Clauses. The private and firstprivate850

clauses are described in Sections 2.5.11 and Sections 2.5.12. The device_type clause is de-851

scribed in Section 2.4 Device-Specific Clauses.852

2.5.2. Kernels Construct853

Summary This construct defines a region of the program that is to be compiled into a sequence854

of kernels for execution on the current device.855

Syntax In C and C++, the syntax of the OpenACC kernels construct is856

#pragma acc kernels [clause-list] new-line

structured block

28

The OpenACC R© API 2.5. Compute Constructs

and in Fortran, the syntax is857

!$acc kernels [clause-list]

structured block

!$acc end kernels

where clause is one of the following:858

async [(int-expr)]

wait [(int-expr-list)]

num_gangs(int-expr)

num_workers(int-expr)

vector_length(int-expr)

device_type(device-type-list)

if(condition)

self [(condition)]

copy(var-list)

copyin([readonly:]var-list)

copyout([zero:] var-list)

create([zero:] var-list)

no_create(var-list)

present(var-list)

deviceptr(var-list)

attach(var-list)

default(none | present)

Description The compiler will split the code in the kernels region into a sequence of acceler-859

ator kernels. Typically, each loop nest will be a distinct kernel. When the program encounters a860

kernels construct, it will launch the sequence of kernels in order on the device. The number and861

configuration of gangs of workers and vector length may be different for each kernel.862

If the async clause does not appear, there is an implicit barrier at the end of the kernels region, and863

the local thread execution will not proceed until all kernels have completed execution.864

If there is no default(none) clause on the construct, the compiler will implicitly determine data865

attributes for variables that are referenced in the compute construct that do not have predetermined866

data attributes and do not appear in a data clause on the compute construct, a lexically containing867

data construct, or a visible declare directive. If there is no default(present) clause868

on the construct, an array or composite variable referenced in the kernels construct that does869

not appear in a data clause for the construct or any enclosing data construct will be treated as870

if it appeared in a copy clause for the kernels construct. If there is a default(present)871

clause on the construct, the compiler will implicitly treat all arrays and composite variables without872

predetermined data attributes as if they appeared in a present clause. A scalar variable referenced873

in the kernels construct that does not appear in a data clause for the construct or any enclosing874

data construct will be treated as if it appeared in a copy clause.875

29

The OpenACC R© API 2.5. Compute Constructs

Restrictions876

• A program may not branch into or out of an OpenACC kernels construct.877

• A program must not depend on the order of evaluation of the clauses, or on any side effects878

of the evaluations.879

• Only the async, wait, num_gangs, num_workers, and vector_length clauses880

may follow a device_type clause.881

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical882

value; in C or C++, the condition must evaluate to a scalar integer value.883

• At most one default clause may appear, and it must have a value of either none or884

present.885

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach886

data clauses are described in Section 2.7 Data Clauses. The device_type clause is described in887

Section 2.4 Device-Specific Clauses.888

2.5.3. Serial Construct889

Summary This construct defines a region of the program that is to be executed sequentially on890

the current device.891

Syntax In C and C++, the syntax of the OpenACC serial construct is892

#pragma acc serial [clause-list] new-line

structured block

and in Fortran, the syntax is893

!$acc serial [clause-list]

structured block

!$acc end serial

where clause is one of the following:894

async [(int-expr)]

wait [(int-expr-list)]

device_type(device-type-list)

if(condition)

self [(condition)]

reduction(operator:var-list)

copy(var-list)

copyin([readonly:]var-list)

copyout([zero:] var-list)

create([zero:] var-list)

no_create(var-list)

30

The OpenACC R© API 2.5. Compute Constructs

present(var-list)

deviceptr(var-list)

private(var-list)

firstprivate(var-list)

attach(var-list)

default(none | present)

Description When the program encounters an accelerator serial construct, one gang of one895

worker with a vector length of one is created to execute the accelerator serial region sequentially.896

The single gang begins executing the code in the structured block in gang-redundant mode, even897

though there is a single gang. The serial construct executes as if it were a parallel construct898

with clauses num_gangs(1) num_workers(1) vector_length(1).899

If the async clause does not appear, there is an implicit barrier at the end of the accelerator serial900

region, and the execution of the local thread will not proceed until the gang has reached the end of901

the serial region.902

If there is no default(none) clause on the construct, the compiler will implicitly determine data903

attributes for variables that are referenced in the compute construct that do not have predetermined904

data attributes and do not appear in a data clause on the compute construct, a lexically containing905

data construct, or a visible declare directive. If there is no default(present) clause906

on the construct, an array or composite variable referenced in the serial construct that does907

not appear in a data clause for the construct or any enclosing data construct will be treated as908

if it appeared in a copy clause for the serial construct. If there is a default(present)909

clause on the construct, the compiler will implicitly treat all arrays and composite variables without910

predetermined data attributes as if they appeared in a present clause. A scalar variable referenced911

in the serial construct that does not appear in a data clause for the construct or any enclosing912

data construct will be treated as if it appeared in a firstprivate clause unless a reduction913

would otherwise imply a copy clause for it.914

Restrictions915

• A program may not branch into or out of an OpenACC serial construct.916

• A program must not depend on the order of evaluation of the clauses, or on any side effects917

of the evaluations.918

• Only the async and wait clauses may follow a device_type clause.919

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical920

value; in C or C++, the condition must evaluate to a scalar integer value.921

• At most one default clause may appear, and it must have a value of either none or922

present.923

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach924

data clauses are described in Section 2.7 Data Clauses. The private and firstprivate925

clauses are described in Sections 2.5.11 and Sections 2.5.12. The device_type clause is de-926

scribed in Section 2.4 Device-Specific Clauses.927

31

The OpenACC R© API 2.5. Compute Constructs

2.5.4. if clause928

The if clause is optional.929

When the condition in the if clause evaluates to nonzero in C or C++, or .true. in Fortran, the930

region will execute on the current device. When the condition in the if clause evaluates to zero in931

C or C++, or .false. in Fortran, the local thread will execute the region.932

2.5.5. self clause933

The self clause is optional.934

The self clause may have a single condition-argument. If the condition-argument is not present935

it is assumed to be nonzero in C or C++, or .true. in Fortran. When both an if clause and a936

self clause appear and the condition in the if clause evaluates to 0 in C or C++ or .false. in937

Fortran, the self clause has no effect.938

When the condition evaluates to nonzero in C or C++, or .true. in Fortran, the region will execute939

on the local device. When the condition in the self clause evaluates to zero in C or C++, or940

.false. in Fortran, the region will execute on the current device.941

2.5.6. async clause942

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.943

2.5.7. wait clause944

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.945

2.5.8. num gangs clause946

The num_gangs clause is allowed on the parallel and kernels constructs. The value of947

the integer expression defines the number of parallel gangs that will execute the parallel region,948

or that will execute each kernel created for the kernels region. If the clause does not appear, an949

implementation-defined default will be used; the default may depend on the code within the con-950

struct. The implementation may use a lower value than specified based on limitations imposed by951

the target architecture.952

2.5.9. num workers clause953

The num_workers clause is allowed on the parallel and kernels constructs. The value954

of the integer expression defines the number of workers within each gang that will be active after955

a gang transitions from worker-single mode to worker-partitioned mode. If the clause does not956

appear, an implementation-defined default will be used; the default value may be 1, and may be957

different for each parallel construct or for each kernel created for a kernels construct. The958

implementation may use a different value than specified based on limitations imposed by the target959

architecture.960

32

The OpenACC R© API 2.5. Compute Constructs

2.5.10. vector length clause961

The vector_length clause is allowed on the parallel and kernels constructs. The value962

of the integer expression defines the number of vector lanes that will be active after a worker transi-963

tions from vector-single mode to vector-partitioned mode. This clause determines the vector length964

to use for vector or SIMD operations. If the clause does not appear, an implementation-defined965

default will be used. This vector length will be used for loop constructs annotated with the vector966

clause, as well as loops automatically vectorized by the compiler. The implementation may use a967

different value than specified based on limitations imposed by the target architecture.968

2.5.11. private clause969

The private clause is allowed on the parallel and serial constructs; it declares that a copy970

of each item on the list will be created for each gang.971

Restrictions972

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in973

private clauses.974

2.5.12. firstprivate clause975

The firstprivate clause is allowed on the parallel and serial constructs; it declares that976

a copy of each item on the list will be created for each gang, and that the copy will be initialized with977

the value of that item on the local thread when a parallel or serial construct is encountered.978

Restrictions979

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in980

firstprivate clauses.981

2.5.13. reduction clause982

The reduction clause is allowed on the parallel and serial constructs. It specifies a983

reduction operator and one or more vars. It implies a copy data clause for each reduction var,984

unless a data clause for that variable appears on the compute construct. For each reduction var, a985

private copy is created for each parallel gang and initialized for that operator. At the end of the986

region, the values for each gang are combined using the reduction operator, and the result combined987

with the value of the original var and stored in the original var. If the reduction var is an array or988

subarray, the array reduction operation is logically equivalent to applying that reduction operation989

to each element of the array or subarray individually. If the reduction var is a composite variable,990

the reduction operation is logically equivalent to applying that reduction operation to each member991

of the composite variable individually. The reduction result is available after the region.992

The following table lists the operators that are valid and the initialization values; in each case, the993

initialization value will be cast into the data type of the var. For max and min reductions, the994

33

The OpenACC R© API 2.5. Compute Constructs

initialization values are the least representable value and the largest representable value for that data995

type, respectively. At a minimum, the supported data types include Fortran logical as well as996

the numerical data types in C (e.g., _Bool, char, int, float, double, float _Complex,997

double _Complex), C++ (e.g., bool, char, wchar_t, int, float, double), and Fortran998

(e.g., integer, real, double precision, complex). However, for each reduction operator,999

the supported data types include only the types permitted as operands to the corresponding operator1000

in the base language where (1) for max and min, the corresponding operator is less-than and (2) for1001

other operators, the operands and the result are the same type.1002

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ˜0 iand all bits on

| 0 ior 0

ˆ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

.eqv. .true.

.neqv. .false.

1003

Restrictions1004

• A var in a reduction clause must be a scalar variable name, a composite variable name,1005

an array name, an array element, or a subarray (refer to Section 2.7.1).1006

• If the reduction var is an array element or a subarray, accessing the elements of the array1007

outside the specified index range results in unspecified behavior.1008

• The reduction var may not be a member of a composite variable.1009

• If the reduction var is a composite variable, each member of the composite variable must be1010

a supported datatype for the reduction operation.1011

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1012

reduction clauses.1013

2.5.14. default clause1014

The default clause is optional. The none argument tells the compiler to require that all variables1015

used in the compute construct that do not have predetermined data attributes to explicitly appear1016

in a data clause on the compute construct, a data construct that lexically contains the compute1017

construct, or a visible declare directive. The present argument causes all arrays or composite1018

variables used in the compute construct that have implicitly determined data attributes to be treated1019

as if they appeared in a present clause.1020

34

The OpenACC R© API 2.6. Data Environment

2.6. Data Environment1021

This section describes the data attributes for variables. The data attributes for a variable may be1022

predetermined, implicitly determined, or explicitly determined. Variables with predetermined data1023

attributes may not appear in a data clause that conflicts with that data attribute. Variables with1024

implicitly determined data attributes may appear in a data clause that overrides the implicit attribute.1025

Variables with explicitly determined data attributes are those which appear in a data clause on a1026

data construct, a compute construct, or a declare directive.1027

OpenACC supports systems with accelerators that have discrete memory from the host, systems1028

with accelerators that share memory with the host, as well as systems where an accelerator shares1029

some memory with the host but also has some discrete memory that is not shared with the host.1030

In the first case, no data is in shared memory. In the second case, all data is in shared memory.1031

In the third case, some data may be in shared memory and some data may be in discrete memory,1032

although a single array or aggregate data structure must be allocated completely in shared or discrete1033

memory. When a nested OpenACC construct is executed on the device, the default target device for1034

that construct is the same device on which the encountering accelerator thread is executing. In that1035

case, the target device shares memory with the encountering thread.1036

2.6.1. Variables with Predetermined Data Attributes1037

The loop variable in a C for statement or Fortran do statement that is associated with a loop1038

directive is predetermined to be private to each thread that will execute each iteration of the loop.1039

Loop variables in Fortran do statements within a compute construct are predetermined to be private1040

to the thread that executes the loop.1041

Variables declared in a C block that is executed in vector-partitioned mode are private to the thread1042

associated with each vector lane. Variables declared in a C block that is executed in worker-1043

partitioned vector-single mode are private to the worker and shared across the threads associated1044

with the vector lanes of that worker. Variables declared in a C block that is executed in worker-1045

single mode are private to the gang and shared across the threads associated with the workers and1046

vector lanes of that gang.1047

A procedure called from a compute construct will be annotated as seq, vector, worker, or1048

gang, as described Section 2.15 Procedure Calls in Compute Regions. Variables declared in seq1049

routine are private to the thread that made the call. Variables declared in vector routine are private1050

to the worker that made the call and shared across the threads associated with the vector lanes of1051

that worker. Variables declared in worker or gang routine are private to the gang that made the1052

call and shared across the threads associated with the workers and vector lanes of that gang.1053

2.6.2. Variables with Implicitly Determined Data Attributes1054

If a C++ lambda is called in a compute region and does not appear in a data clause, then it is1055

treated as if it appears in a copyin clause on the current construct. A variable captured by a1056

lambda is processed according to its data types: a pointer type variable is treated as if it appears1057

in a no_create clause; a reference type variable is treated as if it appears in a present clause;1058

for a struct or a class type variable, any pointer member is treated as if it appears in a no_create1059

clause on the current construct. If the variable is defined as global or file or function static, it must1060

35

The OpenACC R© API 2.6. Data Environment

appear in a declare directive.1061

2.6.3. Data Regions and Data Lifetimes1062

Data in shared memory is accessible from the current device as well as to the local thread. Such1063

data is available to the accelerator for the lifetime of the variable. Data not in shared memory must1064

be copied to and from device memory using data constructs, clauses, and API routines. A data1065

lifetime is the duration from when the data is first made available to the accelerator until it becomes1066

unavailable. For data in shared memory, the data lifetime begins when the data is allocated and1067

ends when it is deallocated; for statically allocated data, the data lifetime begins when the program1068

begins and does not end. For data not in shared memory, the data lifetime begins when it is made1069

present and ends when it is no longer present.1070

There are four types of data regions. When the program encounters a data construct, it creates a1071

data region.1072

When the program encounters a compute construct with explicit data clauses or with implicit data1073

allocation added by the compiler, it creates a data region that has a duration of the compute construct.1074

When the program enters a procedure, it creates an implicit data region that has a duration of the1075

procedure. That is, the implicit data region is created when the procedure is called, and exited when1076

the program returns from that procedure invocation. There is also an implicit data region associated1077

with the execution of the program itself. The implicit program data region has a duration of the1078

execution of the program.1079

In addition to data regions, a program may create and delete data on the accelerator using enter1080

data and exit data directives or using runtime API routines. When the program executes1081

an enter data directive, or executes a call to a runtime API acc_copyin or acc_create1082

routine, each var on the directive or the variable on the runtime API argument list will be made live1083

on accelerator.1084

2.6.4. Data Structures with Pointers1085

This section describes the behavior of data structures that contain pointers. A pointer may be a1086

C or C++ pointer (e.g., float*), a Fortran pointer or array pointer (e.g., real, pointer,1087

dimension(:)), or a Fortran allocatable (e.g., real, allocatable, dimension(:)).1088

When a data object is copied to device memory, the values are copied exactly. If the data is a data1089

structure that includes a pointer, or is just a pointer, the pointer value copied to device memory1090

will be the host pointer value. If the pointer target object is also allocated in or copied to device1091

memory, the pointer itself needs to be updated with the device address of the target object before1092

dereferencing the pointer in device memory.1093

An attach action updates the pointer in device memory to point to the device copy of the data1094

that the host pointer targets; see Section 2.7.2. For Fortran array pointers and allocatable arrays,1095

this includes copying any associated descriptor (dope vector) to the device copy of the pointer.1096

When the device pointer target is deallocated, the pointer in device memory should be restored1097

to the host value, so it can be safely copied back to host memory. A detach action updates the1098

pointer in device memory to have the same value as the corresponding pointer in local memory;1099

see Section 2.7.2. The attach and detach actions are performed by the copy, copyin, copyout,1100

36

The OpenACC R© API 2.6. Data Environment

create, attach, and detach data clauses (Sections 2.7.3-2.7.12), and the acc_attach and1101

acc_detach runtime API routines (Sections 3.2.40 and 3.2.41). The attach and detach actions1102

use attachment counters to determine when the pointer in device memory needs to be updated; see1103

Section 2.6.8.1104

2.6.5. Data Construct1105

Summary The data construct defines vars to be allocated in the current device memory for1106

the duration of the region, whether data should be copied from local memory to the current device1107

memory upon region entry, and copied from device memory to local memory upon region exit.1108

Syntax In C and C++, the syntax of the OpenACC data construct is1109

#pragma acc data [clause-list] new-line

structured block

and in Fortran, the syntax is1110

!$acc data [clause-list]

structured block

!$acc end data

where clause is one of the following:1111

if(condition)

copy(var-list)

copyin([readonly:]var-list)

copyout([zero:]var-list)

create([zero:]var-list)

no_create(var-list)

present(var-list)

deviceptr(var-list)

attach(var-list)

default(none | present)

Description Data will be allocated in the memory of the current device and copied from local1112

memory to device memory, or copied back, as required. The data clauses are described in Sec-1113

tion 2.7 Data Clauses. Structured reference counters are incremented for data when entering a data1114

region, and decremented when leaving the region, as described in Section 2.6.7 Reference Counters.1115

Restrictions1116

• At least one copy, copyin, copyout, create, no_create, present, deviceptr,1117

attach, or default clause must appear on a data construct.1118

37

The OpenACC R© API 2.6. Data Environment

if clause1119

The if clause is optional; when there is no if clause, the compiler will generate code to allocate1120

space in the current device memory and move data from and to the local memory as required.1121

When an if clause appears, the program will conditionally allocate memory in and move data to1122

and/or from device memory. When the condition in the if clause evaluates to zero in C or C++, or1123

.false. in Fortran, no device memory will be allocated, and no data will be moved. When the1124

condition evaluates to nonzero in C or C++, or .true. in Fortran, the data will be allocated and1125

moved as specified. At most one if clause may appear.1126

default clause1127

The default clause is optional. If the default clause is present, then for each compute contruct1128

that is lexically contained within the data construct the behavior will be as if a default clause with1129

the same value appeared on the compute construct, unless a default clause already appears on1130

the compute construct. At most one default clause may appear.1131

2.6.6. Enter Data and Exit Data Directives1132

Summary An enter data directive may be used to define vars to be allocated in the current1133

device memory for the remaining duration of the program, or until an exit data directive that1134

deallocates the data. They also tell whether data should be copied from local memory to device1135

memory at the enter data directive, and copied from device memory to local memory at the1136

exit data directive. The dynamic range of the program between the enter data directive and1137

the matching exit data directive is the data lifetime for that data.1138

Syntax In C and C++, the syntax of the OpenACC enter data directive is1139

#pragma acc enter data clause-list new-line

and in Fortran, the syntax is1140

!$acc enter data clause-list

where clause is one of the following:1141

if(condition)

async [(int-expr)]

wait [(wait-argument)]

copyin(var-list)

create([zero:]var-list)

attach(var-list)

In C and C++, the syntax of the OpenACC exit data directive is1142

38

The OpenACC R© API 2.6. Data Environment

#pragma acc exit data clause-list new-line

and in Fortran, the syntax is1143

!$acc exit data clause-list

where clause is one of the following:1144

if(condition)

async [(int-expr)]

wait [(wait-argument)]

copyout(var-list)

delete(var-list)

detach(var-list)

finalize

Description At an enter data directive, data may be allocated in the current device mem-1145

ory and copied from local memory to device memory. This action enters a data lifetime for those1146

vars, and will make the data available for present clauses on constructs within the data life-1147

time. Dynamic reference counters are incremented for this data, as described in Section 2.6.71148

Reference Counters. Pointers in device memory may be attached to point to the corresponding1149

device copy of the host pointer target.1150

At an exit data directive, data may be copied from device memory to local memory and deal-1151

located from device memory. If no finalize clause appears, dynamic reference counters are1152

decremented for this data. If a finalize clause appears, the dynamic reference counters are set1153

to zero for this data. Pointers in device memory may be detached so as to have the same value as1154

the original host pointer.1155

The data clauses are described in Section 2.7 Data Clauses. Reference counting behavior is de-1156

scribed in Section 2.6.7 Reference Counters.1157

Restrictions1158

• At least one copyin, create, or attach clause must appear on an enter data direc-1159

tive.1160

• At least one copyout, delete, or detach clause must appear on an exit data direc-1161

tive.1162

if clause1163

The if clause is optional; when there is no if clause, the compiler will generate code to allocate or1164

deallocate space in the current device memory and move data from and to local memory. When an1165

if clause appears, the program will conditionally allocate or deallocate device memory and move1166

data to and/or from device memory. When the condition in the if clause evaluates to zero in C or1167

C++, or .false. in Fortran, no device memory will be allocated or deallocated, and no data will1168

be moved. When the condition evaluates to nonzero in C or C++, or .true. in Fortran, the data1169

will be allocated or deallocated and moved as specified.1170

39

The OpenACC R© API 2.6. Data Environment

async clause1171

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1172

wait clause1173

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1174

finalize clause1175

The finalize clause is allowed on the exit data directive and is optional. When no finalize1176

clause appears, the exit data directive will decrement the dynamic reference counters for vars1177

appearing in copyout and delete clauses, and will decrement the attachment counters for point-1178

ers appearing in detach clauses. If a finalize clause appears, the exit data directive will1179

set the dynamic reference counters to zero for vars appearing in copyout and delete clauses,1180

and will set the attachment counters to zero for pointers appearing in detach clauses.1181

2.6.7. Reference Counters1182

When device memory is allocated for data not in shared memory due to data clauses or OpenACC1183

API routine calls, the OpenACC implementation keeps track of that device memory and its relation-1184

ship to the corresponding data in host memory.1185

Each section of device memory will be associated with two reference counters per device, a struc-1186

tured reference counter and a dynamic reference counter. The structured and dynamic reference1187

counters are used to determine when to allocate or deallocate data in device memory. The struc-1188

tured reference counter for a block of data keeps track of how many nested data regions have been1189

entered for that data. The initial value of the structured reference counter for static data in device1190

memory (in a global declare directive) is one; for all other data, the initial value is zero. The1191

dynamic reference counter for a block of data keeps track of how many dynamic data lifetimes are1192

currently active in device memory for that block. The initial value of the dynamic reference counter1193

is zero. Data is considered present if the sum of the structured and dynamic reference counters is1194

greater than zero.1195

A structured reference counter is incremented when entering each data or compute region that con-1196

tain an explicit data clause or implicitly-determined data attributes for that block of memory, and1197

is decremented when exiting that region. A dynamic reference counter is incremented for each1198

enter data copyin or create clause, or each acc_copyin or acc_create API routine1199

call for that block of memory. The dynamic reference counter is decremented for each exit data1200

copyout or delete clause when no finalize clause appears, or each acc_copyout or1201

acc_delete API routine call for that block of memory. The dynamic reference counter will be1202

set to zero with an exit data copyout or delete clause when a finalize clause appears,1203

or each acc_copyout_finalize or acc_delete_finalize API routine call for the block1204

of memory. The reference counters are modified synchronously with the local thread, even if the1205

data directives include an async clause. When both structured and dynamic reference counters1206

reach zero, the data lifetime in device memory for that data ends.1207

40

The OpenACC R© API 2.7. Data Clauses

2.6.8. Attachment Counter1208

Since multiple pointers can target the same address, each pointer in device memory is associated1209

with an attachment counter per device. The attachment counter for a pointer is initialized to zero1210

when the pointer is allocated in device memory. The attachment counter for a pointer is set to one1211

whenever the pointer is attached to new target address, and incremented whenever an attach action1212

for that pointer is performed for the same target address. The attachment counter is decremented1213

whenever a detach action occurs for the pointer, and the pointer is detached when the attachment1214

counter reaches zero. This is described in more detail in Section 2.7.2 Data Clause Actions.1215

A pointer in device memory can be assigned a device address in two ways. The pointer can be1216

attached to a device address due to data clauses or API routines, as described in Section 2.7.21217

Data Clause Actions, or the pointer can be assigned in a compute region executed on that device.1218

Unspecified behavior may result if both ways are used for the same pointer.1219

Pointer members of structs, classes, or derived types in device or host memory can be overwritten1220

due to update directives or API routines. It is the user’s responsibility to ensure that the pointers1221

have the appropriate values before or after the data movement in either direction. The behavior of1222

the program is undefined if any of the pointer members are attached when an update of a composite1223

variable is performed.1224

2.7. Data Clauses1225

These data clauses may appear on the parallel construct, kernels construct, serial con-1226

struct, data construct, the enter data and exit data directives, and declare directives.1227

In the descriptions, the region is a compute region with a clause appearing on a parallel,1228

kernels, or serial construct, a data region with a clause on a data construct, or an implicit1229

data region with a clause on a declare directive. If the declare directive appears in a global1230

context, the corresponding implicit data region has a duration of the program. The list argument to1231

each data clause is a comma-separated collection of vars. For all clauses except deviceptr and1232

present, the list argument may include a Fortran common block name enclosed within slashes,1233

if that common block name also appears in a declare directive link clause. In all cases, the1234

compiler will allocate and manage a copy of the var in the memory of the current device, creating a1235

visible device copy of that var, for data not in shared memory.1236

OpenACC supports accelerators with discrete memories from the local thread. However, if the1237

accelerator can access the local memory directly, the implementation may avoid the memory allo-1238

cation and data movement and simply share the data in local memory. Therefore, a program that1239

uses and assigns data on the host and uses and assigns the same data on the accelerator within a1240

data region without update directives to manage the coherence of the two copies may get different1241

answers on different accelerators or implementations.1242

Restrictions1243

• Data clauses may not follow a device_type clause.1244

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1245

data clauses.1246

41

The OpenACC R© API 2.7. Data Clauses

2.7.1. Data Specification in Data Clauses1247

In C and C++, a subarray is an array name followed by an extended array range specification in1248

brackets, with start and length, such as1249

AA[2:n]

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the1250

size of the array is used; otherwise the length is required. The subarray AA[2:n] means element1251

AA[2], AA[3], . . . , AA[2+n-1].1252

In C and C++, a two dimensional array may be declared in at least four ways:1253

• Statically-sized array: float AA[100][200];1254

• Pointer to statically sized rows: typedef float row[200]; row* BB;1255

• Statically-sized array of pointers: float* CC[200];1256

• Pointer to pointers: float** DD;1257

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of1258

these may be included in a data clause using subarray notation to specify a rectangular array:1259

• AA[2:n][0:200]1260

• BB[2:n][0:m]1261

• CC[2:n][0:m]1262

• DD[2:n][0:m]1263

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any com-1264

bination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions,1265

all dimensions except the first must specify the whole extent, to preserve the contiguous data re-1266

striction, discussed below. For dynamically allocated dimensions, the implementation will allocate1267

pointers in device memory corresponding to the pointers in local memory, and will fill in those1268

pointers as appropriate.1269

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications1270

in parentheses, with lower and upper bound subscripts, such as1271

arr(1:high,low:100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if1272

known, are used. All dimensions except the last must specify the whole extent, to preserve the1273

contiguous data restriction, discussed below.1274

Restrictions1275

• In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be1276

specified.1277

42

The OpenACC R© API 2.7. Data Clauses

• In C and C++, the length for dynamically allocated dimensions of an array must be explicitly1278

specified.1279

• In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host1280

or on the device, may result in undefined behavior.1281

• If a subarray appears in a data clause, the implementation may choose to allocate memory for1282

only that subarray on the accelerator.1283

• In Fortran, array pointers may appear, but pointer association is not preserved in device mem-1284

ory.1285

• Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous1286

block of memory, except for dynamic multidimensional C arrays.1287

• In C and C++, if a variable or array of composite type appears, all the data members of the1288

struct or class are allocated and copied, as appropriate. If a composite member is a pointer1289

type, the data addressed by that pointer are not implicitly copied.1290

• In Fortran, if a variable or array of composite type appears, all the members of that derived1291

type are allocated and copied, as appropriate. If any member has the allocatable or1292

pointer attribute, the data accessed through that member are not copied.1293

• If an expression is used in a subscript or subarray expression in a clause on a data construct,1294

the same value is used when copying data at the end of the data region, even if the values of1295

variables in the expression change during the data region.1296

2.7.2. Data Clause Actions1297

Most of the data clauses perform one or more the following actions. The actions test or modify one1298

or both of the structured and dynamic reference counters, depending on the directive on which the1299

data clause appears.1300

Present Increment Action1301

A present increment action is one of the actions that may be performed for a present (Section1302

2.7.4), copy (Section 2.7.5), copyin (Section 2.7.6), copyout (Section 2.7.7), create (Sec-1303

tion 2.7.8), or no_create (Section 2.7.9) clause, or for a call to an acc_copyin (Section 3.2.26)1304

or acc_create (Section 3.2.27) API routine. See those sections for details.1305

A present increment action for a var occurs only when var is already present in device memory.1306

A present increment action for a var increments the structured or dynamic reference counter for var.1307

Present Decrement Action1308

A present decrement action is one of the actions that may be performed for a present (Section1309

2.7.4), copy (Section 2.7.5), copyin (Section 2.7.6), copyout (Section 2.7.7), create (Sec-1310

tion 2.7.8), no_create (Section 2.7.9), or delete (Section 2.7.10) clause, or for a call to an1311

acc_copyout (Section 3.2.28) or acc_delete (Section 3.2.29) API routine. See those sec-1312

tions for details.1313

43

The OpenACC R© API 2.7. Data Clauses

A present decrement action for a var occurs only when var is already present in device memory.1314

A present decrement action for a var decrements the structured or dynamic reference counter for1315

var, if its value is greater than zero. If the device memory associated with var was mapped to1316

the device using acc_map_data, the dynamic reference count may not be decremented to zero,1317

except by a call to acc_unmap_data. If the reference counter is already zero, its value is left1318

unchanged.1319

Create Action1320

A create action is one of the actions that may be performed for a copyout (Section 2.7.7) or1321

create (Section 2.7.8) clause, or for a call to an acc_create API routine (Section 3.2.27). See1322

those sections for details.1323

A create action for a var occurs only when var is not already present in device memory.1324

A create action for a var:1325

• allocates device memory for var; and1326

• sets the structured or dynamic reference counter to one.1327

Copyin Action1328

A copyin action is one of the actions that may be performed for a copy (Section 2.7.5) or copyin1329

(Section 2.7.6) clause, or for a call to an acc_copyin API routine (Section 3.2.26). See those1330

sections for details.1331

A copyin action for a var occurs only when var is not already present in device memory.1332

A copyin action for a var:1333

• allocates device memory for var;1334

• initiates a copy of the data for var from the local thread memory to the corresponding device1335

memory; and1336

• sets the structured or dynamic reference counter to one.1337

The data copy may complete asynchronously, depending on other clauses on the directive.1338

Copyout Action1339

A copyout action is one of the actions that may be performed for a copy (Section 2.7.5) or1340

copyout (Section 2.7.7) clause, or for a call to an acc_copyout API routine (Section 3.2.28).1341

See those sections for details.1342

A copyout action for a var occurs only when var is present in device memory.1343

A copyout action for a var:1344

• performs an immediate detach action for any pointer in var;1345

• initiates a copy of the data for var from device memory to the corresponding local thread1346

memory; and1347

44

The OpenACC R© API 2.7. Data Clauses

• deallocates device memory for var.1348

The data copy may complete asynchronously, depending on other clauses on the directive, in which1349

case the memory is deallocated when the data copy is complete.1350

Delete Action1351

A delete action is one of the actions that may be performed for a present (Section 2.7.4), copyin1352

(Section 2.7.6), create (Section 2.7.8), no_create (Section 2.7.9), or delete (Section 2.7.10)1353

clause, or for a call to an acc_delete API routine (Section 3.2.29). See those sections for details.1354

A delete action for a var occurs only when var is present in device memory.1355

A delete action for var:1356

• performs an immediate detach action for any pointer in var; and1357

• deallocates device memory for var.1358

Attach Action1359

An attach action is one of the actions that may be performed for a present (Section 2.7.4),1360

copy (Section 2.7.5), copyin (Section 2.7.6), copyout (Section 2.7.7), create (Section 2.7.8),1361

no_create (Section 2.7.9), or attach (Section 2.7.10) clause, or for a call to an acc_attach1362

API routine (Section 3.2.40). See those sections for details.1363

An attach action for a var occurs only when var is a pointer reference.1364

If the pointer var is in shared memory or is not present in the current device memory, or if the1365

address to which var points is not present in the current device memory, no action is taken. If the1366

attachment counter for var is nonzero and the pointer in device memory already points to the device1367

copy of the data in var, the attachment counter for the pointer var is incremented. Otherwise, the1368

pointer in device memory is attached to the device copy of the data by initiating an update for the1369

pointer in device memory to point to the device copy of the data and setting the attachment counter1370

for the pointer var to one. The update may complete asynchronously, depending on other clauses1371

on the directive. The pointer update must follow any data copies due to copyin actions that are1372

performed for the same directive.1373

Detach Action1374

A detach action is one of the actions that may be performed for a present (Section 2.7.4),1375

copy (Section 2.7.5), copyin (Section 2.7.6), copyout (Section 2.7.7), create (Section 2.7.8),1376

no_create (Section 2.7.9), delete (Section 2.7.10), or detach (Section 2.7.10) clause, or for1377

a call to an acc_detach API routine (Section 3.2.41). See those sections for details.1378

A detach action for a var occurs only when var is a pointer reference.1379

If the pointer var is in shared memory or is not present in the current device memory, or if the1380

attachment counter for var for the pointer is zero, no action is taken. Otherwise, the attachment1381

counter for the pointer var is decremented. If the attachment counter is decreased to zero, the1382

pointer is detached by initiating an update for the pointer var in device memory to have the same1383

45

The OpenACC R© API 2.7. Data Clauses

value as the corresponding pointer in local memory. The update may complete asynchronously,1384

depending on other clauses on the directive. The pointer update must precede any data copies due1385

to copyout actions that are performed for the same directive.1386

Immediate Detach Action1387

An immediate detach action is one of the actions that may be performed for a detach (Section1388

2.7.10) clause, or for a call to an acc_detach_finalize API routine (Section 3.2.41). See1389

those sections for details.1390

An immediate detach action for a var occurs only when var is a pointer reference and is present in1391

device memory.1392

If the attachment counter for the pointer is zero, the immediate detach action has no effect. Other-1393

wise, the attachment counter for the pointer set to zero and the pointer is detached by initiating an1394

update for the pointer in device memory to have the same value as the corresponding pointer in local1395

memory. The update may complete asynchronously, depending on other clauses on the directive.1396

The pointer update must precede any data copies due to copyout actions that are performed for the1397

same directive.1398

2.7.3. deviceptr clause1399

The deviceptr clause may appear on structured data and compute constructs and declare1400

directives.1401

The deviceptr clause is used to declare that the pointers in var-list are device pointers, so the1402

data need not be allocated or moved between the host and device for this pointer.1403

In C and C++, the vars in var-list must be pointer variables.1404

In Fortran, the vars in var-list must be dummy arguments (arrays or scalars), and may not have the1405

Fortran pointer, allocatable, or value attributes.1406

For data in shared memory, host pointers are the same as device pointers, so this clause has no1407

effect.1408

2.7.4. present clause1409

The present clause may appear on structured data and compute constructs and declare di-1410

rectives. The present clause specifies that vars in var-list are in shared memory or are already1411

present in the current device memory due to data regions or data lifetimes that contain the construct1412

on which the present clause appears.1413

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1414

the present clause behaves as follows:1415

• At entry to the region:1416

– If var is not present in the current device memory, a runtime error is issued.1417

– Otherwise, a present increment action with the structured reference counter is performed.1418

If var is a pointer reference, an attach action is performed.1419

46

The OpenACC R© API 2.7. Data Clauses

• At exit from the region:1420

– If var is not present in the current device memory, a runtime error is issued.1421

– Otherwise, a present decrement action with the structured reference counter is per-1422

formed. If var is a pointer reference, a detach action is performed. If both structured1423

and dynamic reference counters are zero, a delete action is performed.1424

Restrictions1425

• If only a subarray of an array is present in the current device memory, the present clause1426

must specify the same subarray, or a subarray that is a proper subset of the subarray in the1427

data lifetime.1428

• It is a runtime error if the subarray in var-list clause includes array elements that are not part1429

of the subarray specified in the data lifetime.1430

2.7.5. copy clause1431

The copy clause may appear on structured data and compute constructs and on declare direc-1432

tives.1433

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1434

the copy clause behaves as follows:1435

• At entry to the region:1436

– If var is present, a present increment action with the structured reference counter is1437

performed. If var is a pointer reference, an attach action is performed.1438

– Otherwise, a copyin action with the structured reference counter is performed. If var is1439

a pointer reference, an attach action is performed.1440

• At exit from the region:1441

– If var is not present in the current device memory, a runtime error is issued.1442

– Otherwise, a present decrement action with the structured reference counter is per-1443

formed. If var is a pointer reference, a detach action is performed. If both structured1444

and dynamic reference counters are zero, a copyout action is performed.1445

The restrictions regarding subarrays in the present clause apply to this clause.1446

For compatibility with OpenACC 2.0, present_or_copy and pcopy are alternate names for1447

copy.1448

2.7.6. copyin clause1449

The copyin clause may appear on structured data and compute constructs, on declare direc-1450

tives, and on enter data directives.1451

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1452

the copyin clause behaves as follows:1453

47

The OpenACC R© API 2.7. Data Clauses

• At entry to a region, the structured reference counter is used. On an enter data directive,1454

the dynamic reference counter is used.1455

– If var is present, a present increment action with the appropriate reference counter is1456

performed. If var is a pointer reference, an attach action is performed.1457

– Otherwise, a copyin action with the appropriate reference counter is performed. If var1458

is a pointer reference, an attach action is performed.1459

• At exit from the region:1460

– If var is not present in the current device memory, a runtime error is issued.1461

– Otherwise, a present decrement action with the structured reference counter is per-1462

formed. If var is a pointer reference, a detach action is performed. If both structured1463

and dynamic reference counters are zero, a delete action is performed.1464

If the optional readonly modifier appears, then the implementation may assume that the data1465

referenced by var-list is never written to within the applicable region.1466

The restrictions regarding subarrays in the present clause apply to this clause.1467

For compatibility with OpenACC 2.0, present_or_copyin and pcopyin are alternate names1468

for copyin.1469

An enter data directive with a copyin clause is functionally equivalent to a call to the acc_copyin1470

API routine, as described in Section 3.2.26.1471

2.7.7. copyout clause1472

The copyout clause may appear on structured data and compute constructs, on declare di-1473

rectives, and on exit data directives. The clause may optionally have a zero modifier if the1474

copyout clause appears on a structured data or compute construct.1475

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1476

the copyout clause behaves as follows:1477

• At entry to a region:1478

– If var is present, a present increment action with the structured reference counter is1479

performed. If var is a pointer reference, an attach action is performed.1480

– Otherwise, a create action with the structured reference is performed. If var is a pointer1481

reference, an attach action is performed. If a zero modifier appears, the memory is1482

zeroed after the create action.1483

• At exit from a region, the structured reference counter is used. On an exit data directive,1484

the dynamic reference counter is used.1485

– If var is not present in the current device memory, a runtime error is issued.1486

– Otherwise, the reference counter is updated:1487

∗ On an exit data directive with a finalize clause, the dynamic reference1488

counter is set to zero.1489

∗ Otherwise, a present decrement action with the appropriate reference counter is1490

48

The OpenACC R© API 2.7. Data Clauses

performed.1491

If var is a pointer reference, a detach action is performed. If both structured and dynamic1492

reference counters are zero, a copyout action is performed.1493

The restrictions regarding subarrays in the present clause apply to this clause.1494

For compatibility with OpenACC 2.0, present_or_copyout and pcopyout are alternate1495

names for copyout.1496

An exit data directive with a copyout clause and with or without a finalize clause is func-1497

tionally equivalent to a call to the acc_copyout_finalize or acc_copyout API routine,1498

respectively, as described in Section 3.2.28.1499

2.7.8. create clause1500

The create clause may appear on structured data and compute constructs, on declare direc-1501

tives, and on enter data directives. The clause may optionally have a zero modifier.1502

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1503

the create clause behaves as follows:1504

• At entry to a region, the structured reference counter is used. On an enter data directive,1505

the dynamic reference counter is used.1506

– If var is present, a present increment action with the appropriate reference counter is1507

performed. If var is a pointer reference, an attach action is performed.1508

– Otherwise, a create action with the appropriate reference counter is performed. If var1509

is a pointer reference, an attach action is performed. If a zero modifier appears, the1510

memory is zeroed after the create action.1511

• At exit from the region:1512

– If var is not present in the current device memory, a runtime error is issued.1513

– Otherwise, a present decrement action with the structured reference counter is per-1514

formed. If var is a pointer reference, a detach action is performed. If both structured1515

and dynamic reference counters are zero, a delete action is performed.1516

The restrictions regarding subarrays in the present clause apply to this clause.1517

For compatibility with OpenACC 2.0, present_or_create and pcreate are alternate names1518

for create.1519

An enter data directive with a create clause is functionally equivalent to a call to the acc_create1520

API routine, as described in Section 3.2.27.1521

2.7.9. no create clause1522

The no_create clause may appear on structured data and compute constructs.1523

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1524

the no_create clause behaves as follows:1525

• At entry to the region:1526

49

The OpenACC R© API 2.7. Data Clauses

– If var is present, a present increment action with the structured reference counter is1527

performed. If var is a pointer reference, an attach action is performed.1528

– Otherwise, no action is performed, and any device code in this construct will use the1529

local memory address for var.1530

• At exit from the region:1531

– If var is not present in the current device memory, no action is performed.1532

– Otherwise, a present decrement action with the structured reference counter is per-1533

formed. If var is a pointer reference, a detach action is performed. If both structured1534

and dynamic reference counters are zero, a delete action is performed.1535

The restrictions regarding subarrays in the present clause apply to this clause.1536

2.7.10. delete clause1537

The delete clause may appear on exit data directives.1538

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1539

the delete clause behaves as follows:1540

• If var is not present in the current device memory, a runtime error is issued.1541

• Otherwise, the dynamic reference counter is updated:1542

– On an exit data directive with a finalize clause, the dynamic reference counter1543

is set to zero.1544

– Otherwise, a present decrement action with the dynamic reference counter is performed.1545

If var is a pointer reference, a detach action is performed. If both structured and dynamic1546

reference counters are zero, a delete action is performed.1547

An exit data directive with a delete clause and with or without a finalize clause is func-1548

tionally equivalent to a call to the acc_delete_finalize or acc_delete API routine, re-1549

spectively, as described in Section 3.2.29.1550

2.7.11. attach clause1551

The attach clause may appear on structured data and compute constructs and on enter data1552

directives. Each var argument to an attach clause must be a C or C++ pointer or a Fortran variable1553

or array with the pointer or allocatable attribute.1554

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1555

the attach clause behaves as follows:1556

• At entry to a region or at an enter data directive, an attach action is performed.1557

• At exit from the region, a detach action is performed.1558

50

The OpenACC R© API 2.8. Host Data Construct

2.7.12. detach clause1559

The detach clause may appear on exit data directives. Each var argument to a detach clause1560

must be a C or C++ pointer or a Fortran variable or array with the pointer or allocatable1561

attribute.1562

For each var in varlist, if var is in shared memory, no action is taken; if var is not in shared memory,1563

the detach clause behaves as follows:1564

• If there is a finalize clause on the exit data directive, an immediate detach action is1565

performed.1566

• Otherwise, a detach action is performed.1567

2.8. Host Data Construct1568

Summary The host_data construct makes the address of data in device memory available on1569

the host.1570

Syntax In C and C++, the syntax of the OpenACC host_data construct is1571

#pragma acc host_data clause-list new-line

structured block

and in Fortran, the syntax is1572

!$acc host_data clause-list

structured block

!$acc end host_data

where clause is one of the following:1573

use_device(var-list)

if(condition)

if_present

Description This construct is used to make the address of data in device memory available in1574

host code.1575

Restrictions1576

• A var in a use_device clause must be the name of a variable or array.1577

• At least one use_device clause must appear.1578

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical1579

value; in C or C++, the condition must evaluate to a scalar integer value.1580

51

The OpenACC R© API 2.9. Loop Construct

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1581

use_device clauses.1582

2.8.1. use device clause1583

The use_device clause tells the compiler to use the current device address of any var in var-list1584

in code within the construct. In particular, this may be used to pass the device address of var to1585

optimized procedures written in a lower-level API. When there is no if_present clause, and1586

either there is no if clause or the condition in the if clause evaluates to nonzero (in C or C++)1587

or .true. (in Fortran), the var in var-list must be present in the accelerator memory due to data1588

regions or data lifetimes that contain this construct. For data in shared memory, the device address1589

is the same as the host address.1590

2.8.2. if clause1591

The if clause is optional. When an if clause appears and the condition evaluates to zero in C1592

or C++, or .false. in Fortran, the compiler will not replace the addresses of any var in code1593

within the construct. When there is no if clause, or when an if clause appears and the condition1594

evaluates to nonzero in C or C++, or .true. in Fortran, the compiler will replace the addresses as1595

described in the previous subsection.1596

2.8.3. if present clause1597

When an if_present clause appears on the directive, the compiler will only replace the address1598

of any var which appears in var-list that is present in the current device memory.1599

2.9. Loop Construct1600

Summary The OpenACC loop construct applies to a loop which must immediately follow this1601

directive. The loop construct can describe what type of parallelism to use to execute the loop and1602

declare private vars and reduction operations.1603

Syntax In C and C++, the syntax of the loop construct is1604

#pragma acc loop [clause-list] new-line

for loop

In Fortran, the syntax of the loop construct is1605

!$acc loop [clause-list]

do loop

where clause is one of the following:1606

52

The OpenACC R© API 2.9. Loop Construct

collapse(n)

gang [(gang-arg-list)]

worker [([num:]int-expr)]

vector [([length:]int-expr)]

seq

independent

auto

tile(size-expr-list)

device_type(device-type-list)

private(var-list)

reduction(operator:var-list)

where gang-arg is one of:1607

[num:]int-expr

static:size-expr

and gang-arg-list may have at most one num and one static argument,1608

and where size-expr is one of:1609

*
int-expr

Some clauses are only valid in the context of a kernels construct; see the descriptions below.1610

An orphaned loop construct is a loop construct that is not lexically enclosed within a compute1611

construct. The parent compute construct of a loop construct is the nearest compute construct that1612

lexically contains the loop construct.1613

Restrictions1614

• Only the collapse, gang, worker, vector, seq, independent, auto, and tile1615

clauses may follow a device_type clause.1616

• The int-expr argument to the worker and vector clauses must be invariant in the kernels1617

region.1618

• A loop associated with a loop construct that does not have a seq clause must be written1619

such that the loop iteration count is computable when entering the loop construct.1620

• Only one of the seq, independent, and auto clauses may appear.1621

• A gang, worker, or vector clause may not appear if a seq clause appears.1622

2.9.1. collapse clause1623

The collapse clause is used to specify how many tightly nested loops are associated with the1624

loop construct. The argument to the collapse clause must be a constant positive integer expres-1625

53

The OpenACC R© API 2.9. Loop Construct

sion. If no collapse clause appears, only the immediately following loop is associated with the1626

loop construct.1627

If more than one loop is associated with the loop construct, the iterations of all the associated loops1628

are all scheduled according to the rest of the clauses. The trip count for all loops associated with the1629

collapse clause must be computable and invariant in all the loops.1630

It is implementation-defined whether a gang, worker or vector clause on the construct is ap-1631

plied to each loop, or to the linearized iteration space.1632

2.9.2. gang clause1633

When the parent compute construct is a parallel construct, or on an orphaned loop construct,1634

the gang clause specifies that the iterations of the associated loop or loops are to be executed in1635

parallel by distributing the iterations among the gangs created by the parallel construct. A1636

loop construct with the gang clause transitions a compute region from gang-redundant mode to1637

gang-partitioned mode. The number of gangs is controlled by the parallel construct; only the1638

static argument is allowed. The loop iterations must be data independent, except for vars which1639

appear in a reduction clause or which are modified in an atomic region. The region of a loop1640

with the gang clause may not contain another loop with the gang clause unless within a nested1641

compute region.1642

When the parent compute construct is a kernels construct, the gang clause specifies that the1643

iterations of the associated loop or loops are to be executed in parallel across the gangs. An argument1644

with no keyword or with the num keyword is allowed only when the num_gangs does not appear1645

on the kernels construct. If an argument with no keyword or an argument after the num keyword1646

appears, it specifies how many gangs to use to execute the iterations of this loop. The region of a1647

loop with the gang clause may not contain another loop with a gang clause unless within a nested1648

compute region.1649

The scheduling of loop iterations to gangs is not specified unless the static modifier appears as1650

an argument. If the static modifier appears with an integer expression, that expression is used1651

as a chunk size. If the static modifier appears with an asterisk, the implementation will select a1652

chunk size. The iterations are divided into chunks of the selected chunk size, and the chunks are1653

assigned to gangs starting with gang zero and continuing in round-robin fashion. Two gang loops1654

in the same parallel region with the same number of iterations, and with static clauses with the1655

same argument, will assign the iterations to gangs in the same manner. Two gang loops in the1656

same kernels region with the same number of iterations, the same number of gangs to use, and with1657

static clauses with the same argument, will assign the iterations to gangs in the same manner.1658

2.9.3. worker clause1659

When the parent compute construct is a parallel construct, or on an orphaned loop construct,1660

the worker clause specifies that the iterations of the associated loop or loops are to be executed1661

in parallel by distributing the iterations among the multiple workers within a single gang. A loop1662

construct with a worker clause causes a gang to transition from worker-single mode to worker-1663

partitioned mode. In contrast to the gang clause, the worker clause first activates additional1664

worker-level parallelism and then distributes the loop iterations across those workers. No argu-1665

ment is allowed. The loop iterations must be data independent, except for vars which appear in1666

54

The OpenACC R© API 2.9. Loop Construct

a reduction clause or which are modified in an atomic region. The region of a loop with the1667

worker clause may not contain a loop with the gang or worker clause unless within a nested1668

compute region.1669

When the parent compute construct is a kernels construct, the worker clause specifies that the1670

iterations of the associated loop or loops are to be executed in parallel across the workers within1671

a single gang. An argument is allowed only when the num_workers does not appear on the1672

kernels construct. The optional argument specifies how many workers per gang to use to execute1673

the iterations of this loop. The region of a loop with the worker clause may not contain a loop1674

with a gang or worker clause unless within a nested compute region.1675

All workers will complete execution of their assigned iterations before any worker proceeds beyond1676

the end of the loop.1677

2.9.4. vector clause1678

When the parent compute construct is a parallel construct, or on an orphaned loop construct,1679

the vector clause specifies that the iterations of the associated loop or loops are to be executed1680

in vector or SIMD mode. A loop construct with a vector clause causes a worker to transition1681

from vector-single mode to vector-partitioned mode. Similar to the worker clause, the vector1682

clause first activates additional vector-level parallelism and then distributes the loop iterations across1683

those vector lanes. The operations will execute using vectors of the length specified or chosen for1684

the parallel region. The loop iterations must be data independent, except for vars which appear in1685

a reduction clause or which are modified in an atomic region. The region of a loop with the1686

vector clause may not contain a loop with the gang, worker, or vector clause unless within1687

a nested compute region.1688

When the parent compute construct is a kernels construct, the vector clause specifies that the1689

iterations of the associated loop or loops are to be executed with vector or SIMD processing. An1690

argument is allowed only when the vector_length does not appear on the kernels construct.1691

If an argument appears, the iterations will be processed in vector strips of that length; if no argument1692

appears, the implementation will choose an appropriate vector length. The region of a loop with the1693

vector clause may not contain a loop with a gang, worker, or vector clause unless within a1694

nested compute region.1695

All vector lanes will complete execution of their assigned iterations before any vector lane proceeds1696

beyond the end of the loop.1697

2.9.5. seq clause1698

The seq clause specifies that the associated loop or loops are to be executed sequentially by the1699

accelerator. This clause will override any automatic parallelization or vectorization.1700

2.9.6. auto clause1701

The auto clause specifies that the implementation must analyze the loop and determine whether the1702

loop iterations are data-independent. If it determines that the loop iterations are data-independent,1703

the implementation must treat the auto clause as if it is an independent clause. If not, or if it1704

55

The OpenACC R© API 2.9. Loop Construct

is unable to make a determination, it must treat the auto clause as if it is a seq clause, and it must1705

ignore any gang, worker, or vector clauses on the loop construct.1706

When the parent compute construct is a kernels construct, a loop construct with no independent1707

or seq clause is treated as if it has the auto clause.1708

2.9.7. tile clause1709

The tile clause specifies that the implementation should split each loop in the loop nest into two1710

loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile1711

clause is a list of one or more tile sizes, where each tile size is a constant positive integer expression1712

or an asterisk. If there are n tile sizes in the list, the loop construct must be immediately followed1713

by n tightly-nested loops. The first argument in the size-expr-list corresponds to the innermost loop1714

of the n associated loops, and the last element corresponds to the outermost associated loop. If the1715

tile size is an asterisk, the implementation will choose an appropriate value. Each loop in the nest1716

will be split or strip-mined into two loops, an outer tile loop and an inner element loop. The trip1717

count of the element loop will be limited to the corresponding tile size from the size-expr-list. The1718

tile loops will be reordered to be outside all the element loops, and the element loops will all be1719

inside the tile loops.1720

If the vector clause appears on the loop construct, the vector clause is applied to the element1721

loops. If the gang clause appears on the loop construct, the gang clause is applied to the tile1722

loops. If the worker clause appears on the loop construct, the worker clause is applied to the1723

element loops if no vector clause appears, and to the tile loops otherwise.1724

2.9.8. device type clause1725

The device_type clause is described in Section 2.4 Device-Specific Clauses.1726

2.9.9. independent clause1727

The independent clause tells the implementation that the loop iterations must be data indepen-1728

dent, except for vars which appear in a reduction clause or which are modified in an atomic1729

region. This allows the implementation to generate code to execute the iterations in parallel with no1730

synchronization.1731

A loop construct with no auto or seq clause is treated as if it has the independent clause1732

when it is an orphaned loop construct or its parent compute construct is a parallel construct.1733

Note1734

• It is likely a programming error to use the independent clause on a loop if any iteration1735

writes to a variable or array element that any other iteration also writes or reads, except for1736

vars which appear in a reduction clause or which are modified in an atomic region.1737

• The implementation may be restricted in the levels of parallelism it can apply by the presence1738

of loop constructs with gang, worker, or vector clauses for outer or inner loops.1739

56

The OpenACC R© API 2.9. Loop Construct

2.9.10. private clause1740

The private clause on a loop construct specifies that a copy of each item in var-list will be1741

created. If the body of the loop is executed in vector-partitioned mode, a copy of the item is created1742

for each thread associated with each vector lane. If the body of the loop is executed in worker-1743

partitioned vector-single mode, a copy of the item is created for and shared across the set of threads1744

associated with all the vector lanes of each worker. Otherwise, a copy of the item is created for and1745

shared across the set of threads associated with all the vector lanes of all the workers of each gang.1746

Restrictions1747

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1748

private clauses.1749

2.9.11. reduction clause1750

The reduction clause specifies a reduction operator and one or more vars. For each reduction1751

var, a private copy is created in the same manner as for a private clause on the loop construct,1752

and initialized for that operator; see the table in Section 2.5.13 reduction clause. After the loop, the1753

values for each thread are combined using the specified reduction operator, and the result combined1754

with the value of the original var and stored in the original var. If the original var is not private,1755

this update occurs by the end of the compute region, and any access to the original var is undefined1756

within the compute region. Otherwise, the update occurs at the end of the loop. If the reduction1757

var is an array or subarray, the reduction operation is logically equivalent to applying that reduction1758

operation to each array element of the array or subarray individually. If the reduction var is a com-1759

posite variable, the reduction operation is logically equivalent to applying that reduction operation1760

to each member of the composite variable individually.1761

If a variable is involved in a reduction that spans multiple nested loops where two or more of those1762

loops have associated loop directives, a reduction clause containing that variable must appear1763

on each of those loop directives.1764

Restrictions1765

• A var in a reduction clause must be a scalar variable name, a composite variable name,1766

an array name, an array element, or a subarray (refer to Section 2.7.1).1767

• Reduction clauses on nested constructs for the same reduction var must have the same reduc-1768

tion operator.1769

• Every var in a reduction clause appearing on an orphaned loop construct must be private.1770

• The restrictions for a reduction clause on a compute construct listed in in Section 2.5.131771

reduction clause also apply to a reduction clause on a loop construct.1772

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1773

reduction clauses.1774

57

The OpenACC R© API 2.9. Loop Construct

H H
1775

Examples1776

• x is not private at the loop directive below, so its reduction normally updates x at the end1777

of the parallel region, where gangs synchronize. When possible, the implementation might1778

choose to partially update x at the loop exit instead, or fully if num_gangs(1) were added1779

to the parallel directive. However, portable applications cannot rely on such early up-1780

dates, so accesses to x are undefined within the parallel region outside the loop.1781

int x = 0;1782

#pragma acc parallel copy(x)1783

{1784

// gang-shared x undefined1785

#pragma acc loop gang worker vector reduction(+:x)1786

for (int i = 0; i < I; ++i)1787

x += 1; // vector-private x modified1788

// gang-shared x undefined1789

} // gang-shared x updated for gang/worker/vector reduction1790

// x = I1791

• x is private at each of the innermost two loop directives below, so each of their reductions1792

updates x at the loop’s exit. However, x is not private at the outer loop directive, so its1793

reduction updates x by the end of the parallel region instead.1794

int x = 0;1795

#pragma acc parallel copy(x)1796

{1797

// gang-shared x undefined1798

#pragma acc loop gang reduction(+:x)1799

for (int i = 0; i < I; ++i) {1800

#pragma acc loop worker reduction(+:x)1801

for (int j = 0; j < J; ++j) {1802

#pragma acc loop vector reduction(+:x)1803

for (int k = 0; k < K; ++k) {1804

x += 1; // vector-private x modified1805

} // worker-private x updated for vector reduction1806

} // gang-private x updated for worker reduction1807

}1808

// gang-shared x undefined1809

} // gang-shared x updated for gang reduction1810

// x = I * J * K1811

• At each loop directive below, x is private due to its implicit firstprivate attribute on1812

the parallel directive, but y is not private due to its copy clause on the parallel1813

directive. Thus, each reduction updates x at the loop exit, but each reduction updates y by1814

the end of the parallel region instead.1815

int x = 0, y = 0;1816

#pragma acc parallel copy(y) // firstprivate(x) implied1817

{1818

58

The OpenACC R© API 2.9. Loop Construct

// gang-private x = 0; gang-shared y undefined1819

#pragma acc loop seq reduction(+:x,y)1820

for (int i = 0; i < I; ++i) {1821

x += 1; y += 2; // loop-private x and y modified1822

} // gang-private x updated for seq reduction (trivial reduction)1823

// gang-private x = I; gang-shared y undefined1824

#pragma acc loop worker reduction(+:x,y)1825

for (int i = 0; i < I; ++i) {1826

x += 1; y += 2; // worker-private x and y modified1827

} // gang-private x updated for worker reduction1828

// gang-private x = 2 * I; gang-shared y undefined1829

#pragma acc loop vector reduction(+:x,y)1830

for (int i = 0; i < I; ++i) {1831

x += 1; y += 2; // vector-private x and y modified1832

} // gang-private x updated for vector reduction1833

// gang-private x = 3 * I; gang-shared y undefined1834

} // gang-shared y updated for gang/seq/worker/vector reductions1835

// x = 0; y = 3 * I * 21836

• The examples below are equivalent. That is, the reduction clause on the combined con-1837

struct applies to the loop construct but implies a copy clause on the parallel construct. Thus,1838

x is not private at the loop directive, so the reduction updates x by the end of the parallel1839

region.1840

int x = 0;1841

#pragma acc parallel loop worker reduction(+:x)1842

for (int i = 0; i < I; ++i) {1843

x += 1; // worker-private x modified1844

} // gang-shared x updated for gang/worker reduction1845

// x = I1846

1847

int x = 0;1848

#pragma acc parallel copy(x)1849

{1850

// gang-shared x undefined1851

#pragma acc loop worker reduction(+:x)1852

for (int i = 0; i < I; ++i) {1853

x += 1; // worker-private x modified1854

}1855

// gang-shared x undefined1856

} // gang-shared x updated for gang/worker reduction1857

// x = I1858

• If the implementation treats the auto clause below as independent, the loop executes in1859

gang-partitioned mode and thus examines every element of arr once to compute arr’s max-1860

imum. However, if the implementation treats auto as seq, the gangs redundantly compute1861

arr’s maximum, but the combined result is still arr’s maximum. Either way, because x is1862

not private at the loop directive, the reduction updates x by the end of the parallel region.1863

59

The OpenACC R© API 2.9. Loop Construct

int x = 0;1864

const int *arr = /*array of I values*/;1865

#pragma acc parallel copy(x)1866

{1867

// gang-shared x undefined1868

#pragma acc loop auto gang reduction(max:x)1869

for (int i = 0; i < I; ++i) {1870

// complex loop body1871

x = x < arr[i] ? arr[i] : x; // gang or loop-private x modified1872

}1873

// gang-shared x undefined1874

} // gang-shared x updated for gang or gang/seq reduction1875

// x = arr maximum1876

• The following example is the same as the previous one except that the reduction operator is1877

now +. While gang-partitioned mode sums the elements of arr once, gang-redundant mode1878

sums them once per gang, producing a result many times arr’s sum. This example shows1879

that, for some reduction operators, combining auto, gang, and reduction is typically1880

non-portable.1881

int x = 0;1882

const int *arr = /*array of I values*/;1883

#pragma acc parallel copy(x)1884

{1885

// gang-shared x undefined1886

#pragma acc loop auto gang reduction(+:x)1887

for (int i = 0; i < I; ++i) {1888

// complex loop body1889

x += arr[i]; // gang or loop-private x modified1890

}1891

// gang-shared x undefined1892

} // gang-shared x updated for gang or gang/seq reduction1893

// x = arr sum possibly times number of gangs1894

• At the following loop directive, x and z are private, so the loop reductions are not across1895

gangs even though the loop is gang-partitioned. Nevertheless, the reduction clause on the1896

loop directive is important as the loop is also vector-partitioned. These reductions are only1897

partial reductions relative to the full set of values computed by the loop, so the reduction1898

clause is needed on the parallel directive to reduce across gangs.1899

int x = 0, y = 0;1900

#pragma acc parallel copy(x) reduction(+:x,y)1901

{1902

int z = 0;1903

#pragma acc loop gang vector reduction(+:x,z)1904

for (int i = 0; i < I; ++i) {1905

x += 1; z += 2; // vector-private x and z modified1906

} // gang-private x and z updated for vector reduction (trivial 1-gang reduction)1907

y += z; // gang-private y modified1908

60

The OpenACC R© API 2.10. Cache Directive

} // gang-shared x and y updated for gang reduction1909

// x = I; y = I * 21910

N N1911

1912

2.10. Cache Directive1913

Summary The cache directive may appear at the top of (inside of) a loop. It specifies array1914

elements or subarrays that should be fetched into the highest level of the cache for the body of the1915

loop.1916

Syntax In C and C++, the syntax of the cache directive is1917

#pragma acc cache([readonly:]var-list) new-line

In Fortran, the syntax of the cache directive is1918

!$acc cache([readonly:]var-list)

A var in a cache directive must be a single array element or a simple subarray. In C and C++,1919

a simple subarray is an array name followed by an extended array range specification in brackets,1920

with start and length, such as1921

arr[lower:length]

where the lower bound is a constant, loop invariant, or the for loop index variable plus or minus a1922

constant or loop invariant, and the length is a constant.1923

In Fortran, a simple subarray is an array name followed by a comma-separated list of range specifi-1924

cations in parentheses, with lower and upper bound subscripts, such as1925

arr(lower:upper,lower2:upper2)

The lower bounds must be constant, loop invariant, or the do loop index variable plus or minus1926

a constant or loop invariant; moreover the difference between the corresponding upper and lower1927

bounds must be a constant.1928

If the optional readonly modifier appears, then the implementation may assume that the data1929

referenced by any var in that directive is never written to within the applicable region.1930

Restrictions1931

• If an array element or subarray is listed in a cache directive, all references to that array1932

during execution of that loop iteration must not refer to elements of the array outside the1933

index range specified in the cache directive.1934

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in1935

cache directives.1936

61

The OpenACC R© API 2.11. Combined Constructs

2.11. Combined Constructs1937

Summary The combined OpenACC parallel loop, kernels loop, and serial loop1938

constructs are shortcuts for specifying a loop construct nested immediately inside a parallel,1939

kernels, or serial construct. The meaning is identical to explicitly specifying a parallel,1940

kernels, or serial construct containing a loop construct. Any clause that is allowed on a1941

parallel or loop construct is allowed on the parallel loop construct; any clause allowed1942

on a kernels or loop construct is allowed on a kernels loop construct; and any clause1943

allowed on a serial or loop construct is allowed on a serial loop construct.1944

Syntax In C and C++, the syntax of the parallel loop construct is1945

#pragma acc parallel loop [clause-list] new-line

for loop

In Fortran, the syntax of the parallel loop construct is1946

!$acc parallel loop [clause-list]

do loop

[!$acc end parallel loop]

The associated structured block is the loop which must immediately follow the directive. Any of1947

the parallel or loop clauses valid in a parallel region may appear.1948

In C and C++, the syntax of the kernels loop construct is1949

#pragma acc kernels loop [clause-list] new-line

for loop

In Fortran, the syntax of the kernels loop construct is1950

!$acc kernels loop [clause-list]

do loop

[!$acc end kernels loop]

The associated structured block is the loop which must immediately follow the directive. Any of1951

the kernels or loop clauses valid in a kernels region may appear.1952

In C and C++, the syntax of the serial loop construct is1953

#pragma acc serial loop [clause-list] new-line

for loop

In Fortran, the syntax of the serial loop construct is1954

62

The OpenACC R© API 2.12. Atomic Construct

!$acc serial loop [clause-list]

do loop

[!$acc end serial loop]

The associated structured block is the loop which must immediately follow the directive. Any of1955

the serial or loop clauses valid in a serial region may appear.1956

A private or reduction clause on a combined construct is treated as if it appeared on the1957

loop construct. In addition, a reduction clause on a combined construct implies a copy data1958

clause for each reduction variable, unless a data clause for that variable appears on the combined1959

construct.1960

Restrictions1961

• The restrictions for the parallel, kernels, serial, and loop constructs apply.1962

2.12. Atomic Construct1963

Summary An atomic construct ensures that a specific storage location is accessed and/or up-1964

dated atomically, preventing simultaneous reading and writing by gangs, workers, and vector threads1965

that could result in indeterminate values.1966

Syntax In C and C++, the syntax of the atomic constructs is:1967

#pragma acc atomic [atomic-clause] new-line

expression-stmt

or:1968

#pragma acc atomic update capture new-line

structured-block

Where atomic-clause is one of read, write, update, or capture. The expression-stmt is an1969

expression statement with one of the following forms:1970

If the atomic-clause is read:1971

v = x;

If the atomic-clause is write:1972

x = expr;

If the atomic-clause is update or no clause appears:1973

63

The OpenACC R© API 2.12. Atomic Construct

x++;

x--;

++x;

--x;

x binop= expr;

x = x binop expr;

x = expr binop x;

If the atomic-clause is capture:1974

v = x++;

v = x--;

v = ++x;

v = --x;

v = x binop= expr;

v = x = x binop expr;

v = x = expr binop x;

The structured-block is a structured block with one of the following forms:1975

{v = x; x binop= expr;}
{x binop= expr; v = x;}
{v = x; x = x binop expr;}
{v = x; x = expr binop x;}
{x = x binop expr; v = x;}
{x = expr binop x; v = x;}
{v = x; x = expr;}
{v = x; x++;}
{v = x; ++x;}
{++x; v = x;}
{x++; v = x;}
{v = x; x--;}
{v = x; --x;}
{--x; v = x;}
{x--; v = x;}

In the preceding expressions:1976

• x and v (as applicable) are both l-value expressions with scalar type.1977

• During the execution of an atomic region, multiple syntactic occurrences of x must designate1978

the same storage location.1979

• Neither of v and expr (as applicable) may access the storage location designated by x.1980

• Neither of x and expr (as applicable) may access the storage location designated by v.1981

• expr is an expression with scalar type.1982

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.1983

• binop, binop=, ++, and -- are not overloaded operators.1984

64

The OpenACC R© API 2.12. Atomic Construct

• The expression x binop expr must be mathematically equivalent to x binop (expr). This1985

requirement is satisfied if the operators in expr have precedence greater than binop, or by1986

using parentheses around expr or subexpressions of expr.1987

• The expression expr binop x must be mathematically equivalent to (expr) binop x. This1988

requirement is satisfied if the operators in expr have precedence equal to or greater than binop,1989

or by using parentheses around expr or subexpressions of expr.1990

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is1991

unspecified.1992

In Fortran the syntax of the atomic constructs is:1993

!$acc atomic read

capture-statement

[!$acc end atomic]

or1994

!$acc atomic write

write-statement

[!$acc end atomic]

or1995

!$acc atomic [update]

update-statement

[!$acc end atomic]

or1996

!$acc atomic capture

update-statement

capture-statement

!$acc end atomic

or1997

!$acc atomic capture

capture-statement

update-statement

!$acc end atomic

or1998

!$acc atomic capture

capture-statement

write-statement

!$acc end atomic

65

The OpenACC R© API 2.12. Atomic Construct

where write-statement has the following form (if atomic-clause is write or capture):1999

x = expr

where capture-statement has the following form (if atomic-clause is capture or read):2000

v = x

and where update-statement has one of the following forms (if atomic-clause is update, capture,2001

or no clause appears):2002

x = x operator expr

x = expr operator x

x = intrinsic procedure name(x, expr-list)

x = intrinsic procedure name(expr-list, x)

In the preceding statements:2003

• x and v (as applicable) are both scalar variables of intrinsic type.2004

• x must not be an allocatable variable.2005

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2006

the same storage location.2007

• None of v, expr, and expr-list (as applicable) may access the same storage location as x.2008

• None of x, expr, and expr-list (as applicable) may access the same storage location as v.2009

• expr is a scalar expression.2010

• expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic procedure name2011

refers to iand, ior, or ieor, exactly one expression must appear in expr-list.2012

• intrinsic procedure name is one of max, min, iand, ior, or ieor. operator is one of +,2013

*, -, /, .and., .or., .eqv., or .neqv..2014

• The expression x operator expr must be mathematically equivalent to x operator (expr).2015

This requirement is satisfied if the operators in expr have precedence greater than operator,2016

or by using parentheses around expr or subexpressions of expr.2017

• The expression expr operator x must be mathematically equivalent to (expr) operator x.2018

This requirement is satisfied if the operators in expr have precedence equal to or greater than2019

operator, or by using parentheses around expr or subexpressions of expr.2020

• intrinsic procedure name must refer to the intrinsic procedure name and not to other program2021

entities.2022

• operator must refer to the intrinsic operator and not to a user-defined operator. All assign-2023

ments must be intrinsic assignments.2024

66

The OpenACC R© API 2.13. Declare Directive

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2025

unspecified.2026

An atomic construct with the read clause forces an atomic read of the location designated by x.2027

An atomic construct with the write clause forces an atomic write of the location designated by2028

x.2029

An atomic construct with the update clause forces an atomic update of the location designated2030

by x using the designated operator or intrinsic. Note that when no clause appears, the semantics2031

are equivalent to atomic update. Only the read and write of the location designated by x are2032

performed mutually atomically. The evaluation of expr or expr-list need not be atomic with respect2033

to the read or write of the location designated by x.2034

An atomic construct with the capture clause forces an atomic update of the location designated2035

by x using the designated operator or intrinsic while also capturing the original or final value of2036

the location designated by x with respect to the atomic update. The original or final value of the2037

location designated by x is written into the location designated by v depending on the form of the2038

atomic construct structured block or statements following the usual language semantics. Only2039

the read and write of the location designated by x are performed mutually atomically. Neither the2040

evaluation of expr or expr-list, nor the write to the location designated by v, need to be atomic with2041

respect to the read or write of the location designated by x.2042

For all forms of the atomic construct, any combination of two or more of these atomic constructs2043

enforces mutually exclusive access to the locations designated by x. To avoid race conditions, all2044

accesses of the locations designated by x that could potentially occur in parallel must be protected2045

with an atomic construct.2046

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic re-2047

gions to the same storage location x even if those accesses occur during the execution of a reduction2048

clause.2049

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a2050

multiple of the size of x), then the behavior of the atomic region is implementation-defined.2051

Restrictions2052

• All atomic accesses to the storage locations designated by x throughout the program are2053

required to have the same type and type parameters.2054

• Storage locations designated by x must be less than or equal in size to the largest available2055

native atomic operator width.2056

2.13. Declare Directive2057

Summary A declare directive is used in the declaration section of a Fortran subroutine, func-2058

tion, or module, or following a variable declaration in C or C++. It can specify that a var is to be2059

allocated in device memory for the duration of the implicit data region of a function, subroutine2060

or program, and specify whether the data values are to be transferred from local memory to device2061

memory upon entry to the implicit data region, and from device memory to local memory upon exit2062

from the implicit data region. These directives create a visible device copy of the var.2063

67

The OpenACC R© API 2.13. Declare Directive

Syntax In C and C++, the syntax of the declare directive is:2064

#pragma acc declare clause-list new-line

In Fortran the syntax of the declare directive is:2065

!$acc declare clause-list

where clause is one of the following:2066

copy(var-list)

copyin([readonly:]var-list)

copyout(var-list)

create(var-list)

present(var-list)

deviceptr(var-list)

device_resident(var-list)

link(var-list)

The associated region is the implicit region associated with the function, subroutine, or program in2067

which the directive appears. If the directive appears in the declaration section of a Fortran module2068

subprogram or in a C or C++ global scope, the associated region is the implicit region for the whole2069

program. The copy, copyin, copyout, present, and deviceptr data clauses are described2070

in Section 2.7 Data Clauses.2071

Restrictions2072

• A declare directive must appear in the same scope as any var in any of the data clauses on2073

the directive.2074

• At least one clause must appear on a declare directive.2075

• A var in a declare declare must be a variable or array name, or a Fortran common block2076

name between slashes.2077

• A var may appear at most once in all the clauses of declare directives for a function,2078

subroutine, program, or module.2079

• In Fortran, assumed-size dummy arrays may not appear in a declare directive.2080

• In Fortran, pointer arrays may appear, but pointer association is not preserved in device mem-2081

ory.2082

• In a Fortran module declaration section, only create, copyin, device_resident, and2083

link clauses are allowed.2084

• In C or C++ global scope, only create, copyin, deviceptr, device_resident and2085

link clauses are allowed.2086

• C and C++ extern variables may only appear in create, copyin, deviceptr, device_resident2087

and link clauses on a declare directive.2088

68

The OpenACC R© API 2.13. Declare Directive

• In C and C++, only global and extern variables may appear in a link clause. In Fortran,2089

only module variables and common block names (enclosed in slashes) may appear in a link2090

clause.2091

• In C or C++, a longjmp call in the region must return to a setjmp call within the region.2092

• In C++, an exception thrown in the region must be handled within the region.2093

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional dummy ar-2094

guments in data clauses, including device_resident clauses.2095

2.13.1. device resident clause2096

Summary The device_resident clause specifies that the memory for the named variables2097

should be allocated in the current device memory and not in local memory. The host may not be2098

able to access variables in a device_resident clause. The accelerator data lifetime of global2099

variables or common blocks that appear in a device_resident clause is the entire execution of2100

the program.2101

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable will2102

be allocated in and deallocated from the current device memory when the host thread executes2103

an allocate or deallocate statement for that variable, if the current device is a non-shared2104

memory device. If the variable has the Fortran pointer attribute, it may be allocated or deallocated2105

by the host in the current device memory, or may appear on the left hand side of a pointer assignment2106

statement, if the right hand side variable itself appears in a device_resident clause.2107

In Fortran, the argument to a device_resident clause may be a common block name enclosed2108

in slashes; in this case, all declarations of the common block must have a matching device_resident2109

clause. In this case, the common block will be statically allocated in device memory, and not2110

in local memory. The common block will be available to accelerator routines; see Section 2.152111

Procedure Calls in Compute Regions.2112

In a Fortran module declaration section, a var in a device_resident clause will be available to2113

accelerator subprograms.2114

In C or C++ global scope, a var in a device_resident clause will be available to accelerator2115

routines. A C or C++ extern variable may appear in a device_resident clause only if the2116

actual declaration and all extern declarations are also followed by device_resident clauses.2117

2.13.2. create clause2118

For data in shared memory, no action is taken.2119

For data not in shared memory, the create clause on a declare directive behaves as follows,2120

for each var in var-list:2121

• At entry to an implicit data region where the declare directive appears:2122

– If var is present, a present increment action with the structured reference counter is2123

performed. If var is a pointer reference, an attach action is performed.2124

– Otherwise, a create action with the structured reference counter is performed. If var is2125

a pointer reference, an attach action is performed.2126

69

The OpenACC R© API 2.14. Executable Directives

• At exit from an implicit data region where the declare directive appears:2127

– If var is not present in the current device memory, a runtime error is issued.2128

– Otherwise, a present decrement action with the structured reference counter is per-2129

formed. If var is a pointer reference, a detach action is performed. If both structured2130

and dynamic reference counters are zero, a delete action is performed.2131

If the declare directive appears in a global context, then the data in var-list is statically allocated2132

in device memory and the structured reference counter is set to one.2133

In Fortran, if a variable var in var-list has the Fortran allocatable or pointer attribute, then:2134

• An allocate statement for var will allocate memory in both local memory as well as in the2135

current device memory, for a non-shared memory device, and the dynamic reference counter2136

will be set to one.2137

• A deallocate statement for var will deallocate memory from both local memory as well2138

as the current device memory, for a non-shared memory device, and the dynamic reference2139

counter will be set to zero. If the structured reference counter is not zero, a runtime error is2140

issued.2141

In Fortran, if a variable var in var-list has the Fortran pointer attribute, then it may appear on the2142

left hand side of a pointer assignment statement, if the right hand side variable itself appears in a2143

create clause.2144

2.13.3. link clause2145

The link clause is used for large global host static data that is referenced within an accelerator2146

routine and that should have a dynamic data lifetime on the device. The link clause specifies that2147

only a global link for the named variables should be statically created in accelerator memory. The2148

host data structure remains statically allocated and globally available. The device data memory will2149

be allocated only when the global variable appears on a data clause for a data construct, compute2150

construct, or enter data directive. The arguments to the link clause must be global data. In C2151

or C++, the link clause must appear at global scope, or the arguments must be extern variables.2152

In Fortran, the link clause must appear in a module declaration section, or the arguments must be2153

common block names enclosed in slashes. A common block that is listed in a link clause must be2154

declared with the same size in all program units where it appears. A declare link clause must be2155

visible everywhere the global variables or common block variables are explicitly or implicitly used2156

in a data clause, compute construct, or accelerator routine. The global variable or common block2157

variables may be used in accelerator routines. The accelerator data lifetime of variables or common2158

blocks that appear in a link clause is the data region that allocates the variable or common block2159

with a data clause, or from the execution of the enter data directive that allocates the data until2160

an exit data directive deallocates it or until the end of the program.2161

70

The OpenACC R© API 2.14. Executable Directives

2.14. Executable Directives2162

2.14.1. Init Directive2163

Summary The init directive tells the runtime to initialize the runtime for that device type.2164

This can be used to isolate any initialization cost from the computational cost, when collecting2165

performance statistics. If no device type appears all devices will be initialized. An init directive2166

may be used in place of a call to the acc_init runtime API routine, as described in Section 3.2.7.2167

Syntax In C and C++, the syntax of the init directive is:2168

#pragma acc init [clause-list] new-line

In Fortran the syntax of the init directive is:2169

!$acc init [clause-list]

where clause is one of the following:2170

device_type (device-type-list)

device_num (int-expr)

if(condition)

device type clause2171

The device_type clause specifies the type of device that is to be initialized in the runtime. If the2172

device_type clause appears, then the acc-current-device-type-var for the current thread is set to2173

the argument value. If no device_num clause appears then all devices of this type are initialized.2174

device num clause2175

The device_num clause specifies the device id to be initialized. If the device_num clause2176

appears, then the acc-current-device-num-var for the current thread is set to the argument value. If2177

no device_type clause appears, then the specified device id will be initialized for all available2178

device types.2179

if clause2180

The if clause is optional; when there is no if clause, the implementation will generate code to2181

perform the initialization unconditionally. When an if clause appears, the implementation will gen-2182

erate code to conditionally perform the initialization only when the condition evaluates to nonzero2183

in C or C++, or .true. in Fortran.2184

71

The OpenACC R© API 2.14. Executable Directives

Restrictions2185

• This directive may not be called within a compute region.2186

• If the device type specified is not available, the behavior is implementation-defined; in partic-2187

ular, the program may abort.2188

• If the directive is called more than once without an intervening acc_shutdown call or2189

shutdown directive, with a different value for the device type argument, the behavior is2190

implementation-defined.2191

• If some accelerator regions are compiled to only use one device type, using this directive with2192

a different device type may produce undefined behavior.2193

2.14.2. Shutdown Directive2194

Summary The shutdown directive tells the runtime to shut down the connection to the given2195

accelerator, and free any runtime resources. A shutdown directive may be used in place of a call2196

to the acc_shutdown runtime API routine, as described in Section 3.2.8.2197

Syntax In C and C++, the syntax of the shutdown directive is:2198

#pragma acc shutdown [clause-list] new-line

In Fortran the syntax of the shutdown directive is:2199

!$acc shutdown [clause-list]

where clause is one of the following:2200

device_type (device-type-list)

device_num (int-expr)

if(condition)

device type clause2201

The device_type clause specifies the type of device that is to be disconnected from the runtime.2202

If no device_num clause appears then all devices of this type are disconnected.2203

device num clause2204

The device_num clause specifies the device id to be disconnected.2205

If no clauses appear then all available devices will be disconnected.2206

72

The OpenACC R© API 2.14. Executable Directives

if clause2207

The if clause is optional; when there is no if clause, the implementation will generate code2208

to perform the shutdown unconditionally. When an if clause appears, the implementation will2209

generate code to conditionally perform the shutdown only when the condition evaluates to nonzero2210

in C or C++, or .true. in Fortran.2211

Restrictions2212

• This directive may not be used during the execution of a compute region.2213

2.14.3. Set Directive2214

Summary The set directive provides a means to modify internal control variables using direc-2215

tives. Each form of the set directive is functionally equivalent to a matching runtime API routine.2216

Syntax In C and C++, the syntax of the set directive is:2217

#pragma acc set [clause-list] new-line

In Fortran the syntax of the set directive is:2218

!$acc set [clause-list]

where clause is one of the following2219

default_async (int-expr)

device_num (int-expr)

device_type (device-type-list)

if(condition)

default async clause2220

The default_async clause specifies the asynchronous queue that should be used if no queue ap-2221

pears and changes the value of acc-default-async-var for the current thread to the argument value.2222

If the value is acc_async_default, the value of acc-default-async-var will revert to the ini-2223

tial value, which is implementation-defined. A set default_async directive is functionally2224

equivalent to a call to the acc_set_default_async runtime API routine, as described in Sec-2225

tion 3.2.22.2226

device num clause2227

The device_num clause specifies the device number to set as the default device for accelerator2228

regions and changes the value of acc-current-device-num-var for the current thread to the argument2229

73

The OpenACC R© API 2.14. Executable Directives

value. If the value of device_num argument is negative, the runtime will revert to the default be-2230

havior, which is implementation-defined. A set device_num directive is functionally equivalent2231

to the acc_set_device_num runtime API routine, as described in Section 3.2.4.2232

device type clause2233

The device_type clause specifies the device type to set as the default device type for accelerator2234

regions and sets the value of acc-current-device-type-var for the current thread to the argument2235

value. If the value of the device_type argument is zero or the clause does not appear, the2236

selected device number will be used for all attached accelerator types. A set device_type2237

directive is functionally equivalent to a call to the acc_set_device_type runtime API routine,2238

as described in Section 3.2.2.2239

if clause2240

The if clause is optional; when there is no if clause, the implementation will generate code2241

to perform the set operation unconditionally. When an if clause appears, the implementation2242

will generate code to conditionally perform the set operation only when the condition evaluates to2243

nonzero in C or C++, or .true. in Fortran.2244

Restrictions2245

• This directive may not be used within a compute region.2246

• Passing default_async the value of acc_async_noval has no effect.2247

• Passing default_async the value of acc_async_sync will cause all asynchronous2248

directives in the default asynchronous queue to become synchronous.2249

• Passing default_async the value of acc_async_default will restore the default2250

asynchronous queue to the initial value, which is implementation-defined.2251

• If the value of device_num is larger than the maximum supported value for the given type,2252

the behavior is implementation-defined.2253

• At least one default_async, device_num, or device_type clause must appear.2254

• Two instances of the same clause may not appear on the same directive.2255

2.14.4. Update Directive2256

Summary The update directive is used during the lifetime of accelerator data to update vars2257

in local memory with values from the corresponding data in device memory, or to update vars in2258

device memory with values from the corresponding data in local memory.2259

Syntax In C and C++, the syntax of the update directive is:2260

#pragma acc update clause-list new-line

74

The OpenACC R© API 2.14. Executable Directives

In Fortran the syntax of the update data directive is:2261

!$acc update clause-list

where clause is one of the following:2262

async [(int-expr)]

wait [(wait-argument)]

device_type(device-type-list)

if(condition)

if_present

self(var-list)

host(var-list)

device(var-list)

Multiple subarrays of the same array may appear in a var-list of the same or different clauses on2263

the same directive. The effect of an update clause is to copy data from device memory to local2264

memory for update self, and from local memory to device memory for update device. The2265

updates are done in the order in which they appear on the directive.2266

Restrictions2267

• At least one self, host, or device clause must appear on an update directive.2268

self clause2269

The self clause specifies that the vars in var-list are to be copied from the current device memory2270

to local memory for data not in shared memory. For data in shared memory, no action is taken. An2271

update directive with the self clause is equivalent to a call to the acc_update_self routine,2272

described in Section 3.2.31.2273

host clause2274

The host clause is a synonym for the self clause.2275

device clause2276

The device clause specifies that the vars in var-list are to be copied from local memory to the cur-2277

rent device memory, for data not in shared memory. For data in shared memory, no action is taken.2278

An update directive with the device clause is equivalent to a call to the acc_update_device2279

routine, described in Section 3.2.30.2280

75

The OpenACC R© API 2.14. Executable Directives

if clause2281

The if clause is optional; when there is no if clause, the implementation will generate code to2282

perform the updates unconditionally. When an if clause appears, the implementation will generate2283

code to conditionally perform the updates only when the condition evaluates to nonzero in C or2284

C++, or .true. in Fortran.2285

async clause2286

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.2287

wait clause2288

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.2289

if present clause2290

When an if_present clause appears on the directive, no action is taken for a var which appears2291

in var-list that is not present in the current device memory. When no if_present clause ap-2292

pears, all vars in a device or self clause must be present in the current device memory, and an2293

implementation may halt the program with an error message if some data is not present.2294

Restrictions2295

• The update directive is executable. It must not appear in place of the statement following2296

an if, while, do, switch, or label in C or C++, or in place of the statement following a logical2297

if in Fortran.2298

• If no if_present clause appears on the directive, each var in var-list must be present in2299

the current device memory.2300

• Only the async and wait clauses may follow a device_type clause.2301

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical2302

value; in C or C++, the condition must evaluate to a scalar integer value.2303

• Noncontiguous subarrays may appear. It is implementation-specific whether noncontiguous2304

regions are updated by using one transfer for each contiguous subregion, or whether the non-2305

contiguous data is packed, transferred once, and unpacked, or whether one or more larger2306

subarrays (no larger than the smallest contiguous region that contains the specified subarray)2307

are updated.2308

• In C and C++, a member of a struct or class may appear, including a subarray of a member.2309

Members of a subarray of struct or class type may not appear.2310

• In C and C++, if a subarray notation is used for a struct member, subarray notation may not2311

be used for any parent of that struct member.2312

• In Fortran, members of variables of derived type may appear, including a subarray of a mem-2313

ber. Members of subarrays of derived type may not appear.2314

76

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

• In Fortran, if array or subarray notation is used for a derived type member, array or subarray2315

notation may not be used for a parent of that derived type member.2316

• See Section 2.17 Fortran Optional Arguments for discussion of Fortran optional arguments in2317

self, host, and device clauses.2318

2.14.5. Wait Directive2319

See Section 2.16 Asynchronous Behavior for more information.2320

2.14.6. Enter Data Directive2321

See Section 2.6.6 Enter Data and Exit Data Directives for more information.2322

2.14.7. Exit Data Directive2323

See Section 2.6.6 Enter Data and Exit Data Directives for more information.2324

2.15. Procedure Calls in Compute Regions2325

This section describes how routines are compiled for an accelerator and how procedure calls are2326

compiled in compute regions. See Section 2.17 Fortran Optional Arguments for discussion of For-2327

tran optional arguments in procedure calls inside compute regions.2328

2.15.1. Routine Directive2329

Summary The routine directive is used to tell the compiler to compile a given procedure or2330

a C++ lambda for an accelerator as well as for the host. In a file or routine with a procedure call,2331

the routine directive tells the implementation the attributes of the procedure when called on the2332

accelerator.2333

Syntax In C and C++, the syntax of the routine directive is:2334

#pragma acc routine clause-list new-line

#pragma acc routine (name) clause-list new-line

In C and C++, the routine directive without a name may appear immediately before a function2335

definition, a C++ lambda, or just before a function prototype and applies to that immediately fol-2336

lowing function or prototype. The routine directive with a name may appear anywhere that a2337

function prototype is allowed and applies to the function or the C++ lambda in that scope with that2338

name, but must appear before any definition or use of that function.2339

In Fortran the syntax of the routine directive is:2340

77

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

!$acc routine clause-list

!$acc routine (name) clause-list

In Fortran, the routine directive without a name may appear within the specification part of a2341

subroutine or function definition, or within an interface body for a subroutine or function in an2342

interface block, and applies to the containing subroutine or function. The routine directive with2343

a name may appear in the specification part of a subroutine, function or module, and applies to the2344

named subroutine or function.2345

A C or C++ function or Fortran subprogram compiled with the routine directive for an accelera-2346

tor is called an accelerator routine.2347

If an accelerator routine is a C++ lambda, the associated function will be compiled for both the2348

accelerator and the host.2349

If a lambda is called in a compute region and it is not an accelerator routine, then the lambda is2350

treated as if its name appears in the name list of a routine directive with seq clause. If lambda2351

is defined in an accelerator routine that has a nohost clause then the lambda is treated as if its2352

name appears in the name list of a routine directive with a nohost clause.2353

The clause is one of the following:2354

gang

worker

vector

seq

bind(name)

bind(string)

device_type(device-type-list)

nohost

A gang, worker, vector, or seq clause specifies the level of parallelism in the routine.2355

gang clause2356

The gang clause specifies that the procedure contains, may contain, or may call another procedure2357

that contains a loop with a gang clause. A call to this procedure must appear in code that is2358

executed in gang-redundant mode, and all gangs must execute the call. For instance, a procedure2359

with a routine gang directive may not be called from within a loop that has a gang clause.2360

Only one of the gang, worker, vector and seq clauses may appear for each device type.2361

worker clause2362

The worker clause specifies that the procedure contains, may contain, or may call another pro-2363

cedure that contains a loop with a worker clause, but does not contain nor does it call another2364

procedure that contains a loop with the gang clause. A loop in this procedure with an auto clause2365

may be selected by the compiler to execute in worker or vector mode. A call to this procedure2366

must appear in code that is executed in worker-single mode, though it may be in gang-redundant2367

78

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

or gang-partitioned mode. For instance, a procedure with a routine worker directive may be2368

called from within a loop that has the gang clause, but not from within a loop that has the worker2369

clause. Only one of the gang, worker, vector, and seq clauses may appear for each device2370

type.2371

vector clause2372

The vector clause specifies that the procedure contains, may contain, or may call another pro-2373

cedure that contains a loop with the vector clause, but does not contain nor does it call another2374

procedure that contains a loop with either a gang or worker clause. A loop in this procedure with2375

an auto clause may be selected by the compiler to execute in vector mode, but not worker2376

mode. A call to this procedure must appear in code that is executed in vector-single mode, though2377

it may be in gang-redundant or gang-partitioned mode, and in worker-single or worker-partitioned2378

mode. For instance, a procedure with a routine vector directive may be called from within2379

a loop that has the gang clause or the worker clause, but not from within a loop that has the2380

vector clause. Only one of the gang, worker, vector, and seq clauses may appear for each2381

device type.2382

seq clause2383

The seq clause specifies that the procedure does not contain nor does it call another procedure that2384

contains a loop with a gang, worker, or vector clause. A loop in this procedure with an auto2385

clause will be executed in seq mode. A call to this procedure may appear in any mode. Only one2386

of the gang, worker, vector and seq clauses may appear for each device type.2387

bind clause2388

The bind clause specifies the name to use when calling the procedure on a device other than the2389

host. If the name is specified as an identifier, it is called as if that name were specified in the2390

language being compiled. If the name is specified as a string, the string is used for the procedure2391

name unmodified. A bind clause on a procedure definition behaves as if it had appeared on a2392

declaration by changing the name used to call the function on a device other than the host; however,2393

the procedure is not compiled for the device with either the original name or the name in the bind2394

clause.2395

If there is both a Fortran bind and an acc bind clause for a procedure definition then a call on the2396

host will call the Fortran bound name and a call on another device will call the name in the bind2397

clause.2398

device type clause2399

The device_type clause is described in Section 2.4 Device-Specific Clauses.2400

79

The OpenACC R© API 2.16. Asynchronous Behavior

nohost clause2401

The nohost tells the compiler not to compile a version of this procedure for the host. All calls2402

to this procedure must appear within compute regions. If this procedure is called from other pro-2403

cedures, those other procedures must also have a matching routine directive with the nohost2404

clause.2405

Restrictions2406

• Only the gang, worker, vector, seq and bind clauses may follow a device_type2407

clause.2408

• At least one of the (gang, worker, vector, or seq) clauses must appear on the construct.2409

If the device_type clause appears on the routine directive, a default level of parallelism2410

clause must appear before the device_type clause, or a level of parallelism clause must2411

appear following each device_type clause on the directive.2412

• In C and C++, function static variables are not supported in functions to which a routine2413

directive applies.2414

• In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported2415

in subprograms to which a routine directive applies.2416

• A bind clause may not bind to a routine name that has a visible bind clause.2417

• If a function or subroutine has a bind clause on both the declaration and the definition then2418

they both must bind to the same name.2419

2.15.2. Global Data Access2420

C or C++ global, file static, or extern variables or array, and Fortran module or common block vari-2421

ables or arrays, that are used in accelerator routines must appear in a declare directive in a create,2422

copyin, device_resident or link clause. If the data appears in a device_resident2423

clause, the routine directive for the procedure must include the nohost clause. If the data ap-2424

pears in a link clause, that data must have an active accelerator data lifetime by virtue of appearing2425

in a data clause for a data construct, compute construct, or enter data directive.2426

2.16. Asynchronous Behavior2427

This section describes the async clause and the behavior of programs that use asynchronous data2428

movement and compute constructs, and asynchronous API routines.2429

2.16.1. async clause2430

The async clause may appear on a parallel, kernels, or serial construct, or an enter2431

data, exit data, update, or wait directive. In all cases, the async clause is optional. When2432

there is no async clause on a compute or data construct, the local thread will wait until the compute2433

construct or data operations for the current device are complete before executing any of the code2434

80

The OpenACC R© API 2.16. Asynchronous Behavior

that follows. When there is no async clause on a wait directive, the local thread will wait until2435

all operations on the appropriate asynchronous activity queues for the current device are complete.2436

When there is an async clause, the parallel, kernels, or serial region or data operations may be2437

processed asynchronously while the local thread continues with the code following the construct or2438

directive.2439

The async clause may have a single async-argument, where an async-argument is a nonnegative2440

scalar integer expression (int for C or C++, integer for Fortran), or one of the special values defined2441

below. The behavior with a negative async-argument, except the special values defined below, is2442

implementation-defined. The value of the async-argument may be used in a wait directive, wait2443

clause, or various runtime routines to test or wait for completion of the operation.2444

Two special values for async-argument are defined in the C and Fortran header files and the Fortran2445

openacc module. These are negative values, so as not to conflict with a user-specified nonnegative2446

async-argument. An async clause with the async-argument acc_async_noval will behave2447

the same as if the async clause had no argument. An async clause with the async-argument2448

acc_async_sync will behave the same as if no async clause appeared.2449

The async-value of any operation is the value of the async-argument, if it appears, or the value2450

of acc-default-async-var if it is acc_async_noval or if the async clause had no value, or2451

acc_async_sync if no async clause appeared. If the current device supports asynchronous2452

operation with one or more device activity queues, the async-value is used to select the queue on2453

the current device onto which to enqueue an operation. The properties of the current device and the2454

implementation will determine how many actual activity queues are supported, and how the async-2455

value is mapped onto the actual activity queues. Two asynchronous operations with the same current2456

device and the same async-value will be enqueued onto the same activity queue, and therefore will2457

be executed on the device in the order they are encountered by the local thread. Two asynchronous2458

operations with different async-values may be enqueued onto different activity queues, and therefore2459

may be executed on the device in either order relative to each other. If there are two or more host2460

threads executing and sharing the same device, two asynchronous operations with the same async-2461

value will be enqueued on the same activity queue. If the threads are not synchronized with respect2462

to each other, the operations may be enqueued in either order and therefore may execute on the2463

device in either order. Asynchronous operations enqueued to difference devices may execute in any2464

order, regardless of the async-value used for each.2465

2.16.2. wait clause2466

The wait clause may appear on a parallel, kernels, or serial construct, or an enter2467

data, exit data, or update directive. In all cases, the wait clause is optional. When there2468

is no wait clause, the associated compute or update operations may be enqueued or launched or2469

executed immediately on the device. If there is an argument to the wait clause, it must be a wait-2470

argument (See 2.16.3). The compute, data, or update operation may not be launched or executed2471

until all operations enqueued up to this point by this thread on the associated asynchronous device2472

activity queues have completed. One legal implementation is for the local thread to wait for all2473

the associated asynchronous device activity queues. Another legal implementation is for the local2474

thread to enqueue the compute, data, or update operation in such a way that the operation will2475

not start until the operations enqueued on the associated asynchronous device activity queues have2476

completed.2477

81

The OpenACC R© API 2.16. Asynchronous Behavior

2.16.3. Wait Directive2478

Summary The wait directive causes the local thread or a device activity queue on the current2479

device to wait for completion of asynchronous operations, such as an accelerator parallel, kernels,2480

or serial region or an update directive.2481

Syntax In C and C++, the syntax of the wait directive is:2482

#pragma acc wait [(wait-argument)] [clause-list] new-line

In Fortran the syntax of the wait directive is:2483

!$acc wait [(wait-argument)] [clause-list]

where clause is:2484

async [(int-expr)]

if(condition)

The wait argument, if it appears, must be a wait-argument where wait-argument is:2485

[devnum : int-expr :] [queues :] int-expr-list

If there is no wait argument and no async clause, the local thread will wait until all operations2486

enqueued by this thread on any activity queue on the current device have completed.2487

If there are one or more int-expr expressions and no async clause, the local thread will wait2488

until all operations enqueued by this thread on each of the associated device activity queues have2489

completed. If a devnum modifier exists in the wait-argument then the device activity queues in the2490

int-expr expressions apply to the queues on that device number of the current device type. If no2491

devnum modifier exits then the expressions apply to the current device. It is an error to specify a2492

device number that is not between 0 and the number of available devices of the current device type2493

minus 1.2494

The queues modifier within a wait-argument is optional to improve clarity of the expression list.2495

If there are two or more threads executing and sharing the same device, a wait directive with no2496

async clause will cause the local thread to wait until all of the appropriate asynchronous opera-2497

tions previously enqueued by that thread have completed. To guarantee that operations have been2498

enqueued by other threads requires additional synchronization between those threads. There is no2499

guarantee that all the similar asynchronous operations initiated by other threads will have completed.2500

If there is an async clause, no new operation may be launched or executed on the async activ-2501

ity queue on the current device until all operations enqueued up to this point by this thread on the2502

asynchronous activity queues associated with the wait argument have completed. One legal imple-2503

mentation is for the local thread to wait for all the associated asynchronous device activity queues.2504

82

The OpenACC R© API 2.17. Fortran Optional Arguments

Another legal implementation is for the thread to enqueue a synchronization operation in such a2505

way that no new operation will start until the operations enqueued on the associated asynchronous2506

device activity queues have completed.2507

The if clause is optional; when there is no if clause, the implementation will generate code to2508

perform the wait operation unconditionally. When an if clause appears, the implementation will2509

generate code to conditionally perform the wait operation only when the condition evaluates to2510

nonzero in C or C++, or .true. in Fortran.2511

A wait directive is functionally equivalent to a call to one of the acc_wait, acc_wait_async,2512

acc_wait_all or acc_wait_all_async runtime API routines, as described in Sections 3.2.13,2513

3.2.15, 3.2.17 and 3.2.19.2514

Restrictions2515

• The int-expr that appears in a devnum modifier must be a legal device number of the current2516

device type.2517

2.17. Fortran Optional Arguments2518

This section refers to the Fortran intrinsic function PRESENT. A call to the Fortran intrinsic function2519

PRESENT(arg) returns .true., if arg is an optional dummy argument and an actual argument2520

for arg was present in the argument list of the call site. This should not be confused with the2521

OpenACC present data clause.2522

The appearance of a Fortran optional argument arg as a var in any of the following clauses has no2523

effect at runtime if PRESENT(arg) is .false.:2524

• in data clauses on compute and data constructs;2525

• in data clauses on enter data and exit data directives;2526

• in data and device_resident clauses on declare directives;2527

• in use_device clauses on host_data directives;2528

• in self, host, and device clauses on update directives.2529

The appearance of a Fortran optional argument arg in the following situations may result in unde-2530

fined behavior if PRESENT(arg) is .false. when the associated construct is executed:2531

• as a var in private, firstprivate, and reduction clauses;2532

• as a var in cache directives;2533

• as part of an expression in any clause or directive.2534

A call to the Fortran intrinsic function PRESENT behaves the same way in a compute construct or2535

an accelerator routine as on the host. The function call PRESENT(arg)must return the same value2536

in a compute construct as PRESENT(arg) would outside of the compute construct. If a Fortran2537

optional argument arg appears as an actual argument in a procedure call in a compute construct2538

or an accelerator routine, and the associated dummy argument subarg also has the optional2539

attribute, then PRESENT(subarg) returns the same value as PRESENT(subarg) would when2540

executed on the host.2541

83

The OpenACC R© API 2.17. Fortran Optional Arguments

84

The OpenACC R© API 3.1. Runtime Library Definitions

3. Runtime Library2542

This chapter describes the OpenACC runtime library routines that are available for use by program-2543

mers. Use of these routines may limit portability to systems that do not support the OpenACC API.2544

Conditional compilation using the _OPENACC preprocessor variable may preserve portability.2545

This chapter has two sections:2546

• Runtime library definitions2547

• Runtime library routines2548

There are four categories of runtime routines:2549

• Device management routines, to get the number of devices, set the current device, and so on.2550

• Asynchronous queue management, to synchronize until all activities on an async queue are2551

complete, for instance.2552

• Device test routine, to test whether this statement is executing on the device or not.2553

• Data and memory management, to manage memory allocation or copy data between memo-2554

ries.2555

3.1. Runtime Library Definitions2556

In C and C++, prototypes for the runtime library routines described in this chapter are provided in2557

a header file named openacc.h. All the library routines are extern functions with “C” linkage.2558

This file defines:2559

• The prototypes of all routines in the chapter.2560

• Any datatypes used in those prototypes, including an enumeration type to describe the sup-2561

ported device types.2562

• The values of acc_async_noval, acc_async_sync, and acc_async_default.2563

In Fortran, interface declarations are provided in a Fortran module named openacc. The openacc2564

module defines:2565

• The integer parameter openacc_versionwith a value yyyymm where yyyy and mm are the2566

year and month designations of the version of the Accelerator programming model supported.2567

This value matches the value of the preprocessor variable _OPENACC.2568

• Interfaces for all routines in the chapter.2569

• Integer parameters to define integer kinds for arguments to and return values for those rou-2570

tines.2571

85

The OpenACC R© API 3.2. Runtime Library Routines

• Integer parameters to describe the supported device types.2572

• Integer parameters to define the values of acc_async_noval, acc_async_sync, and2573

acc_async_default.2574

Many of the routines accept or return a value corresponding to the type of device. In C and C++, the2575

datatype used for device type values is acc_device_t; in Fortran, the corresponding datatype2576

is integer(kind=acc_device_kind). The possible values for device type are implemen-2577

tation specific, and are defined in the C or C++ include file openacc.h and the Fortran module2578

openacc. Four values are always supported: acc_device_none, acc_device_default,2579

acc_device_host and acc_device_not_host. For other values, look at the appropriate2580

files included with the implementation, or read the documentation for the implementation. The2581

value acc_device_default will never be returned by any function; its use as an argument will2582

tell the runtime library to use the default device type for that implementation.2583

3.2. Runtime Library Routines2584

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to desig-2585

nate a host memory address or device memory address, when these calls are executed on the host,2586

as if the following definitions were included:2587

#define h_void void

#define d_void void

Except for acc_on_device, these routines are only available on the host.2588

3.2.1. acc get num devices2589

Summary The acc_get_num_devices routine returns the number of devices of the given2590

type available.2591

Format2592

C or C++:

int acc_get_num_devices(acc_device_t);

Fortran:

integer function acc_get_num_devices(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_get_num_devices routine returns the number of devices of the given2593

type available. The argument tells what kind of device to count.2594

Restrictions2595

• This routine may not be called within a compute region.2596

86

The OpenACC R© API 3.2. Runtime Library Routines

3.2.2. acc set device type2597

Summary The acc_set_device_type routine tells the runtime which type of device to use2598

when executing a compute region and sets the value of acc-current-device-type-var. This is useful2599

when the implementation allows the program to be compiled to use more than one type of device.2600

Format2601

C or C++:

void acc_set_device_type(acc_device_t);

Fortran:

subroutine acc_set_device_type(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_set_device_type routine tells the runtime which type of device to2602

use among those available and sets the value of acc-current-device-type-var for the current thread.2603

A call to acc_set_device_type is functionally equivalent to a set device_type directive2604

with the matching device type argument, as described in Section 2.14.3.2605

Restrictions2606

• If the device type specified is not available, the behavior is implementation-defined; in partic-2607

ular, the program may abort.2608

• If some compute regions are compiled to only use one device type, calling this routine with a2609

different device type may produce undefined behavior.2610

3.2.3. acc get device type2611

Summary The acc_get_device_type routine returns the value of acc-current-device-type-2612

var, which is the device type of the current device. This is useful when the implementation allows2613

the program to be compiled to use more than one type of device.2614

Format2615

C or C++:

acc_device_t acc_get_device_type(void);

Fortran:

function acc_get_device_type()

integer(acc_device_kind) :: acc_get_device_type

87

The OpenACC R© API 3.2. Runtime Library Routines

Description The acc_get_device_type routine returns the value of acc-current-device-2616

type-var for the current thread to tell the program what type of device will be used to run the next2617

compute region, if one has been selected. The device type may have been selected by the program2618

with an acc_set_device_type call, with an environment variable, or by the default behavior2619

of the program.2620

Restrictions2621

• If the device type has not yet been selected, the value acc_device_none may be returned.2622

3.2.4. acc set device num2623

Summary The acc_set_device_num routine tells the runtime which device to use and sets2624

the value of acc-current-device-num-var.2625

Format2626

C or C++:

void acc_set_device_num(int, acc_device_t);

Fortran:

subroutine acc_set_device_num(devicenum, devicetype)

integer :: devicenum

integer(acc_device_kind) :: devicetype

Description The acc_set_device_num routine tells the runtime which device to use among2627

those available of the given type for compute or data regions in the current thread and sets the value2628

of acc-current-device-num-var. If the value of devicenum is negative, the runtime will revert to2629

its default behavior, which is implementation-defined. If the value of the second argument is zero,2630

the selected device number will be used for all device types. A call to acc_set_device_num2631

is functionally equivalent to a set device_num directive with the matching device number argu-2632

ment, as described in Section 2.14.3.2633

Restrictions2634

• If the value of devicenum is greater than or equal to the value returned by acc_get_num_devices2635

for that device type, the behavior is implementation-defined.2636

• Calling acc_set_device_num implies a call to acc_set_device_type with that2637

device type argument.2638

3.2.5. acc get device num2639

Summary The acc_get_device_num routine returns the value of acc-current-device-num-2640

var for the current thread.2641

88

The OpenACC R© API 3.2. Runtime Library Routines

Format2642

C or C++:

int acc_get_device_num(acc_device_t);

Fortran:

integer function acc_get_device_num(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_get_device_num routine returns the value of acc-current-device-num-2643

var for the current thread.2644

3.2.6. acc get property2645

Summary The acc_get_property and acc_get_property_string routines return2646

the value of a device-property for the specified device.2647

Format2648

C or C++:

size_t acc_get_property(int devicenum,

acc_device_t devicetype, acc_device_property_t property);

const char* acc_get_property_string(int devicenum,

acc_device_t devicetype, acc_device_property_t property);

Fortran:

function acc_get_property(devicenum, devicetype, property)

subroutine acc_get_property_string(devicenum, devicetype,

property, string)

integer, value :: devicenum

integer(acc_device_kind), value :: devicetype

integer(acc_device_property), value :: property

integer(acc_device_property) :: acc_get_property

character*(*) :: string

Description The acc_get_property and acc_get_property_string routines returns2649

the value of the specified property. devicenum and devicetype specify the device being2650

queried. If devicetype has the value acc_device_current, then devicenum is ignored2651

and the value of the property for the current device is returned. property is an enumeration2652

constant, defined in openacc.h, for C or C++, or an integer parameter, defined in the openacc2653

module, for Fortran. Integer-valued properties are returned by acc_get_property, and string-2654

valued properties are returned by acc_get_property_string. In Fortran, acc_get_property_string2655

returns the result into the character variable passed as the last argument.2656

The supported values of property are given in the following table.2657

89

The OpenACC R© API 3.2. Runtime Library Routines

property return type return value

acc_property_memory integer size of device memory in bytes

acc_property_free_memory integer free device memory in bytes

acc_property_shared_memory_supportinteger nonzero if the specified device sup-

ports sharing memory with the local

thread

acc_property_name string device name

acc_property_vendor string device vendor

acc_property_driver string device driver version

2658

An implementation may support additional properties for some devices.2659

Restrictions2660

• These routines may not be called within an compute region.2661

• If the value of property is not one of the known values for that query routine, or that2662

property has no value for the specified device, acc_get_property will return 0 and2663

acc_get_property_string will return NULL (in C or C++) or an blank string (in2664

Fortran).2665

3.2.7. acc init2666

Summary The acc_init routine tells the runtime to initialize the runtime for that device type.2667

This can be used to isolate any initialization cost from the computational cost, when collecting2668

performance statistics.2669

Format2670

C or C++:

void acc_init(acc_device_t);

Fortran:

subroutine acc_init(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_init routine also implicitly calls acc_set_device_type. A call to2671

acc_init is functionally equivalent to a init directive with the matching device type argument,2672

as described in Section 2.14.1.2673

Restrictions2674

• This routine may not be called within a compute region.2675

• If the device type specified is not available, the behavior is implementation-defined; in partic-2676

ular, the program may abort.2677

90

The OpenACC R© API 3.2. Runtime Library Routines

• If the routine is called more than once without an intervening acc_shutdown call, with a2678

different value for the device type argument, the behavior is implementation-defined.2679

• If some accelerator regions are compiled to only use one device type, calling this routine with2680

a different device type may produce undefined behavior.2681

3.2.8. acc shutdown2682

Summary The acc_shutdown routine tells the runtime to shut down any connection to de-2683

vices of the given device type, and free up any runtime resources. A call to acc_shutdown2684

is functionally equivalent to a shutdown directive with the matching device type argument, as2685

described in Section 2.14.2.2686

Format2687

C or C++:

void acc_shutdown(acc_device_t);

Fortran:

subroutine acc_shutdown(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_shutdown routine disconnects the program from any device of the spec-2688

ified device type. Any data that is present in the memory of any such device is immediately deallo-2689

cated.2690

Restrictions2691

• This routine may not be called during execution of a compute region.2692

• If the program attempts to execute a compute region on a device or to access any data in2693

the memory of a device after a call to acc_shutdown for that device type, the behavior is2694

undefined.2695

• If the program attempts to shut down the acc_device_host device type, the behavior is2696

undefined.2697

3.2.9. acc async test2698

Summary The acc_async_test routine tests for completion of all associated asynchronous2699

operations on the current device.2700

Format2701

C or C++:

int acc_async_test(int);

91

The OpenACC R© API 3.2. Runtime Library Routines

Fortran:

logical function acc_async_test(arg)

integer(acc_handle_kind) :: arg

Description The argument must be an async-argument as defined in Section 2.16.1 async clause.2702

If that value did not appear in any async clauses, or if it did appear in one or more async clauses2703

and all such asynchronous operations have completed on the current device, the acc_async_test2704

routine will return with a nonzero value in C and C++, or .true. in Fortran. If some such asyn-2705

chronous operations have not completed, the acc_async_test routine will return with a zero2706

value in C and C++, or .false. in Fortran. If two or more threads share the same accelerator, the2707

acc_async_test routine will return with a nonzero value or .true. only if all matching asyn-2708

chronous operations initiated by this thread have completed; there is no guarantee that all matching2709

asynchronous operations initiated by other threads have completed.2710

3.2.10. acc async test device2711

Summary The acc_async_test_device routine tests for completion of all associated asyn-2712

chronous operations on a device.2713

Format2714

C or C++:

int acc_async_test_device(int, int);

Fortran:

logical function acc_async_test_device(arg, device)

integer(acc_handle_kind) :: arg

integer :: device

Description The first argument must be an async-argument as defined in Section 2.16.1 async clause.2715

The second argument must be a valid device number of the current device type.2716

If the async-argument did not appear in any async clauses, or if it did appear in one or more2717

async clauses and all such asynchronous operations have completed on the specified device, the2718

acc_async_test_device routine will return with a nonzero value in C and C++, or .true.2719

in Fortran. If some such asynchronous operations have not completed, the acc_async_test_device2720

routine will return with a zero value in C and C++, or .false. in Fortran. If two or more threads2721

share the same accelerator, the acc_async_test_device routine will return with a nonzero2722

value or .true. only if all matching asynchronous operations initiated by this thread have com-2723

pleted; there is no guarantee that all matching asynchronous operations initiated by other threads2724

have completed.2725

3.2.11. acc async test all2726

Summary The acc_async_test_all routine tests for completion of all asynchronous op-2727

erations.2728

92

The OpenACC R© API 3.2. Runtime Library Routines

Format2729

C or C++:

int acc_async_test_all();

Fortran:

logical function acc_async_test_all()

Description If all outstanding asynchronous operations have completed, the acc_async_test_all2730

routine will return with a nonzero value in C and C++, or .true. in Fortran. If some asynchronous2731

operations have not completed, the acc_async_test_all routine will return with a zero value2732

in C and C++, or .false. in Fortran. If two or more threads share the same accelerator, the2733

acc_async_test_all routine will return with a nonzero value or .true. only if all outstand-2734

ing asynchronous operations initiated by this thread have completed; there is no guarantee that all2735

asynchronous operations initiated by other threads have completed.2736

3.2.12. acc async test all device2737

Summary The acc_async_test_all_device routine tests for completion of all asyn-2738

chronous operations.2739

Format2740

C or C++:

int acc_async_test_all_device(int);

Fortran:

logical function acc_async_test_all_device(device)

integer :: device

Description The argument must be a valid device number of the current device type. If all out-2741

standing asynchronous operations have completed on the specified device, the acc_async_test_all_device2742

routine will return with a nonzero value in C and C++, or .true. in Fortran. If some asynchronous2743

operations have not completed, the acc_async_test_all_device routine will return with a2744

zero value in C and C++, or .false. in Fortran. If two or more threads share the same acceler-2745

ator, the acc_async_test_all_device routine will return with a nonzero value or .true.2746

only if all outstanding asynchronous operations initiated by this thread have completed; there is no2747

guarantee that all asynchronous operations initiated by other threads have completed.2748

3.2.13. acc wait2749

Summary The acc_wait routine waits for completion of all associated asynchronous opera-2750

tions on the current device.2751

93

The OpenACC R© API 3.2. Runtime Library Routines

Format2752

C or C++:

void acc_wait(int);

Fortran:

subroutine acc_wait(arg)

integer(acc_handle_kind) :: arg

Description The argument must be an async-argument as defined in Section 2.16.1 async clause.2753

If that value appeared in one or more async clauses, the acc_wait routine will not return until2754

the latest such asynchronous operation has completed on the current device. If two or more threads2755

share the same accelerator, the acc_wait routine will return only if all matching asynchronous2756

operations initiated by this thread have completed; there is no guarantee that all matching asyn-2757

chronous operations initiated by other threads have completed. For compatibility with version 1.0,2758

this routine may also be spelled acc_async_wait. A call to acc_wait is functionally equiv-2759

alent to a wait directive with a matching wait argument and no async clause, as described in2760

Section 2.16.3.2761

3.2.14. acc wait device2762

Summary The acc_wait_device routine waits for completion of all associated asynchronous2763

operations on a device.2764

Format2765

C or C++:

void acc_wait_device(int, int);

Fortran:

subroutine acc_wait_device(arg, device)

integer(acc_handle_kind) :: arg

integer :: device

Description The first argument must be an async-argument as defined in Section 2.16.1 async clause.2766

The second argument must be a valid device number of the current device type.2767

If the async-argument appeared in one or more async clauses, the acc_wait routine will not2768

return until the latest such asynchronous operation has completed on the specified device. If two2769

or more threads share the same accelerator, the acc_wait routine will return only if all match-2770

ing asynchronous operations initiated by this thread have completed; there is no guarantee that all2771

matching asynchronous operations initiated by other threads have completed.2772

94

The OpenACC R© API 3.2. Runtime Library Routines

3.2.15. acc wait async2773

Summary The acc_wait_async routine enqueues a wait operation on one async queue of2774

the current device for the operations previously enqueued on another async queue.2775

Format2776

C or C++:

void acc_wait_async(int, int);

Fortran:

subroutine acc_wait_async(arg, async)

integer(acc_handle_kind) :: arg, async

Description The arguments must be async-arguments, as defined in Section 2.16.1 async clause.2777

The routine will enqueue a wait operation on the appropriate device queue associated with the2778

second argument, which will wait for operations enqueued on the device queue associated with2779

the first argument. See Section 2.16 Asynchronous Behavior for more information. A call to2780

acc_wait_async is functionally equivalent to a wait directive with a matching wait argument2781

and a matching async argument, as described in Section 2.16.3.2782

3.2.16. acc wait device async2783

Summary The acc_wait_device_async routine enqueues a wait operation on one async2784

queue of a device for the operations previously enqueued on another async queue.2785

Format2786

C or C++:

void acc_wait_device_async(int, int, int);

Fortran:

subroutine acc_wait_device_async(arg, async, device)

integer(acc_handle_kind) :: arg, async

integer :: device

Description The first two arguments must be async-arguments, as defined in Section 2.16.12787

async clause. The third argument must be a valid device number of the current device type.2788

The routine will enqueue a wait operation on the appropriate device queue associated with the2789

second argument, which will wait for operations enqueued on the device queue associated with the2790

first argument.2791

See Section 2.16 Asynchronous Behavior for more information. A call to acc_wait_device_async2792

is functionally equivalent to a wait directive with a matching wait argument and a matching async2793

argument, as described in Section 2.16.3.2794

95

The OpenACC R© API 3.2. Runtime Library Routines

3.2.17. acc wait all2795

Summary The acc_wait_all routine waits for completion of all asynchronous operations.2796

Format2797

C or C++:

void acc_wait_all();

Fortran:

subroutine acc_wait_all()

Description The acc_wait_all routine will not return until the all asynchronous operations2798

have completed. If two or more threads share the same accelerator, the acc_wait_all routine2799

will return only if all asynchronous operations initiated by this thread have completed; there is no2800

guarantee that all asynchronous operations initiated by other threads have completed. For com-2801

patibility with version 1.0, this routine may also be spelled acc_async_wait_all. A call to2802

acc_wait_all is functionally equivalent to a wait directive with no wait argument list and no2803

async argument, as described in Section 2.16.3.2804

3.2.18. acc wait all device2805

Summary The acc_wait_all_device routine waits for completion of all asynchronous2806

operations the specified device.2807

Format2808

C or C++:

void acc_wait_all_device(int);

Fortran:

subroutine acc_wait_all_device(device)

integer :: device

Description The argument must be a valid device number of the current device type. The2809

acc_wait_all_device routine will not return until the all asynchronous operations have com-2810

pleted on the specified device. If two or more threads share the same accelerator, the acc_wait_all_device2811

routine will return only if all asynchronous operations initiated by this thread have completed; there2812

is no guarantee that all asynchronous operations initiated by other threads have completed.2813

3.2.19. acc wait all async2814

Summary The acc_wait_all_async routine enqueues wait operations on one async queue2815

for the operations previously enqueued on all other async queues.2816

96

The OpenACC R© API 3.2. Runtime Library Routines

Format2817

C or C++:

void acc_wait_all_async(int);

Fortran:

subroutine acc_wait_all_async(async)

integer(acc_handle_kind) :: async

Description The argument must be an async-argument as defined in Section 2.16.1 async clause.2818

The routine will enqueue a wait operation on the appropriate device queue for each other device2819

queue. See Section 2.16 Asynchronous Behavior for more information. A call to acc_wait_all_async2820

is functionally equivalent to a wait directive with no wait argument list and a matching async2821

argument, as described in Section 2.16.3.2822

3.2.20. acc wait all device async2823

Summary The acc_wait_all_device_async routine enqueues wait operations on one2824

async queue for the operations previously enqueued on all other async queues on the specified2825

device.2826

Format2827

C or C++:

void acc_wait_all_device_async(int, int);

Fortran:

subroutine acc_wait_all_device_async(async, device)

integer(acc_handle_kind) :: async

integer :: device

Description The first argument must be an async-argument as defined in Section 2.16.1 async clause.2828

The second argument must be a valid device number of the current device type.2829

The routine will enqueue a wait operation on the appropriate device queue for each other device2830

queue. See Section 2.16 Asynchronous Behavior for more information. A call to acc_wait_all_async2831

is functionally equivalent to a wait directive with no wait argument list and a matching async2832

argument, as described in Section 2.16.3.2833

3.2.21. acc get default async2834

Summary The acc_get_default_async routine returns the value of acc-default-async-2835

var for the current thread.2836

97

The OpenACC R© API 3.2. Runtime Library Routines

Format2837

C or C++:

int acc_get_default_async(void);

Fortran:

function acc_get_default_async()

integer(acc_handle_kind) :: acc_get_default_async

Description The acc_get_default_async routine returns the value of acc-default-async-2838

var for the current thread, which is the asynchronous queue used when an async clause appears2839

without an async-argument or with the value acc_async_noval.2840

3.2.22. acc set default async2841

Summary The acc_set_default_async routine tells the runtime which asynchronous queue2842

to use when an async clause appears with no queue argument.2843

Format2844

C or C++:

void acc_set_default_async(int async);

Fortran:

subroutine acc_set_default_async(async)

integer(acc_handle_kind) :: async

Description The acc_set_default_async routine tells the runtime to place any directives2845

with an async clause that does not have an async-argument or with the special acc_async_noval2846

value into the specified asynchronous activity queue instead of the default asynchronous activity2847

queue for that device by setting the value of acc-default-async-var for the current thread. The spe-2848

cial argument acc_async_default will reset the default asynchronous activity queue to the2849

initial value, which is implementation-defined. A call to acc_set_default_async is func-2850

tionally equivalent to a set default_async directive with a matching argument in int-expr, as2851

described in Section 2.14.3.2852

3.2.23. acc on device2853

Summary The acc_on_device routine tells the program whether it is executing on a partic-2854

ular device.2855

98

The OpenACC R© API 3.2. Runtime Library Routines

Format2856

C or C++:

int acc_on_device(acc_device_t);

Fortran:

logical function acc_on_device(devicetype)

integer(acc_device_kind) :: devicetype

Description The acc_on_device routine may be used to execute different paths depend-2857

ing on whether the code is running on the host or on some accelerator. If the acc_on_device2858

routine has a compile-time constant argument, it evaluates at compile time to a constant. The ar-2859

gument must be one of the defined accelerator types. If the argument is acc_device_host,2860

then outside of a compute region or accelerator routine, or in a compute region or accelerator rou-2861

tine that is executed on the host CPU, this routine will evaluate to nonzero for C or C++, and2862

.true. for Fortran; otherwise, it will evaluate to zero for C or C++, and .false. for Fortran.2863

If the argument is acc_device_not_host, the result is the negation of the result with argu-2864

ment acc_device_host. If the argument is an accelerator device type, then in a compute region2865

or routine that is executed on a device of that type, this routine will evaluate to nonzero for C or2866

C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or C++, and .false. for2867

Fortran. The result with argument acc_device_default is undefined.2868

3.2.24. acc malloc2869

Summary The acc_malloc routine allocates space in the current device memory.2870

Format2871

C or C++:

d_void* acc_malloc(size_t);

Description The acc_malloc routine may be used to allocate space in the current device2872

memory. Pointers assigned from this function may be used in deviceptr clauses to tell the2873

compiler that the pointer target is resident on the device. In case of an error, acc_malloc returns2874

a NULL pointer.2875

3.2.25. acc free2876

Summary The acc_free routine frees memory on the current device.2877

Format2878

C or C++:

void acc_free(d_void*);

99

The OpenACC R© API 3.2. Runtime Library Routines

Description The acc_free routine will free previously allocated space in the current device2879

memory; the argument should be a pointer value that was returned by a call to acc_malloc. If2880

the argument is a NULL pointer, no operation is performed.2881

3.2.26. acc copyin2882

Summary The acc_copyin routines test to see if the argument is in shared memory or already2883

present in the current device memory; if not, they allocate space in the current device memory to2884

correspond to the specified local memory, and copy the data to that device memory.2885

Format2886

C or C++:

d_void* acc_copyin(h_void*, size_t);

void acc_copyin_async(h_void*, size_t, int);

Fortran:

subroutine acc_copyin(a)

subroutine acc_copyin(a, len)

subroutine acc_copyin_async(a, async)

subroutine acc_copyin_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_copyin routines are equivalent to the enter data directive with a2887

copyin clause, as described in Section 2.7.6. In C, the arguments are a pointer to the data and2888

length in bytes; the synchronous function returns a pointer to the allocated device memory, as with2889

acc_malloc. In Fortran, two forms are supported. In the first, the argument is a contiguous array2890

section of intrinsic type. In the second, the first argument is a variable or array element and the2891

second is the length in bytes.2892

The behavior of the acc_copyin routines is:2893

• If the data is in shared memory, no action is taken. The C acc_copyin returns the incoming2894

pointer.2895

• If the data is present in the current device memory, a present increment action with the dy-2896

namic reference counter is performed. The C acc_copyin returns a pointer to the existing2897

device memory.2898

• Otherwise, a copyin action with the dynamic reference counter is performed. The C acc_copyin2899

returns the device address of the newly allocated memory.2900

This data may be accessed using the present data clause. Pointers assigned from the C acc_copyin2901

function may be used in deviceptr clauses to tell the compiler that the pointer target is resident2902

on the device.2903

100

The OpenACC R© API 3.2. Runtime Library Routines

The _async versions of this function will perform any data transfers asynchronously on the async2904

queue associated with the value passed in as the async argument. The function may return be-2905

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The2906

synchronous versions will not return until the data has been completely transferred.2907

For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are al-2908

ternate names for acc_copyin.2909

3.2.27. acc create2910

Summary The acc_create routines test to see if the argument is in shared memory or already2911

present in the current device memory; if not, they allocate space in the current device memory to2912

correspond to the specified local memory.2913

Format2914

C or C++:

d_void* acc_create(h_void*, size_t);

void acc_create_async(h_void*, size_t, int async);

Fortran:

subroutine acc_create(a)

subroutine acc_create(a, len)

subroutine acc_create_async(a, async)

subroutine acc_create_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_create routines are equivalent to the enter data directive with a2915

create clause, as described in Section 2.7.8. In C, the arguments are a pointer to the data and2916

length in bytes; the synchronous function returns a pointer to the allocated device memory, as with2917

acc_malloc. In Fortran, two forms are supported. In the first, the argument is a contiguous array2918

section of intrinsic type. In the second, the first argument is a variable or array element and the2919

second is the length in bytes.2920

The behavior of the acc_create routines is:2921

• If the data is in shared memory, no action is taken. The C acc_create returns the incoming2922

pointer.2923

• If the data is present in the current device memory, a present increment action with the dy-2924

namic reference counter is performed. The C acc_create returns a pointer to the existing2925

device memory.2926

• Otherwise, a create action with the dynamic reference counter is performed. The C acc_create2927

returns the device address of the newly allocated memory.2928

101

The OpenACC R© API 3.2. Runtime Library Routines

This data may be accessed using the present data clause. Pointers assigned from the C acc_copyin2929

function may be used in deviceptr clauses to tell the compiler that the pointer target is resident2930

on the device.2931

The _async versions of these function may perform the data allocation asynchronously on the2932

async queue associated with the value passed in as the async argument. The synchronous versions2933

will not return until the data has been allocated.2934

For compatibility with OpenACC 2.0, acc_present_or_create and acc_pcreate are al-2935

ternate names for acc_create.2936

3.2.28. acc copyout2937

Summary The acc_copyout routines test to see if the argument is in shared memory; if not,2938

the argument must be present in the current device memory, and the routines copy data from device2939

memory to the corresponding local memory, then deallocate that space from the device memory.2940

Format2941

C or C++:

void acc_copyout(h_void*, size_t);

void acc_copyout_async(h_void*, size_t, int async);

void acc_copyout_finalize(h_void*, size_t);

void acc_copyout_finalize_async(h_void*, size_t, int async);

Fortran:

subroutine acc_copyout(a)

subroutine acc_copyout(a, len)

subroutine acc_copyout_async(a, async)

subroutine acc_copyout_async(a, len, async)

subroutine acc_copyout_finalize(a)

subroutine acc_copyout_finalize(a, len)

subroutine acc_copyout_finalize_async(a, async)

subroutine acc_copyout_finalize_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_copyout routines are equivalent to the exit data directive with a2942

copyout clause, and the acc_copyout_finalize routines are equivalent to the exit data2943

directive with both copyout and finalize clauses, as described in Section 2.7.7. In C, the2944

arguments are a pointer to the data and length in bytes. In Fortran, two forms are supported. In the2945

first, the argument is a contiguous array section of intrinsic type. In the second, the first argument2946

is a variable or array element and the second is the length in bytes.2947

The behavior of the acc_copyout routines is:2948

• If the data is in shared memory, no action is taken.2949

102

The OpenACC R© API 3.2. Runtime Library Routines

• Otherwise, if the data is not present in the current device memory, a runtime error is issued.2950

• Otherwise, a present decrement action with the dynamic reference counter is performed (acc_copyout),2951

or the dynamic reference counter is set to zero (acc_copyout_finalize). If both ref-2952

erence counters are then zero, a copyout action is performed.2953

The _async versions of these functions will perform any associated data transfers asynchronously2954

on the async queue associated with the value passed in as the async argument. The function may2955

return before the data has been transferred or deallocated; see Section 2.16 Asynchronous Behavior2956

for more details. The synchronous versions will not return until the data has been completely trans-2957

ferred. Even if the data has not been transferred or deallocated before the function returns, the data2958

will be treated as not present in the current device memory.2959

3.2.29. acc delete2960

Summary The acc_delete routines test to see if the argument is in shared memory; if not,2961

the argument must be present in the current device memory, and the routines deallocate that space2962

from the device memory.2963

Format2964

C or C++:

void acc_delete(h_void*, size_t);

void acc_delete_async(h_void*, size_t, int async);

void acc_delete_finalize(h_void*, size_t);

void acc_delete_finalize_async(h_void*, size_t, int async);

Fortran:

subroutine acc_delete(a)

subroutine acc_delete(a, len)

subroutine acc_delete_async(a, async)

subroutine acc_delete_async(a, len, async)

subroutine acc_delete_finalize(a)

subroutine acc_delete_finalize(a, len)

subroutine acc_delete_finalize_async(a, async)

subroutine acc_delete_finalize_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_delete routines are equivalent to the exit data directive with a2965

delete clause,2966

and the acc_delete_finalize routines are equivalent to the exit data directive with both2967

delete clause and finalize clauses, as described in Section 2.7.10. The arguments are as for2968

acc_copyout.2969

The behavior of the acc_delete routines is:2970

103

The OpenACC R© API 3.2. Runtime Library Routines

• If the data is in shared memory, no action is taken.2971

• Otherwise, if the data is not present in the current device memory, a runtime error is issued.2972

• Otherwise, a present decrement action with the dynamic reference counter is performed (acc_delete),2973

or the dynamic reference counter is set to zero (acc_delete_finalize). If both refer-2974

ence counters are then zero, a delete action is performed.2975

The _async versions of these function may perform the data deallocation asynchronously on the2976

async queue associated with the value passed in as the async argument. The synchronous versions2977

will not return until the data has been deallocated. Even if the data has not been deallocated before2978

the function returns, the data will be treated as not present in the current device memory.2979

3.2.30. acc update device2980

Summary The acc_update_device routines test to see if the argument is in shared memory;2981

if not, the argument must be present in the current device memory, and the routines update the data2982

in device memory from the corresponding local memory.2983

Format2984

C or C++:

void acc_update_device(h_void*, size_t);

void acc_update_device_async(h_void*, size_t, int async);

Fortran:

subroutine acc_update_device(a)

subroutine acc_update_device(a, len)

subroutine acc_update_device_async(a, async)

subroutine acc_update_device_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_update_device routine is equivalent to the update directive with a2985

device clause, as described in Section 2.14.4. In C, the arguments are a pointer to the data and2986

length in bytes. In Fortran, two forms are supported. In the first, the argument is a contiguous array2987

section of intrinsic type. In the second, the first argument is a variable or array element and the2988

second is the length in bytes. For data not in shared memory, the data in the local memory is copied2989

to the corresponding device memory. It is a runtime error to call this routine if the data is not present2990

in the current device memory.2991

The _async versions of this function will perform the data transfers asynchronously on the async2992

queue associated with the value passed in as the async argument. The function may return be-2993

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The2994

synchronous versions will not return until the data has been completely transferred.2995

104

The OpenACC R© API 3.2. Runtime Library Routines

3.2.31. acc update self2996

Summary The acc_update_self routines test to see if the argument is in shared memory;2997

if not, the argument must be present in the current device memory, and the routines update the data2998

in local memory from the corresponding device memory.2999

Format3000

C or C++:

void acc_update_self(h_void*, size_t);

void acc_update_self_async(h_void*, size_t, int async);

Fortran:

subroutine acc_update_self(a)

subroutine acc_update_self(a, len)

subroutine acc_update_self_async(a, async)

subroutine acc_update_self_async(a, len, async)

type(*), dimension(..) :: a

integer :: len

integer(acc_handle_kind) :: async

Description The acc_update_self routine is equivalent to the update directive with a3001

self clause, as described in Section 2.14.4. In C, the arguments are a pointer to the data and3002

length in bytes. In Fortran, two forms are supported. In the first, the argument is a contiguous array3003

section of intrinsic type. In the second, the first argument is a variable or array element and the3004

second is the length in bytes. For data not in shared memory, the data in the local memory is copied3005

to the corresponding device memory. There must be a device copy of the data on the device when3006

calling this routine, otherwise no action is taken by the routine. It is a runtime error to call this3007

routine if the data is not present in the current device memory.3008

The _async versions of this function will perform the data transfers asynchronously on the async3009

queue associated with the value passed in as the async argument. The function may return be-3010

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The3011

synchronous versions will not return until the data has been completely transferred.3012

3.2.32. acc map data3013

Summary The acc_map_data routine maps previously allocated space in the current device3014

memory to the specified host data.3015

Format3016

C or C++:

void acc_map_data(h_void*, d_void*, size_t);

105

The OpenACC R© API 3.2. Runtime Library Routines

Description The acc_map_data routine is similar to an enter data directive with a create3017

clause, except instead of allocating new device memory to start a data lifetime, the device address3018

to use for the data lifetime is specified as an argument. The first argument is a host address, fol-3019

lowed by the corresponding device address and the data length in bytes. After this call, when the3020

host data appears in a data clause, the specified device memory will be used. It is an error to call3021

acc_map_data for host data that is already present in the current device memory. It is undefined3022

to call acc_map_data with a device address that is already mapped to host data. The device3023

address may be the result of a call to acc_malloc, or may come from some other device-specific3024

API routine. After mapping the device memory, the dynamic reference count for the host data is set3025

to one, but no data movement will occur. Memory mapped by acc_map_data may not have the3026

associated dynamic reference count decremented to zero, except by a call to acc_unmap_data.3027

See Section 2.6.7 Reference Counters.3028

3.2.33. acc unmap data3029

Summary The acc_unmap_data routine unmaps device data from the specified host data.3030

Format3031

C or C++:

void acc_unmap_data(h_void*);

Description The acc_unmap_data routine is similar to an exit data directive with a3032

delete clause, except the device memory is not deallocated. The argument is pointer to the host3033

data. A call to this routine ends the data lifetime for the specified host data. The device memory is3034

not deallocated. It is undefined behavior to call acc_unmap_data with a host address unless that3035

host address was mapped to device memory using acc_map_data. After unmapping memory the3036

dynamic reference count for the pointer is set to zero, but no data movement will occur. It is an3037

error to call acc_unmap_data if the structured reference count for the pointer is not zero. See3038

Section 2.6.7 Reference Counters.3039

3.2.34. acc deviceptr3040

Summary The acc_deviceptr routine returns the device pointer associated with a specific3041

host address.3042

Format3043

C or C++:

d_void* acc_deviceptr(h_void*);

Description The acc_deviceptr routine returns the device pointer associated with a host3044

address. The argument is the address of a host variable or array that has an active lifetime on the3045

current device. If the data is not present in the current device memory, the routine returns a NULL3046

value.3047

106

The OpenACC R© API 3.2. Runtime Library Routines

3.2.35. acc hostptr3048

Summary The acc_hostptr routine returns the host pointer associated with a specific device3049

address.3050

Format3051

C or C++:

h_void* acc_hostptr(d_void*);

Description The acc_hostptr routine returns the host pointer associated with a device ad-3052

dress. The argument is the address of a device variable or array, such as that returned from acc_deviceptr,3053

acc_create or acc_copyin. If the device address is NULL, or does not correspond to any host3054

address, the routine returns a NULL value.3055

3.2.36. acc is present3056

Summary The acc_is_present routine tests whether a variable or array region is accessible3057

from the current device.3058

Format3059

C or C++:

int acc_is_present(h_void*, size_t);

Fortran:

logical function acc_is_present(a)

logical function acc_is_present(a, len)

type(*), dimension(..) :: a

integer :: len

Description The acc_is_present routine tests whether the specified host data is accessible3060

from the current device. In C, the arguments are a pointer to the data and length in bytes; the3061

function returns nonzero if the specified data is fully present, and zero otherwise. In Fortran, two3062

forms are supported. In the first, the argument is a contiguous array section of intrinsic type. In the3063

second, the first argument is a variable or array element and the second is the length in bytes. The3064

function returns .true. if the specified data is in shared memory or is fully present, and .false.3065

otherwise. If the byte length is zero, the function returns nonzero in C or .true. in Fortran if the3066

given address is in shared memory or is present at all in the current device memory.3067

3.2.37. acc memcpy to device3068

Summary The acc_memcpy_to_device routine copies data from local memory to device3069

memory.3070

107

The OpenACC R© API 3.2. Runtime Library Routines

Format3071

C or C++:

void acc_memcpy_to_device(d_void* dest, h_void* src, size_t bytes);

void acc_memcpy_to_device_async(d_void* dest, h_void* src,

size_t bytes, int async);

Description The acc_memcpy_to_device routine copies bytes of data from the local3072

address in src to the device address in dest. The destination address must be an address accessible3073

from the current device, such as an address returned from acc_malloc or acc_deviceptr, or3074

an address in shared memory.3075

The _async version of this function will perform the data transfers asynchronously on the async3076

queue associated with the value passed in as the async argument. The function may return be-3077

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The3078

synchronous versions will not return until the data has been completely transferred.3079

3.2.38. acc memcpy from device3080

Summary The acc_memcpy_from_device routine copies data from device memory to lo-3081

cal memory.3082

Format3083

C or C++:

void acc_memcpy_from_device(h_void* dest, d_void* src, size_t bytes);

void acc_memcpy_from_device_async(h_void* dest, d_void* src,

size_t bytes, int async);

Description The acc_memcpy_from_device routine copies bytes data from the device3084

address in src to the local address in dest. The source address must be an address accessible3085

from the current device, such as an addressed returned from acc_malloc or acc_deviceptr,3086

or an address in shared memory.3087

The _async version of this function will perform the data transfers asynchronously on the async3088

queue associated with the value passed in as the async argument. The function may return be-3089

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The3090

synchronous versions will not return until the data has been completely transferred.3091

3.2.39. acc memcpy device3092

Summary The acc_memcpy_device routine copies data from one memory location to an-3093

other memory location on the current device.3094

108

The OpenACC R© API 3.2. Runtime Library Routines

Format3095

C or C++:

void acc_memcpy_device(d_void* dest, d_void* src, size_t bytes);

void acc_memcpy_device_async(d_void* dest, d_void* src,

size_t bytes, int async);

Description The acc_memcpy_device routine copies bytes data from the device address3096

in src to the device address in dest. Both addresses must be addresses in the current device3097

memory, such as would be returned from acc_malloc or acc_deviceptr. If dest and src3098

overlap, the behavior is undefined.3099

The _async version of this function will perform the data transfers asynchronously on the async3100

queue associated with the value passed in as the async argument. The function may return be-3101

fore the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The3102

synchronous versions will not return until the data has been completely transferred.3103

3.2.40. acc attach3104

Summary The acc_attach routine updates a pointer in device memory to point to the corre-3105

sponding device copy of the host pointer target.3106

Format3107

C or C++:

void acc_attach(h_void** ptr);

void acc_attach_async(h_void** ptr, int async);

Description The acc_attach routines are passed the address of a host pointer. If the data is3108

in shared memory, or if the pointer *ptr is in shared memory or is not present in the current device3109

memory, or the address to which the *ptr points is not present in the current device memory, no3110

action is taken. Otherwise, these routines perform the attach action (Section 2.7.2).3111

These routines may issue a data transfer from local memory to device memory. The _async3112

version of this function will perform the data transfers asynchronously on the async queue associated3113

with the value passed in as the async argument. The function may return before the data has been3114

transferred; see Section 2.16 Asynchronous Behavior for more details. The synchronous version3115

will not return until the data has been completely transferred.3116

3.2.41. acc detach3117

Summary The acc_detach routine updates a pointer in device memory to point to the host3118

pointer target.3119

109

The OpenACC R© API 3.2. Runtime Library Routines

Format3120

C or C++:

void acc_detach(h_void** ptr);

void acc_detach_async(h_void** ptr, int async);

void acc_detach_finalize(h_void** ptr);

void acc_detach_finalize_async(h_void** ptr, int async);

Description The acc_detach routines are passed the address of a host pointer. If the data is3121

in shared memory, or if the pointer *ptr is in shared memory or is not present in the current device3122

memory, if the attachment counter for the pointer *ptr is zero, no action is taken. Otherwise, these3123

routines perform the detach action (Section 2.7.2).3124

The acc_detach_finalize routines are equivalent to an exit data directive with detach3125

and finalize clauses, as described in Section 2.7.12 detach clause. If the data is in shared3126

memory,or if the pointer *ptr is not present in the current device memory, or if the attachment3127

counter for the pointer *ptr is zero, no action is taken. Otherwise, these routines perform the3128

immediate detach action (Section 2.7.2).3129

These routines may issue a data transfer from local memory to device memory. The _async3130

versions of these functions will perform the data transfers asynchronously on the async queue asso-3131

ciated with the value passed in as the async argument. These functions may return before the data3132

has been transferred; see Section 2.16 Asynchronous Behavior for more details. The synchronous3133

versions will not return until the data has been completely transferred.3134

3.2.42. acc memcpy d2d3135

Summary This acc_memcpy_d2d and acc_memcpy_d2d_async routines copy the con-3136

tents of an array on one device to an array on the same or a different device without updating the3137

value on the host.3138

Format3139

C or C++:

void acc_memcpy_d2d(hvoid* dst, hvoid* src,

size_t sz, int dstdev, int srcdev);

void acc_memcpy_d2d_async(hvoid* dst, hvoid* src,

size_t sz, int dstdev, int srcdev,

int srcasync);

Fortran:

subroutine acc_memcpy_d2d(dst, src, sz, dstdev, srcdev)

subroutine acc_memcpy_d2d_async(dst, src, sz, dstdev, srcdev)

type(*), dimension(..) :: dst

type(*), dimension(..) :: src

integer :: sz

110

The OpenACC R© API 3.2. Runtime Library Routines

integer :: dstdev

integer :: srcdev

integer :: srcasync

Description The acc_memcpy_d2d and acc_memcpy_d2d_async routines are passed the3140

address of destination and source host pointers as well as integer device numbers for the destination3141

and source devices, which must both be of the current device type. If both arrays are in shared3142

memory, then no action is taken. If either pointer is not in shared memory, then that array must be3143

present on its respective device. If these conditions are met, the contents of the source array on the3144

source device are copied to the destination array on the destination device.3145

For acc_memcpy_d2d_async the value of srcasync is the number of an async queue on the3146

source device. This routine will issue the copy operation into the device activity queue for the3147

source device and follow the usual asynchronous device queue semantics defined in 2.16.3148

111

The OpenACC R© API 3.2. Runtime Library Routines

112

The OpenACC R© API 4.1. ACC DEVICE TYPE

4. Environment Variables3149

This chapter describes the environment variables that modify the behavior of accelerator regions.3150

The names of the environment variables must be upper case. The values assigned environment3151

variables are case-insensitive and may have leading and trailing white space. If the values of the3152

environment variables change after the program has started, even if the program itself modifies the3153

values, the behavior is implementation-defined.3154

4.1. ACC DEVICE TYPE3155

The ACC_DEVICE_TYPE environment variable controls the default device type to use when ex-3156

ecuting parallel, kernels, and serial regions, if the program has been compiled to use more than3157

one different type of device. The allowed values of this environment variable are implementation-3158

defined. See the release notes for currently-supported values of this environment variable.3159

Example:

setenv ACC_DEVICE_TYPE NVIDIA

export ACC_DEVICE_TYPE=NVIDIA

4.2. ACC DEVICE NUM3160

The ACC_DEVICE_NUM environment variable controls the default device number to use when3161

executing accelerator regions. The value of this environment variable must be a nonnegative integer3162

between zero and the number of devices of the desired type attached to the host. If the value is3163

greater than or equal to the number of devices attached, the behavior is implementation-defined.3164

Example:

setenv ACC_DEVICE_NUM 1

export ACC_DEVICE_NUM=1

4.3. ACC PROFLIB3165

The ACC_PROFLIB environment variable specifies the profiling library. More details about the3166

evaluation at runtime is given in section 5.3.3 Runtime Dynamic Library Loading.3167

Example:

setenv ACC_PROFLIB /path/to/proflib/libaccprof.so

export ACC_PROFLIB=/path/to/proflib/libaccprof.so

113

The OpenACC R© API 4.3. ACC PROFLIB

114

The OpenACC R© API 5.1. Events

5. Profiling Interface3168

This chapter describes the OpenACC interface for tools that can be used for profile and trace data3169

collection. Therefore it provides a set of OpenACC-specific event callbacks that are triggered dur-3170

ing the application run. Currently, this interface does not support tools that employ asynchronous3171

sampling. In this chapter, the term runtime refers to the OpenACC runtime library. The term library3172

refers to the third party routines invoked at specified events by the OpenACC runtime.3173

There are four steps for interfacing a library to the runtime. The first is to write the data collection3174

library callback routines. Section 5.1 Events describes the supported runtime events and the order3175

in which callbacks to the callback routines will occur. Section 5.2 Callbacks Signature describes3176

the signature of the callback routines for all events.3177

The second is to use registration routines to register the data collection callbacks for the appropriate3178

events. The data collection and registration routines are then saved in a static or dynamic library3179

or shared object. The third is to load the library at runtime. The library may be statically linked3180

to the application or dynamically loaded by the application or by the runtime. This is described in3181

Section 5.3 Loading the Library.3182

The fourth step is to invoke the registration routine to register the desired callbacks with the events.3183

This may be done explicitly by the application, if the library is statically linked with the application,3184

implicitly by including a call to the registration routine in a .init section, or by including an3185

initialization routine in the library if it is dynamically loaded by the runtime. This is described in3186

Section 5.4 Registering Event Callbacks.3187

Subsequently, the library may collect information when the callback routines are invoked by the3188

runtime and process or store the acquired data.3189

5.1. Events3190

This section describes the events that are recognized by the runtime. Most events may have a start3191

and end callback routine, that is, a routine that is called just before the runtime code to handle3192

the event starts and another routine that is called just after the event is handled. The event names3193

and routine prototypes are available in the header file acc_prof.h, which is delivered with the3194

OpenACC implementation. Event names are prefixed with acc_ev_.3195

The ordering of events must reflect the order in which the OpenACC runtime actually executes them,3196

i.e. if a runtime moves the enqueuing of data transfers or kernel launches outside the originating3197

clauses/constructs, it needs to issue the corresponding launch callbacks when they really occur. A3198

callback for a start event must always precede the matching end callback. The behavior of a tool3199

receiving a callback after the runtime shutdown callback is undefined.3200

The events that the runtime supports can be registered with a callback and are defined in the enu-3201

meration type acc_event_t.3202

115

The OpenACC R© API 5.1. Events

typedef enum acc_event_t{
acc_ev_none = 0,

acc_ev_device_init_start,

acc_ev_device_init_end,

acc_ev_device_shutdown_start,

acc_ev_device_shutdown_end,

acc_ev_runtime_shutdown,

acc_ev_create,

acc_ev_delete,

acc_ev_alloc,

acc_ev_free,

acc_ev_enter_data_start,

acc_ev_enter_data_end,

acc_ev_exit_data_start,

acc_ev_exit_data_end,

acc_ev_update_start,

acc_ev_update_end,

acc_ev_compute_construct_start,

acc_ev_compute_construct_end,

acc_ev_enqueue_launch_start,

acc_ev_enqueue_launch_end,

acc_ev_enqueue_upload_start,

acc_ev_enqueue_upload_end,

acc_ev_enqueue_download_start,

acc_ev_enqueue_download_end,

acc_ev_wait_start,

acc_ev_wait_end,

acc_ev_last

}acc_event_t;

5.1.1. Runtime Initialization and Shutdown3203

No callbacks can be registered for the runtime initialization. Instead the initialization of the tool is3204

handled as described in Section 5.3 Loading the Library.3205

The runtime shutdown event name is3206

acc_ev_runtime_shutdown

The acc_ev_runtime_shutdown event is triggered before the OpenACC runtime shuts down,3207

either because all devices have been shutdown by calls to the acc_shutdown API routine, or at3208

the end of the program.3209

5.1.2. Device Initialization and Shutdown3210

The device initialization event names are3211

acc_ev_device_init_start

116

The OpenACC R© API 5.1. Events

acc_ev_device_init_end

These events are triggered when a device is being initialized by the OpenACC runtime. This may be3212

when the program starts, or may be later during execution when the program reaches an acc_init3213

call or an OpenACC construct. The acc_ev_device_init_start is triggered before device3214

initialization starts and acc_ev_device_init_end after initialization is complete.3215

The device shutdown event names are3216

acc_ev_device_shutdown_start

acc_ev_device_shutdown_end

These events are triggered when a device is shut down, most likely by a call to the OpenACC3217

acc_shutdown API routine. The acc_ev_device_shutdown_start is triggered before3218

the device shutdown process starts and acc_ev_device_shutdown_end after the device shut-3219

down is complete.3220

5.1.3. Enter Data and Exit Data3221

The enter data and exit data event names are3222

acc_ev_enter_data_start

acc_ev_enter_data_end

acc_ev_exit_data_start

acc_ev_exit_data_end

The acc_ev_enter_data_start and acc_ev_enter_data_end events are triggered at3223

enter data directives, entry to data constructs, and entry to implicit data regions such as those3224

generated by compute constructs. The acc_ev_enter_data_start event is triggered before3225

any data allocation, data update, or wait events that are associated with that directive or region3226

entry, and the acc_ev_enter_data_end is triggered after those events.3227

The acc_ev_exit_data_start and acc_ev_exit_data_end events are triggered at exit3228

data directives, exit from data constructs, and exit from implicit data regions. The3229

acc_ev_exit_data_start event is triggered before any data deallocation, data update, or3230

wait events associated with that directive or region exit, and the acc_ev_exit_data_end event3231

is triggered after those events.3232

When the construct that triggers an enter data or exit data event was generated implicitly by the3233

compiler the implicit field in the event structure will be set to 1. When the construct that3234

triggers these events was specified explicitly by the application code the implicit field in the3235

event structure will be set to 0.3236

5.1.4. Data Allocation3237

The data allocation event names are3238

acc_ev_create

117

The OpenACC R© API 5.1. Events

acc_ev_delete

acc_ev_alloc

acc_ev_free

An acc_ev_alloc event is triggered when the OpenACC runtime allocates memory from the de-3239

vice memory pool, and an acc_ev_free event is triggered when the runtime frees that memory.3240

An acc_ev_create event is triggered when the OpenACC runtime associates device memory3241

with local memory, such as for a data clause (create, copyin, copy, copyout) at entry to3242

a data construct, compute construct, at an enter data directive, or in a call to a data API rou-3243

tine (acc_copyin, acc_create, . . .). An acc_ev_create event may be preceded by an3244

acc_ev_alloc event, if newly allocated memory is used for this device data, or it may not, if3245

the runtime manages its own memory pool. An acc_ev_delete event is triggered when the3246

OpenACC runtime disassociates device memory from local memory, such as for a data clause at3247

exit from a data construct, compute construct, at an exit data directive, or in a call to a data API3248

routine (acc_copyout, acc_delete, . . .). An acc_ev_delete event may be followed by3249

an acc_ev_free event, if the disassociated device memory is freed, or it may not, if the runtime3250

manages its own memory pool.3251

When the action that generates a data allocation event was generated explicitly by the application3252

code the implicit field in the event structure will be set to 0. When the data allocation event3253

is triggered because of a variable or array with implicitly-determined data attributes or otherwise3254

implicitly by the compiler the implicit field in the event structure will be set to 1.3255

5.1.5. Data Construct3256

The events for entering and leaving data constructs are mapped to enter data and exit data events3257

as described in Section 5.1.3 Enter Data and Exit Data.3258

5.1.6. Update Directive3259

The update directive event names are3260

acc_ev_update_start

acc_ev_update_end

The acc_ev_update_start event will be triggered at an update directive, before any data3261

update or wait events that are associated with the update directive are carried out, and the corre-3262

sponding acc_ev_update_end event will be triggered after any of the associated events.3263

5.1.7. Compute Construct3264

The compute construct event names are3265

acc_ev_compute_construct_start

acc_ev_compute_construct_end

118

The OpenACC R© API 5.1. Events

The acc_ev_compute_construct_start event is triggered at entry to a compute construct,3266

before any launch events that are associated with entry to the compute construct. The3267

acc_ev_compute_construct_end event is triggered at the exit of the compute construct,3268

after any launch events associated with exit from the compute construct. If there are data clauses3269

on the compute construct, those data clauses may be treated as part of the compute construct, or as3270

part of a data construct containing the compute construct. The callbacks for data clauses must use3271

the same line numbers as for the compute construct events.3272

5.1.8. Enqueue Kernel Launch3273

The launch event names are3274

acc_ev_enqueue_launch_start

acc_ev_enqueue_launch_end

The acc_ev_enqueue_launch_start event is triggered just before an accelerator compu-3275

tation is enqueued for execution on a device, and acc_ev_enqueue_launch_end is trig-3276

gered just after the computation is enqueued. Note that these events are synchronous with the3277

local thread enqueueing the computation to a device, not with the device executing the compu-3278

tation. The acc_ev_enqueue_launch_start event callback routine is invoked just before3279

the computation is enqueued, not just before the computation starts execution. More importantly,3280

the acc_ev_enqueue_launch_end event callback routine is invoked after the computation is3281

enqueued, not after the computation finished executing.3282

Note: Measuring the time between the start and end launch callbacks is often unlikely to be useful,3283

since it will only measure the time to manage the launch queue, not the time to execute the code on3284

the device.3285

5.1.9. Enqueue Data Update (Upload and Download)3286

The data update event names are3287

acc_ev_enqueue_upload_start

acc_ev_enqueue_upload_end

acc_ev_enqueue_download_start

acc_ev_enqueue_download_end

The _start events are triggered just before each upload (data copy from local memory to device3288

memory) operation is or download (data copy from device memory to local memory) operation is3289

enqueued for execution on a device. The corresponding _end events are triggered just after each3290

upload or download operation is enqueued.3291

Note: Measuring the time between the start and end update callbacks is often unlikely to be useful,3292

since it will only measure the time to manage the enqueue operation, not the time to perform the3293

actual upload or download.3294

When the action that generates a data update event was generated explicitly by the application3295

code the implicit field in the event structure will be set to 0. When the data allocation event3296

119

The OpenACC R© API 5.2. Callbacks Signature

is triggered because of a variable or array with implicitly-determined data attributes or otherwise3297

implicitly by the compiler the implicit field in the event structure will be set to 1.3298

5.1.10. Wait3299

The wait event names are3300

acc_ev_wait_start

acc_ev_wait_end

An acc_ev_wait_start will be triggered for each relevant queue before the local thread waits3301

for that queue to be empty. A acc_ev_wait_end will be triggered for each relevant queue after3302

the local thread has determined that the queue is empty.3303

Wait events occur when the local thread and a device synchronize, either due to a wait directive3304

or by a wait clause on a synchronous data construct, compute construct, or enter data, exit3305

data, or update directive. For wait events triggered by an explicit synchronous wait directive3306

or wait clause, the implicit field in the event structure will be 0. For all other wait events, the3307

implicit field in the event structure will be 1.3308

The OpenACC runtime need not trigger wait events for queues that have not been used in the3309

program, and need not trigger wait events for queues that have not been used by this thread since3310

the last wait operation. For instance, an acc wait directive with no arguments is defined to wait on3311

all queues. If the program only uses the default (synchronous) queue and the queue associated with3312

async(1) and async(2) then an acc wait directive may trigger wait events only for those3313

three queues. If the implementation knows that no activities have been enqueued on the async(2)3314

queue since the last wait operation, then the acc wait directive may trigger wait events only for3315

the default queue and the async(1) queue.3316

5.2. Callbacks Signature3317

This section describes the signature of event callbacks. All event callbacks have the same signature.3318

The routine prototypes are available in the header file acc_prof.h, which is delivered with the3319

OpenACC implementation.3320

All callback routines have three arguments. The first argument is a pointer to a struct containing3321

general information; the same struct type is used for all callback events. The second argument is3322

a pointer to a struct containing information specific to that callback event; there is one struct type3323

containing information for data events, another struct type containing information for kernel launch3324

events, and a third struct type for other events, containing essentially no information. The third3325

argument is a pointer to a struct containing information about the application programming interface3326

(API) being used for the specific device. For NVIDIA CUDA devices, this contains CUDA-specific3327

information; for OpenCL devices, this contains OpenCL-specific information. Other interfaces can3328

be supported as they are added by implementations. The prototype for a callback routine is:3329

typedef void (*acc_prof_callback)

(acc_prof_info*, acc_event_info*, acc_api_info*);

120

The OpenACC R© API 5.2. Callbacks Signature

In the descriptions, the datatype ssize_t means a signed 32-bit integer for a 32-bit binary and3330

a 64-bit integer for a 64-bit binary, the datatype size_t means an unsigned 32-bit integer for a3331

32-bit binary and a 64-bit integer for a 64-bit binary, and the datatype int means a 32-bit integer3332

for both 32-bit and 64-bit binaries. A null pointer is the pointer with value zero.3333

5.2.1. First Argument: General Information3334

The first argument is a pointer to the acc_prof_info struct type:3335

typedef struct acc_prof_info{
acc_event_t event_type;

int valid_bytes;

int version;

acc_device_t device_type;

int device_number;

int thread_id;

ssize_t async;

ssize_t async_queue;

const char* src_file;

const char* func_name;

int line_no, end_line_no;

int func_line_no, func_end_line_no;

}acc_prof_info;

The fields are described below.3336

• acc_event_t event_type - The event type that triggered this callback. The datatype3337

is the enumeration type acc_event_t, described in the previous section. This allows the3338

same callback routine to be used for different events.3339

• int valid_bytes - The number of valid bytes in this struct. This allows a library to inter-3340

face with newer runtimes that may add new fields to the struct at the end while retaining com-3341

patibility with older runtimes. A runtime must fill in the event_type and valid_bytes3342

fields, and must fill in values for all fields with offset less than valid_bytes. The value of3343

valid_bytes for a struct is recursively defined as:3344

valid_bytes(struct) = offset(lastfield) + valid_bytes(lastfield)

valid_bytes(type[n]) = (n-1)*sizeof(type) + valid_bytes(type)

valid_bytes(basictype) = sizeof(basictype)

• int version - A version number; the value of _OPENACC.3345

• acc_device_t device_type - The device type corresponding to this event. The datatype3346

is acc_device_t, an enumeration type of all the supported device types, defined in openacc.h.3347

• int device_number - The device number. Each device is numbered, typically starting at3348

device zero. For applications that use more than one device type, the device numbers may be3349

unique across all devices or may be unique only across all devices of the same device type.3350

• int thread_id - The host thread ID making the callback. Host threads are given unique3351

thread ID numbers typically starting at zero. This is not necessarily the same as the OpenMP3352

thread number.3353

121

The OpenACC R© API 5.2. Callbacks Signature

• ssize_t async - The value of the async() clause for the directive that triggered this3354

callback.3355

• ssize_t async_queue - If the runtime uses a limited number of asynchronous queues,3356

this field contains the internal asynchronous queue number used for the event.3357

• const char* src_file - A pointer to null-terminated string containing the name of or3358

path to the source file, if known, or a null pointer if not. If the library wants to save the source3359

file name, it should allocate memory and copy the string.3360

• const char* func_name - A pointer to a null-terminated string containing the name of3361

the function in which the event occurred, if known, or a null pointer if not. If the library wants3362

to save the function name, it should allocate memory and copy the string.3363

• int line_no - The line number of the directive or program construct or the starting line3364

number of the OpenACC construct corresponding to the event. A negative or zero value3365

means the line number is not known.3366

• int end_line_no - For an OpenACC construct, this contains the line number of the end3367

of the construct. A negative or zero value means the line number is not known.3368

• int func_line_no - The line number of the first line of the function named in func_name.3369

A negative or zero value means the line number is not known.3370

• int func_end_line_no - The last line number of the function named in func_name.3371

A negative or zero value means the line number is not known.3372

5.2.2. Second Argument: Event-Specific Information3373

The second argument is a pointer to the acc_event_info union type.3374

typedef union acc_event_info{
acc_event_t event_type;

acc_data_event_info data_event;

acc_launch_event_info launch_event;

acc_other_event_info other_event;

}acc_event_info;

The event_type field selects which union member to use. The first five members of each union3375

member are identical. The second through fifth members of each union member (valid_bytes,3376

parent_construct, implicit, and tool_info) have the same semantics for all event3377

types:3378

• int valid_bytes - The number of valid bytes in the respective struct. (This field is similar3379

used as discussed in Section 5.2.1 First Argument: General Information.)3380

• acc_construct_t parent_construct - This field describes the type of construct3381

that caused the event to be emitted. The possible values for this field are defined by the3382

acc_construct_t enum, described at the end of this section.3383

• int implicit - This field is set to 1 for any implicit event, such as an implicit wait at3384

a synchronous data construct or synchronous enter data, exit data or update directive. This3385

122

The OpenACC R© API 5.2. Callbacks Signature

field is set to zero when the event is triggered by an explicit directive or call to a runtime API3386

routine.3387

• void* tool_info - This field is used to pass tool-specific information from a _start3388

event to the matching _end event. For a _start event callback, this field will be initialized3389

to a null pointer. The value of this field for a _end event will be the value returned by3390

the library in this field from the matching _start event callback, if there was one, or null3391

otherwise. For events that are neither _start or _end events, this field will be null.3392

Data Events3393

For a data event, as noted in the event descriptions, the second argument will be a pointer to the3394

acc_data_event_info struct.3395

typedef struct acc_data_event_info{
acc_event_t event_type;

int valid_bytes;

acc_construct_t parent_construct;

int implicit;

void* tool_info;

const char* var_name;

size_t bytes;

const void* host_ptr;

const void* device_ptr;

}acc_data_event_info;

The fields specific for a data event are:3396

• acc_event_t event_type - The event type that triggered this callback. The events that3397

use the acc_data_event_info struct are:3398

acc_ev_enqueue_upload_start

acc_ev_enqueue_upload_end

acc_ev_enqueue_download_start

acc_ev_enqueue_download_end

acc_ev_create

acc_ev_delete

acc_ev_alloc

acc_ev_free

• const char* var_name - A pointer to null-terminated string containing the name of the3399

variable for which this event is triggered, if known, or a null pointer if not. If the library wants3400

to save the variable name, it should allocate memory and copy the string.3401

• size_t bytes - The number of bytes for the data event.3402

• const void* host_ptr - If available and appropriate for this event, this is a pointer to3403

the host data.3404

• const void* device_ptr - If available and appropriate for this event, this is a pointer3405

to the corresponding device data.3406

123

The OpenACC R© API 5.2. Callbacks Signature

Launch Events3407

For a launch event, as noted in the event descriptions, the second argument will be a pointer to the3408

acc_launch_event_info struct.3409

typedef struct acc_launch_event_info{
acc_event_t event_type;

int valid_bytes;

acc_construct_t parent_construct;

int implicit;

void* tool_info;

const char* kernel_name;

size_t num_gangs, num_workers, vector_length;

}acc_launch_event_info;

The fields specific for a launch event are:3410

• acc_event_t event_type - The event type that triggered this callback. The events that3411

use the acc_launch_event_info struct are:3412

acc_ev_enqueue_launch_start

acc_ev_enqueue_launch_end

• const char* kernel_name - A pointer to null-terminated string containing the name of3413

the kernel being launched, if known, or a null pointer if not. If the library wants to save the3414

kernel name, it should allocate memory and copy the string.3415

• size_t num_gangs, num_workers, vector_length - The number of gangs, work-3416

ers and vector lanes created for this kernel launch.3417

Other Events3418

For any event that does not use the acc_data_event_info or acc_launch_event_info3419

struct, the second argument to the callback routine will be a pointer to acc_other_event_info3420

struct.3421

typedef struct acc_other_event_info{
acc_event_t event_type;

int valid_bytes;

acc_construct_t parent_construct;

int implicit;

void* tool_info;

}acc_other_event_info;

Parent Construct Enumeration3422

All event structures contain a parent_construct member that describes the type of construct3423

that caused the event to be emitted. The purpose of this field is to provide a means to identify3424

124

The OpenACC R© API 5.2. Callbacks Signature

the type of construct emitting the event in the cases where an event may be emitted by multi-3425

ple contruct types, such as is the case with data and wait events. The possible values for the3426

parent_construct field are defined in the enumeration type acc_construct_t. In the3427

case of combined directives, the outermost construct of the combined construct should be specified3428

as the parent_construct. If the event was emitted as the result of the application making a3429

call to the runtime api, the value will be acc_construct_runtime_api.3430

typedef enum acc_construct_t{
acc_construct_parallel = 0,

acc_construct_kernels = 1,

acc_construct_loop = 2,

acc_construct_data = 3,

acc_construct_enter_data = 4,

acc_construct_exit_data = 5,

acc_construct_host_data = 6,

acc_construct_atomic = 7,

acc_construct_declare = 8,

acc_construct_init = 9,

acc_construct_shutdown = 10,

acc_construct_set = 11,

acc_construct_update = 12,

acc_construct_routine = 13,

acc_construct_wait = 14,

acc_construct_runtime_api = 15,

acc_construct_serial = 16

}acc_construct_t;

5.2.3. Third Argument: API-Specific Information3431

The third argument is a pointer to the acc_api_info struct type, shown here.3432

typedef struct acc_api_info{
acc_device_api device_api;

int valid_bytes;

acc_device_t device_type;

int vendor;

const void* device_handle;

const void* context_handle;

const void* async_handle;

}acc_api_info;

The fields are described below:3433

• acc_device_api device_api - The API in use for this device. The data type is the3434

enumeration acc_device_api, which is described later in this section.3435

• int valid_bytes - The number of valid bytes in this struct. See the discussion above in3436

Section 5.2.1 First Argument: General Information.3437

125

The OpenACC R© API 5.3. Loading the Library

• acc_device_t device_type - The device type; the datatype is acc_device_t, de-3438

fined in openacc.h.3439

• int vendor - An identifier to identify the OpenACC vendor; contact your vendor to deter-3440

mine the value used by that vendor’s runtime.3441

• const void* device_handle - If applicable, this will be a pointer to the API-specific3442

device information.3443

• const void* context_handle - If applicable, this will be a pointer to the API-specific3444

context information.3445

• const void* async_handle - If applicable, this will be a pointer to the API-specific3446

async queue information.3447

According to the value of device_api a library can cast the pointers of the fields device_handle,3448

context_handle and async_handle to the respective device API type. The following device3449

APIs are defined in the interface below. Any implementation-defined device API type must have a3450

value greater than acc_device_api_implementation_defined.3451

typedef enum acc_device_api{
acc_device_api_none = 0, /* no device API */

acc_device_api_cuda = 1, /* CUDA driver API */

acc_device_api_opencl = 2, /* OpenCL API */

acc_device_api_other = 4, /* other device API */

acc_device_api_implementation_defined = 1000 /* other device API */

}acc_device_api;

5.3. Loading the Library3452

This section describes how a tools library is loaded when the program is run. Four methods are3453

described.3454

• A tools library may be linked with the program, as any other library is linked, either as a3455

static library or a dynamic library, and the runtime will call a predefined library initialization3456

routine that will register the event callbacks.3457

• The OpenACC runtime implementation may support a dynamic tools library, such as a shared3458

object for Linux or OS/X, or a DLL for Windows, which is then dynamically loaded at runtime3459

under control of the environment variable ACC_PROFLIB.3460

• Some implementations where the OpenACC runtime is itself implemented as a dynamic li-3461

brary may support adding a tools library using the LD_PRELOAD feature in Linux.3462

• A tools library may be linked with the program, as in the first option, and the application itself3463

can call a library initialization routine that will register the event callbacks.3464

Callbacks are registered with the runtime by calling acc_prof_register for each event as3465

described in Section 5.4 Registering Event Callbacks. The prototype for acc_prof_register3466

is:3467

extern void acc_prof_register

126

The OpenACC R© API 5.3. Loading the Library

(acc_event_t event_type, acc_prof_callback cb,

acc_register_t info);

The first argument to acc_prof_register is the event for which a callback is being registered3468

(compare Section 5.1 Events). The second argument is a pointer to the callback routine:3469

typedef void (*acc_prof_callback)

(acc_prof_info*,acc_event_info*,acc_api_info*);

The third argument is usually zero (or acc_reg). See Section 5.4.2Disabling and Enabling Callbacks3470

for cases where a nonzero value is used. The argument acc_register_t is an enum type:3471

typedef enum acc_register_t{
acc_reg = 0,

acc_toggle = 1,

acc_toggle_per_thread = 2

}acc_register_t;

An example of registering callbacks for launch, upload, and download events is:3472

acc_prof_register(acc_ev_enqueue_launch_start, prof_launch, 0);

acc_prof_register(acc_ev_enqueue_upload_start, prof_data, 0);

acc_prof_register(acc_ev_enqueue_download_start, prof_data, 0);

As shown in this example, the same routine (prof_data) can be registered for multiple events.3473

The routine can use the event_type field in the acc_prof_info structure to determine for3474

what event it was invoked.3475

5.3.1. Library Registration3476

The OpenACC runtime will invoke acc_register_library, passing the addresses of the reg-3477

istration routines acc_prof_register and acc_prof_unregister, in case that routine3478

comes from a dynamic library. In the third argument it passes the address of the lookup routine3479

acc_prof_lookup to obtain the addresses of inquiry functions. No inquiry functions are de-3480

fined in this profiling interface, but we preserve this argument for future support of sampling-based3481

tools.3482

Typically, the OpenACC runtime will include a weak definition of acc_register_library,3483

which does nothing and which will be called when there is no tools library. In this case, the library3484

can save the addresses of these routines and/or make registration calls to register any appropriate3485

callbacks. The prototype for acc_register_library is:3486

extern void acc_register_library

(acc_prof_reg reg, acc_prof_reg unreg,

acc_prof_lookup_func lookup);

The first two arguments of this routine are of type:3487

127

The OpenACC R© API 5.3. Loading the Library

typedef void (*acc_prof_reg)

(acc_event_t event_type, acc_prof_callback cb,

acc_register_t info);

The third argument passes the address to the lookup function acc_prof_lookup to obtain the3488

address of interface functions. It is of type:3489

typedef void (*acc_query_fn)();

typedef acc_query_fn (*acc_prof_lookup_func)

(const char* acc_query_fn_name);

The argument of the lookup function is a string with the name of the inquiry function. There are no3490

inquiry functions defined for this interface.3491

5.3.2. Statically-Linked Library Initialization3492

A tools library can be compiled and linked directly into the application. If the library provides an3493

external routine acc_register_library as specified in Section 5.3.1Library Registration, the3494

runtime will invoke that routine to initialize the library.3495

The sequence of events is:3496

1. The runtime invokes the acc_register_library routine from the library.3497

2. The acc_register_library routine calls acc_prof_register for each event to3498

be monitored.3499

3. acc_prof_register records the callback routines.3500

4. The program runs, and your callback routines are invoked at the appropriate events.3501

In this mode, only one tool library is supported.3502

5.3.3. Runtime Dynamic Library Loading3503

A common case is to build the tools library as a dynamic library (shared object for Linux or OS/X,3504

DLL for Windows). In that case, you can have the OpenACC runtime load the library during initial-3505

ization. This allows you to enable runtime profiling without rebuilding or even relinking your ap-3506

plication. The dynamic library must implement a registration routine acc_register_library3507

as specified in Section 5.3.1 Library Registration.3508

The user may set the environment variable ACC_PROFLIB to the path to the library will tell the3509

OpenACC runtime to load your dynamic library at initialization time:3510

Bash:

export ACC_PROFLIB=/home/user/lib/myprof.so

./myapp

or

ACC_PROFLIB=/home/user/lib/myprof.so ./myapp

128

The OpenACC R© API 5.3. Loading the Library

C-shell:

setenv ACC_PROFLIB /home/user/lib/myprof.so

./myapp

When the OpenACC runtime initializes, it will read the ACC_PROFLIB environment variable (with3511

getenv). The runtime will open the dynamic library (using dlopen or LoadLibraryA); if3512

the library cannot be opened, the runtime may abort, or may continue execution with or with-3513

out an error message. If the library is successfully opened, the runtime will get the address of3514

the acc_register_library routine (using dlsym or GetProcAddress). If this routine3515

is resolved in the library, it will be invoked passing in the addresses of the registration routine3516

acc_prof_register, the deregistration routine acc_prof_unregister, and the lookup3517

routine acc_prof_lookup. The registration routine in your library, acc_register_library,3518

should register the callbacks by calling the register argument, and should save the addresses of3519

the arguments (register, unregister, and lookup) for later use, if needed.3520

The sequence of events is:3521

1. Initialization of the OpenACC runtime.3522

2. OpenACC runtime reads ACC_PROFLIB.3523

3. OpenACC runtime loads the library.3524

4. OpenACC runtime calls the acc_register_library routine in that library.3525

5. Your acc_register_library routine calls acc_prof_register for each event to3526

be monitored.3527

6. acc_prof_register records the callback routines.3528

7. The program runs, and your callback routines are invoked at the appropriate events.3529

If supported, paths to multiple dynamic libraries may be specified in the ACC_PROFLIB environ-3530

ment variable, separated by semicolons (;). The OpenACC runtime will open these libraries and in-3531

voke the acc_register_library routine for each, in the order they appear in ACC_PROFLIB.3532

5.3.4. Preloading with LD PRELOAD3533

The implementation may also support dynamic loading of a tools library using the LD_PRELOAD3534

feature available in some systems. In such an implementation, you need only specify your tools3535

library path in the LD_PRELOAD environment variable before executing your program. The Open-3536

ACC runtime will invoke the acc_register_library routine in your tools library at initial-3537

ization time. This requires that the OpenACC runtime include a dynamic library with a default3538

(empty) implementation of acc_register_library that will be invoked in the normal case3539

where there is no LD_PRELOAD setting. If an implementation only supports static linking, or if the3540

application is linked without dynamic library support, this feature will not be available.3541

Bash:

export LD_PRELOAD=/home/user/lib/myprof.so

./myapp

or

LD_PRELOAD=/home/user/lib/myprof.so ./myapp

129

The OpenACC R© API 5.4. Registering Event Callbacks

C-shell:

setenv LD_PRELOAD /home/user/lib/myprof.so

./myapp

The sequence of events is:3542

1. The operating system loader loads the library specified in LD_PRELOAD.3543

2. The call to acc_register_library in the OpenACC runtime is resolved to the routine3544

in the loaded tools library.3545

3. OpenACC runtime calls the acc_register_library routine in that library.3546

4. Your acc_register_library routine calls acc_prof_register for each event to3547

be monitored.3548

5. acc_prof_register records the callback routines.3549

6. The program runs, and your callback routines are invoked at the appropriate events.3550

In this mode, only a single tools library is supported, since only one acc_register_library3551

initialization routine will get resolved by the dynamic loader.3552

5.3.5. Application-Controlled Initialization3553

An alternative to default initialization is to have the application itself call the library initialization3554

routine, which then calls acc_prof_register for each appropriate event. The library may be3555

statically linked to the application or your application may dynamically load the library.3556

The sequence of events is:3557

1. Your application calls the library initialization routine.3558

2. The library initialization routine calls acc_prof_register for each event to be moni-3559

tored.3560

3. acc_prof_register records the callback routines.3561

4. The program runs, and your callback routines are invoked at the appropriate events.3562

In this mode, multiple tools libraries can be supported, with each library initialization routine in-3563

voked by the application.3564

5.4. Registering Event Callbacks3565

This section describes how to register and unregister callbacks, temporarily disabling and enabling3566

callbacks, the behavior of dynamic registration and unregistration, and requirements on an Open-3567

ACC implementation to correctly support the interface.3568

130

The OpenACC R© API 5.4. Registering Event Callbacks

5.4.1. Event Registration and Unregistration3569

The library must calls the registration routine acc_prof_register to register each callback3570

with the runtime. A simple example:3571

extern void prof_data(acc_prof_info* profinfo,

acc_event_info* eventinfo, acc_api_info* apiinfo);

extern void prof_launch(acc_prof_info* profinfo,

acc_event_info* eventinfo, acc_api_info* apiinfo);

. . .

void acc_register_library(acc_prof_reg reg,

acc_prof_reg unreg, acc_prof_lookup_func lookup){
reg(acc_ev_enqueue_upload_start, prof_data, 0);

reg(acc_ev_enqueue_download_start, prof_data, 0);

reg(acc_ev_enqueue_launch_start, prof_launch, 0);

}

In this example the prof_data routine will be invoked for each data upload and download event,3572

and the prof_launch routine will be invoked for each launch event. The prof_data routine3573

might start out with:3574

void prof_data(acc_prof_info* profinfo,

acc_event_info* eventinfo, acc_api_info* apiinfo){
acc_data_event_info* datainfo;

datainfo = (acc_data_event_info*)eventinfo;

switch(datainfo->event_type){
case acc_ev_enqueue_upload_start :

. . .

}
}

Multiple Callbacks3575

Multiple callback routines can be registered on the same event:3576

acc_prof_register(acc_ev_enqueue_upload_start, prof_data, 0);

acc_prof_register(acc_ev_enqueue_upload_start, prof_up, 0);

For most events, the callbacks will be invoked in the order in which they are registered. However,3577

end events, named acc_ev_..._end, invoke callbacks in the reverse order. Essentially, each3578

event has an ordered list of callback routines. A new callback routine is appended to the tail of the3579

list for that event. For most events, that list is traversed from the head to the tail, but for end events,3580

the list is traversed from the tail to the head.3581

If a callback is registered, then later unregistered, then later still registered again, the second regis-3582

tration is considered to be a new callback, and the callback routine will then be appended to the tail3583

of the callback list for that event.3584

131

The OpenACC R© API 5.4. Registering Event Callbacks

Unregistering3585

A matching call to acc_prof_unregister will remove that routine from the list of callback3586

routines for that event.3587

acc_prof_register(acc_ev_enqueue_upload_start, prof_data, 0);

// prof_data is on the callback list for acc_ev_enqueue_upload_start

. . .

acc_prof_unregister(acc_ev_enqueue_upload_start, prof_data, 0);

// prof_data is removed from the callback list

// for acc_ev_enqueue_upload_start

Each entry on the callback list must also have a ref count. This keeps track of how many times3588

this routine was added to this event’s callback list. If a routine is registered n times, it must be3589

unregistered n times before it is removed from the list. Note that if a routine is registered multiple3590

times for the same event, its ref count will be incremented with each registration, but it will only be3591

invoked once for each event instance.3592

5.4.2. Disabling and Enabling Callbacks3593

A callback routine may be temporarily disabled on the callback list for an event, then later re-3594

enabled. The behavior is slightly different than unregistering and later re-registering that event.3595

When a routine is disabled and later re-enabled, the routine’s position on the callback list for that3596

event is preserved. When a routine is unregistered and later re-registered, the routine’s position on3597

the callback list for that event will move to the tail of the list. Also, unregistering a callback must be3598

done n times if the callback routine was registered n times. In contrast, disabling, and enabling an3599

event sets a toggle. Disabling a callback will immediately reset the toggle and disable calls to that3600

routine for that event, even if it was enabled multiple times. Enabling a callback will immediately3601

set the toggle and enable calls to that routine for that event, even if it was disabled multiple times.3602

Registering a new callback initially sets the toggle.3603

A call to acc_prof_unregister with a value of acc_toggle as the third argument will dis-3604

able callbacks to the given routine. A call to acc_prof_registerwith a value of acc_toggle3605

as the third argument will enable those callbacks.3606

acc_prof_unregister(acc_ev_enqueue_upload_start,

prof_data, acc_toggle);

// prof_data is disabled

. . .

acc_prof_register(acc_ev_enqueue_upload_start,

prof_data, acc_toggle);

// prof_data is re-enabled

A call to either acc_prof_unregister or acc_prof_register to disable or enable a call-3607

back when that callback is not currently registered for that event will be ignored with no error.3608

All callbacks for an event may be disabled (and re-enabled) by passing NULL to the second argument3609

and acc_toggle to the third argument of acc_prof_unregister (and acc_prof_register).3610

132

The OpenACC R© API 5.5. Advanced Topics

This sets a toggle for that event, which is distinct from the toggle for each callback for that event.3611

While the event is disabled, no callbacks for that event will be invoked. Callbacks for that event can3612

be registered, unregistered, enabled, and disabled while that event is disabled, but no callbacks will3613

be invoked for that event until the event itself is enabled. Initially, all events are enabled.3614

acc_prof_unregister(acc_ev_enqueue_upload_start,

prof_data, acc_toggle);

// prof_data is disabled

. . .

acc_prof_unregister(acc_ev_enqueue_upload_start,

NULL, acc_toggle);

// acc_ev_enqueue_upload_start callbacks are disabled

. . .

acc_prof_register(acc_ev_enqueue_upload_start,

prof_data, acc_toggle);

// prof_data is re-enabled, but

// acc_ev_enqueue_upload_start callbacks still disabled

. . .

acc_prof_register(acc_ev_enqueue_upload_start, prof_up, 0);

// prof_up is registered and initially enabled, but

// acc_ev_enqueue_upload_start callbacks still disabled

. . .

acc_prof_register(acc_ev_enqueue_upload_start,

NULL, acc_toggle);

// acc_ev_enqueue_upload_start callbacks are enabled

Finally, all callbacks can be disabled (and enabled) by passing the argument list (0, NULL,3615

acc_toggle) to acc_prof_unregister (and acc_prof_register). This sets a global3616

toggle disabling all callbacks, which is distinct from the toggle enabling callbacks for each event and3617

the toggle enabling each callback routine. The behavior of passing zero as the first argument and a3618

non-NULL value as the second argument to acc_prof_unregister or acc_prof_register3619

is not defined, and may be ignored by the runtime without error.3620

All callbacks can be disabled (or enabled) for just the current thread by passing the argument list3621

(0, NULL, acc_toggle_per_thread) to acc_prof_unregister (and acc_prof_register).3622

This is the only thread-specific interface to acc_prof_register and acc_prof_unregister,3623

all other calls to register, unregister, enable, or disable callbacks affect all threads in the application.3624

5.5. Advanced Topics3625

This section describes advanced topics such as dynamic registration and changes of the execution3626

state for callback routines as well as the runtime and tool behavior for multiple host threads.3627

133

The OpenACC R© API 5.5. Advanced Topics

5.5.1. Dynamic Behavior3628

Callback routines may be registered or unregistered, enabled or disabled at any point in the execution3629

of the program. Calls may appear in the library itself, during the processing of an event. The3630

OpenACC runtime must allow for this case, where the callback list for an event is modified while3631

that event is being processed.3632

Dynamic Registration and Unregistration3633

Calls to acc_register and acc_unregister may occur at any point in the application. A3634

callback routine can be registered or unregistered from a callback routine, either the same routine3635

or another routine, for a different event or the same event for which the callback was invoked. If a3636

callback routine is registered for an event while that event is being processed, then the new callback3637

routine will be added to the tail of the list of callback routines for this event. Some events (the3638

_end) events process the callback routines in reverse order, from the tail to the head. For those3639

events, adding a new callback routine will not cause the new routine to be invoked for this instance3640

of the event. The other events process the callback routines in registration order, from the head to3641

the tail. Adding a new callback routine for such a event will cause the runtime to invoke that newly3642

registered callback routine for this instance of the event. Both the runtime and the library must3643

implement and expect this behavior.3644

If an existing callback routine is unregistered for an event while that event is being processed, that3645

callback routine is removed from the list of callbacks for this event. For any event, if that callback3646

routine had not yet been invoked for this instance of the event, it will not be invoked.3647

Registering and unregistering a callback routine is a global operation and affects all threads, in a3648

multithreaded application. See Section 5.4.1 Multiple Callbacks.3649

Dynamic Enabling and Disabling3650

Calls to acc_register and acc_unregister to enable and disable a specific callback for3651

an event, enable or disable all callbacks for an event, or enable or disable all callbacks may occur3652

at any point in the application. A callback routine can be enabled or disabled from a callback3653

routine, either the same routine or another routine, for a different event or the same event for which3654

the callback was invoked. If a callback routine is enabled for an event while that event is being3655

processed, then the new callback routine will be immediately enabled. If it appears on the list of3656

callback routines closer to the head (for _end events) or closer to the tail (for other events), that3657

newly-enabled callback routine will be invoked for this instance of this event, unless it is disabled3658

or unregistered before that callback is reached.3659

If a callback routine is disabled for an event while that event is being processed, that callback routine3660

is immediately disabled. For any event, if that callback routine had not yet been invoked for this in-3661

stance of the event, it will not be invoked, unless it is enabled before that callback routine is reached3662

in the list of callbacks for this event. If all callbacks for an event are disabled while that event is3663

being processed, or all callbacks are disabled for all events while an event is being processed, then3664

when this callback routine returns, no more callbacks will be invoked for this instance of the event.3665

Registering and unregistering a callback routine is a global operation and affects all threads, in a3666

multithreaded application. See Section 5.4.1 Multiple Callbacks.3667

134

The OpenACC R© API 5.5. Advanced Topics

5.5.2. OpenACC Events During Event Processing3668

OpenACC events may occur during event processing. This may be because of OpenACC API rou-3669

tine calls or OpenACC constructs being reached during event processing, or because of multiple host3670

threads executing asynchronously. Both the OpenACC runtime and the tool library must implement3671

the proper behavior.3672

5.5.3. Multiple Host Threads3673

Many programs that use OpenACC also use multiple host threads, such as programs using the3674

OpenMP API. The appearance of multiple host threads affects both the OpenACC runtime and the3675

tools library.3676

Runtime Support for Multiple Threads3677

The OpenACC runtime must be thread-safe, and the OpenACC runtime implementation of this3678

tools interface must also be thread-safe. All threads use the same set of callbacks for all events, so3679

registering a callback from one thread will cause all threads to execute that callback. This means that3680

managing the callback lists for each event must be protected from multiple simultaneous updates.3681

This includes adding a callback to the tail of the callback list for an event, removing a callback from3682

the list for an event, and incrementing or decrementing the ref count for a callback routine for an3683

event.3684

In addition, one thread may register, unregister, enable, or disable a callback for an event while3685

another thread is processing the callback list for that event asynchronously. The exact behavior may3686

be dependent on the implementation, but some behaviors are expected and others are disallowed.3687

In the following examples, there are three callbacks, A, B, and C, registered for event E in that3688

order, where callbacks A and B are enabled and callback C is temporarily disabled. Thread T1 is3689

dynamically modifying the callbacks for event E while thread T2 is processing an instance of event3690

E.3691

• Suppose thread T1 unregisters or disables callback A for event E. Thread T2 may or may not3692

invoke callback A for this event instance, but it must invoke callback B; if it invokes callback3693

A, that must precede the invocation of callback B.3694

• Suppose thread T1 unregisters or disables callback B for event E. Thread T2 may or may not3695

invoke callback B for this event instance, but it must invoke callback A; if it invokes callback3696

B, that must follow the invocation of callback A.3697

• Suppose thread T1 unregisters or disables callback A and then unregisters or disables callback3698

B for event E. Thread T2 may or may not invoke callback A and may or may not invoke3699

callback B for this event instance, but if it invokes both callbacks, it must invoke callback A3700

before it invokes callback B.3701

• Suppose thread T1 unregisters or disables callback B and then unregisters or disables callback3702

A for event E. Thread T2 may or may not invoke callback A and may or may not invoke3703

callback B for this event instance, but if it invokes callback B, it must have invoked callback3704

A for this event instance.3705

• Suppose thread T1 is registering a new callback D for event E. Thread T2 may or may not3706

135

The OpenACC R© API 5.5. Advanced Topics

invoke callback D for this event instance, but it must invoke both callbacks A and B. If it3707

invokes callback D, that must follow the invocations of A and B.3708

• Suppose thread T1 is enabling callback C for event E. Thread T2 may or may not invoke3709

callback C for this event instance, but it must invoke both callbacks A and B. If it invokes3710

callback C, that must follow the invocations of A and B.3711

The acc_prof_info struct has a thread_id field, which the runtime must set to a unique3712

value for each host thread, though it need not be the same as the OpenMP threadnum value.3713

Library Support for Multiple Threads3714

The tool library must also be thread-safe. The callback routine will be invoked in the context of the3715

thread that reaches the event. The library may receive a callback from a thread T2 while it’s still3716

processing a callback, from the same event type or from a different event type, from another thread3717

T1. The acc_prof_info struct has a thread_id field, which the runtime must set to a unique3718

value for each host thread.3719

If the tool library uses dynamic callback registration and unregistration, or callback disabling and3720

enabling, recall that unregistering or disabling an event callback from one thread will unregister or3721

disable that callback for all threads, and registering or enabling an event callback from any thread3722

will register or enable it for all threads. If two or more threads register the same callback for the3723

same event, the behavior is the same as if one thread registered that callback multiple times; see3724

Section 5.4.1 Multiple Callbacks. The acc_unregister routine must be called as many times3725

as acc_register for that callback/event pair in order to totally unregister it. If two threads3726

register two different callback routines for the same event, unless the order of the registration calls3727

is guaranteed by some sychronization method, the order in which the runtime sees the registration3728

may differ for multiple runs, meaning the order in which the callbacks occur will differ as well.3729

136

The OpenACC R© API 6. Glossary

6. Glossary3730

Clear and consistent terminology is important in describing any programming model. We define3731

here the terms you must understand in order to make effective use of this document and the asso-3732

ciated programming model. In particular, some terms used in this specification conflict with their3733

usage in the base language specifications. When there is potential confusion, the term will appear3734

here.3735

Accelerator – a device attached to a CPU and to which the CPU can offload data and compute3736

kernels to perform compute-intensive calculations.3737

Accelerator routine – a C or C++ function or Fortran subprogram compiled for the accelerator3738

with the routine directive.3739

Accelerator thread – a thread of execution that executes on the accelerator; a single vector lane of3740

a single worker of a single gang.3741

Aggregate datatype – an array or composite datatype, or any non-scalar datatype. In Fortran, ag-3742

gregate datatypes include arrays and derived types. In C, aggregate datatypes include arrays, targets3743

of pointers, structs, and unions. In C++, aggregate datatypes include arrays, targets of pointers,3744

classes, structs, and unions.3745

Aggregate variables – an array or composite variable, or a variable of any non-scalar datatype.3746

Async-argument – an async-argument is a nonnegative scalar integer expression (int for C or C++,3747

integer for Fortran), or one of the special values acc_async_noval or acc_async_sync.3748

Barrier – a type of synchronization where all parallel execution units or threads must reach the3749

barrier before any execution unit or thread is allowed to proceed beyond the barrier; modeled after3750

the starting barrier on a horse race track.3751

Compute intensity – for a given loop, region, or program unit, the ratio of the number of arithmetic3752

operations performed on computed data divided by the number of memory transfers required to3753

move that data between two levels of a memory hierarchy.3754

Construct – a directive and the associated statement, loop, or structured block, if any.3755

Composite datatype – a derived type in Fortran, or a struct or union type in C, or a class,3756

struct, or union type in C++. (This is different from the use of the term composite data type in3757

the C and C++ languages.)3758

Composite variable – a variable of composite datatype. In Fortran, a composite variable must not3759

have allocatable or pointer attributes.3760

Compute construct – a parallel construct, kernels construct, or serial construct.3761

Compute region – a parallel region, kernels region, or serial region.3762

CUDA – the CUDA environment from NVIDIA is a C-like programming environment used to3763

explicitly control and program an NVIDIA GPU.3764

137

The OpenACC R© API 6. Glossary

Current device – the device represented by the acc-current-device-type-var and acc-current-device-3765

num-var ICVs3766

Current device type – the device type represented by the acc-current-device-type-var ICV3767

Data lifetime – the lifetime of a data object in device memory, which may begin at the entry to3768

a data region, or at an enter data directive, or at a data API call such as acc_copyin or3769

acc_create, and which may end at the exit from a data region, or at an exit data directive,3770

or at a data API call such as acc_delete, acc_copyout, or acc_shutdown, or at the end of3771

the program execution.3772

Data region – a region defined by a data construct, or an implicit data region for a function or3773

subroutine containing OpenACC directives. Data constructs typically allocate device memory and3774

copy data from host to device memory upon entry, and copy data from device to local memory and3775

deallocate device memory upon exit. Data regions may contain other data regions and compute3776

regions.3777

Device – a general reference to an accelerator or a multicore CPU.3778

Default asynchronous queue – the asynchronous activity queue represented in the acc-default-3779

async-var ICV3780

Device memory – memory attached to a device, logically and physically separate from the host3781

memory.3782

Device thread – a thread of execution that executes on any device.3783

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment statement, that3784

is interpreted by a compiler to augment information about or specify the behavior of the program.3785

Discrete memory – memory accessible from the local thread that is not accessible from the current3786

device, or memory accessible from the current device that is not accessible from the local thread.3787

DMA – Direct Memory Access, a method to move data between physically separate memories;3788

this is typically performed by a DMA engine, separate from the host CPU, that can access the host3789

physical memory as well as an IO device or other physical memory.3790

GPU – a Graphics Processing Unit; one type of accelerator.3791

GPGPU – General Purpose computation on Graphics Processing Units.3792

Host – the main CPU that in this context may have one or more attached accelerators. The host3793

CPU controls the program regions and data loaded into and executed on one or more devices.3794

Host thread – a thread of execution that executes on the host.3795

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C3796

function. A call to a subprogram or function enters the implicit data region, and a return from the3797

subprogram or function exits the implicit data region.3798

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are divided into3799

a parallel domain, and the body of the loop becomes the body of the kernel.3800

Kernels region – a region defined by a kernels construct. A kernels region is a structured block3801

which is compiled for the accelerator. The code in the kernels region will be divided by the compiler3802

into a sequence of kernels; typically each loop nest will become a single kernel. A kernels region3803

may require space in device memory to be allocated and data to be copied from local memory to3804

138

The OpenACC R© API 6. Glossary

device memory upon region entry, and data to be copied from device memory to local memory and3805

space in device memory to be deallocated upon exit.3806

Level of parallelism – The possible levels of parallelism in OpenACC are gang, worker, vector,3807

and sequential. One or more of gang, worker, and vector parallelism may appear on a loop con-3808

struct. Sequential execution corresponds to no parallelism. The gang, worker, vector, and3809

seq clauses specify the level of parallelism for a loop.3810

Local device – the device where the local thread executes.3811

Local memory – the memory associated with the local thread.3812

Local thread – the host thread or the accelerator thread that executes an OpenACC directive or3813

construct.3814

Loop trip count – the number of times a particular loop executes.3815

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different exe-3816

cution units or threads execute different instruction streams asynchronously with each other.3817

OpenCL – short for Open Compute Language, a developing, portable standard C-like programming3818

environment that enables low-level general-purpose programming on GPUs and other accelerators.3819

Orphaned loop construct - a loop construct that is not lexically contained in any compute con-3820

struct, that is, that has no parent compute construct.3821

Parallel region – a region defined by a parallel construct. A parallel region is a structured block3822

which is compiled for the accelerator. A parallel region typically contains one or more work-sharing3823

loops. A parallel region may require space in device memory to be allocated and data to be copied3824

from local memory to device memory upon region entry, and data to be copied from device memory3825

to local memory and space in device memory to be deallocated upon exit.3826

Parent compute construct – for a loop construct, the parallel, kernels, or serial con-3827

struct that lexically contains the loop construct and is the innermost compute construct that con-3828

tains that loop construct, if any.3829

Present data – data for which the sum of the structured and dynamic reference counters is greater3830

than zero.3831

Private data – with respect to an iterative loop, data which is used only during a particular loop3832

iteration. With respect to a more general region of code, data which is used within the region but is3833

not initialized prior to the region and is re-initialized prior to any use after the region.3834

Procedure – in C or C++, a function in the program; in Fortran, a subroutine or function.3835

Region – all the code encountered during an instance of execution of a construct. A region includes3836

any code in called routines, and may be thought of as the dynamic extent of a construct. This may3837

be a parallel region, kernels region, serial region, data region or implicit data region.3838

Scalar – a variable of scalar datatype. In Fortran, scalars must not have allocatable or pointer3839

attributes.3840

Scalar datatype – an intrinsic or built-in datatype that is not an array or aggregate datatype. In For-3841

tran, scalar datatypes are integer, real, double precision, complex, or logical. In C, scalar datatypes3842

are char (signed or unsigned), int (signed or unsigned, with optional short, long or long long at-3843

tribute), enum, float, double, long double, Complex (with optional float or long attribute), or any3844

pointer datatype. In C++, scalar datatypes are char (signed or unsigned), wchar t, int (signed or3845

139

The OpenACC R© API 6. Glossary

unsigned, with optional short, long or long long attribute), enum, bool, float, double, long double,3846

or any pointer datatype. Not all implementations or targets will support all of these datatypes.3847

Serial region – a region defined by a serial construct. A serial region is a structured block which3848

is compiled for the accelerator. A serial region contains code that is executed by one vector lane of3849

one worker in one gang. A serial region may require space in device memory to be allocated and3850

data to be copied from local memory to device memory upon region entry, and data to be copied3851

from device memory to local memory and space in device memory to be deallocated upon exit.3852

Shared memory – memory that is accessible from both the local thread and the current device.3853

SIMD – A method of parallel execution (single-instruction, multiple-data) where the same instruc-3854

tion is applied to multiple data elements simultaneously.3855

SIMD operation – a vector operation implemented with SIMD instructions.3856

Structured block – in C or C++, an executable statement, possibly compound, with a single entry3857

at the top and a single exit at the bottom. In Fortran, a block of executable statements with a single3858

entry at the top and a single exit at the bottom.3859

Thread – On a host CPU, a thread is defined by a program counter and stack location; several host3860

threads may comprise a process and share host memory. On an accelerator, a thread is any one3861

vector lane of one worker of one gang.3862

var – the name of a variable (scalar, array, or composite variable), or a subarray specification, or an3863

array element, or a composite variable member, or the name of a Fortran common block between3864

slashes.3865

Vector operation – a single operation or sequence of operations applied uniformly to each element3866

of an array.3867

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that is3868

visible to the program unit being compiled.3869

140

The OpenACC R© API A.1. Target Devices

A. Recommendations for Implementors3870

This section gives recommendations for standard names and extensions to use for implementations3871

for specific targets and target platforms, to promote portability across such implementations, and3872

recommended options that programmers find useful. While this appendix is not part of the Open-3873

ACC specification, implementations that provide the functionality specified herein are strongly rec-3874

ommended to use the names in this section. The first subsection describes devices, such as NVIDIA3875

GPUs. The second subsection describes additional API routines for target platforms, such as CUDA3876

and OpenCL. The third subsection lists several recommended options for implementations.3877

A.1. Target Devices3878

A.1.1. NVIDIA GPU Targets3879

This section gives recommendations for implementations that target NVIDIA GPU devices.3880

Accelerator Device Type3881

These implementations should use the name acc_device_nvidia for the acc_device_t3882

type or return values from OpenACC Runtime API routines.3883

ACC DEVICE TYPE3884

An implementation should use the case-insensitive name nvidia for the environment variable3885

ACC_DEVICE_TYPE.3886

device type clause argument3887

An implementation should use the case-insensitive name nvidia as the argument to the device_type3888

clause.3889

A.1.2. AMD GPU Targets3890

This section gives recommendations for implementations that target AMD GPUs.3891

141

The OpenACC R© API A.2. API Routines for Target Platforms

Accelerator Device Type3892

These implementations should use the name acc_device_radeon for the acc_device_t3893

type or return values from OpenACC Runtime API routines.3894

ACC DEVICE TYPE3895

These implementations should use the case-insensitive name radeon for the environment variable3896

ACC_DEVICE_TYPE.3897

device type clause argument3898

An implementation should use the case-insensitive name radeon as the argument to the device_type3899

clause.3900

A.1.3. Multicore Host CPU Target3901

This section gives recommendations for implementations that target the multicore host CPU.3902

Accelerator Device Type3903

These implementations should use the name acc_device_host for the acc_device_t type3904

or return values from OpenACC Runtime API routines.3905

ACC DEVICE TYPE3906

These implementations should use the case-insensitive name host for the environment variable3907

ACC_DEVICE_TYPE.3908

device type clause argument3909

An implementation should use the case-insensitive name host as the argument to the device_type3910

clause.3911

A.2. API Routines for Target Platforms3912

These runtime routines allow access to the interface between the OpenACC runtime API and the3913

underlying target platform. An implementation may not implement all these routines, but if it3914

provides this functionality, it should use these function names.3915

142

The OpenACC R© API A.2. API Routines for Target Platforms

A.2.1. NVIDIA CUDA Platform3916

This section gives runtime API routines for implementations that target the NVIDIA CUDA Run-3917

time or Driver API.3918

acc get current cuda device3919

Summary The acc_get_current_cuda_device routine returns the NVIDIA CUDA de-3920

vice handle for the current device.3921

Format3922

C or C++:

void* acc_get_current_cuda_device ();

acc get current cuda context3923

Summary The acc_get_current_cuda_context routine returns the NVIDIA CUDA3924

context handle in use for the current device.3925

Format3926

C or C++:

void* acc_get_current_cuda_context ();

acc get cuda stream3927

Summary The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in3928

use for the current device for the asynchronous activity queue associated with the async argument.3929

This argument must be an async-argument as defined in Section 2.16.1 async clause.3930

Format3931

C or C++:

void* acc_get_cuda_stream (int async);

acc set cuda stream3932

Summary The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the3933

current device for the asynchronous activity queue associated with the async argument. This3934

argument must be an async-argument as defined in Section 2.16.1 async clause.3935

143

The OpenACC R© API A.2. API Routines for Target Platforms

Format3936

C or C++:

void acc_set_cuda_stream (int async, void* stream);

A.2.2. OpenCL Target Platform3937

This section gives runtime API routines for implementations that target the OpenCL API on any3938

device.3939

acc get current opencl device3940

Summary The acc_get_current_opencl_device routine returns the OpenCL device3941

handle for the current device.3942

Format3943

C or C++:

void* acc_get_current_opencl_device ();

acc get current opencl context3944

Summary The acc_get_current_opencl_context routine returns the OpenCL context3945

handle in use for the current device.3946

Format3947

C or C++:

void* acc_get_current_opencl_context ();

acc get opencl queue3948

Summary The acc_get_opencl_queue routine returns the OpenCL command queue han-3949

dle in use for the current device for the asynchronous activity queue associated with the async3950

argument. This argument must be an async-argument as defined in Section 2.16.1 async clause.3951

Format3952

C or C++:

cl_command_queue acc_get_opencl_queue (int async);

144

The OpenACC R© API A.3. Recommended Options

acc set opencl queue3953

Summary The acc_set_opencl_queue routine returns the OpenCL command queue han-3954

dle in use for the current device for the asynchronous activity queue associated with the async3955

argument. This argument must be an async-argument as defined in Section 2.16.1 async clause.3956

Format3957

C or C++:

void acc_set_opencl_queue (int async, cl_command_queue cmdqueue);

A.3. Recommended Options3958

The following options are recommended for implementations; for instance, these may be imple-3959

mented as command-line options to a compiler or settings in an IDE.3960

A.3.1. C Pointer in Present clause3961

This revision of OpenACC clarifies the construct:3962

void test(int n){
float* p;

. . .

#pragma acc data present(p)

{
// code here. . .

}

This example tests whether the pointer p itself is present in the current device memory. Implemen-3963

tations before this revision commonly implemented this by testing whether the pointer target p[0]3964

was present in the current device memory, and this appears in many programs assuming such. Until3965

such programs are modified to comply with this revision, an option to implement present(p) as3966

present(p[0]) for C pointers may be helpful to users.3967

A.3.2. Autoscoping3968

If an implementation implements autoscoping to automatically determine variables that are private3969

to a compute region or to a loop, or to recognize reductions in a compute region or a loop, an option3970

to print a message telling what variables were affected by the analysis would be helpful to users. An3971

option to disable the autoscoping analysis would be helpful to promote program portability across3972

implementations.3973

145

The OpenACC R© API A.3. Recommended Options

146

Index

_OPENACC, 16–20, 24, 1213974

acc-current-device-num-var, 243975

acc-current-device-type-var, 243976

acc-default-async-var, 24, 813977

acc_async_noval, 16, 813978

acc_async_sync, 16, 813979

acc_device_host, 1423980

ACC_DEVICE_NUM, 25, 1133981

acc_device_nvidia, 1413982

acc_device_radeon, 1423983

ACC_DEVICE_TYPE, 25, 113, 141, 1423984

ACC_PROFLIB, 1133985

action3986

attach, 41, 453987

copyin, 443988

copyout, 443989

create, 443990

delete, 453991

detach, 41, 453992

immediate, 463993

present decrement, 443994

present increment, 433995

AMD GPU target, 1413996

async clause, 40, 76, 803997

async queue, 113998

async-argument, 813999

asynchronous execution, 11, 804000

atomic construct, 16, 634001

attach action, 41, 454002

attach clause, 504003

attachment counter, 414004

auto clause, 16, 554005

autoscoping, 1454006

barrier synchronization, 11, 28, 29, 31, 1374007

bind clause, 794008

cache directive, 614009

capture clause, 674010

collapse clause, 534011

common block, 41, 68, 70, 804012

compute construct, 1374013

compute region, 1374014

construct, 1374015

atomic, 634016

compute, 1374017

data, 37, 414018

host_data, 514019

kernels, 28, 414020

kernels loop, 624021

parallel, 27, 414022

parallel loop, 624023

serial, 30, 414024

serial loop, 624025

copy clause, 474026

copyin action, 444027

copyin clause, 474028

copyout action, 444029

copyout clause, 484030

create action, 444031

create clause, 49, 694032

CUDA, 11, 12, 137, 141, 1434033

data attribute4034

explicitly determined, 354035

implicitly determined, 354036

predetermined, 354037

data clause, 414038

data construct, 37, 414039

data lifetime, 1384040

data region, 36, 1384041

implicit, 364042

declare directive, 16, 674043

default clause, 344044

default(none) clause, 16, 28, 29, 314045

default(present), 28, 29, 314046

delete action, 454047

delete clause, 504048

detach action, 41, 454049

immediate, 464050

147

The OpenACC R© API Index

detach clause, 514051

device clause, 754052

device_resident clause, 694053

device_type clause, 254054

device_type clause, 16, 41, 141, 1424055

deviceptr clause, 41, 464056

direct memory access, 11, 1384057

DMA, 11, 1384058

enter data directive, 38, 414059

environment variable4060

_OPENACC, 244061

ACC_DEVICE_NUM, 25, 1134062

ACC_DEVICE_TYPE, 25, 113, 141, 1424063

ACC_PROFLIB, 1134064

exit data directive, 38, 414065

explicitly determined data attribute, 354066

firstprivate clause, 28, 31, 334067

gang, 27, 314068

gang clause, 54, 784069

gang parallelism, 104070

gang-arg, 534071

gang-partitioned mode, 104072

gang-redundant mode, 10, 27, 314073

GP mode, 104074

GR mode, 104075

host, 1424076

host clause, 16, 754077

host_data construct, 514078

ICV, 244079

if clause, 38, 39, 71, 73, 74, 76, 834080

immediate detach action, 464081

implicit data region, 364082

implicitly determined data attribute, 354083

independent clause, 564084

init directive, 714085

internal control variable, 244086

kernels construct, 28, 414087

kernels loop construct, 624088

level of parallelism, 10, 1394089

link clause, 16, 41, 704090

local device, 114091

local memory, 114092

local thread, 114093

loop construct, 524094

orphaned, 534095

no_create clause, 494096

nohost clause, 804097

num_gangs clause, 324098

num_workers clause, 324099

nvidia, 1414100

NVIDIA GPU target, 1414101

OpenCL, 11, 12, 139, 141, 1444102

orphaned loop construct, 534103

parallel construct, 27, 414104

parallel loop construct, 624105

parallelism4106

level, 10, 1394107

parent compute construct, 534108

predetermined data attribute, 354109

present clause, 41, 464110

present decrement action, 444111

present increment action, 434112

private clause, 33, 574113

radeon, 1424114

read clause, 674115

reduction clause, 33, 574116

reference counter, 404117

region4118

compute, 1374119

data, 36, 1384120

implicit data, 364121

routine directive, 16, 774122

self clause, 16, 754123

sentinel, 234124

seq clause, 55, 794125

serial construct, 30, 414126

serial loop construct, 624127

shutdown directive, 724128

size-expr, 534129

thread, 1404130

tile clause, 16, 564131

update clause, 674132

update directive, 744133

use_device clause, 524134

vector clause, 55, 794135

148

The OpenACC R© API Index

vector lane, 274136

vector parallelism, 104137

vector-partitioned mode, 104138

vector-single mode, 104139

vector_length clause, 334140

visible device copy, 1404141

VP mode, 104142

VS mode, 104143

wait clause, 40, 76, 814144

wait directive, 824145

worker, 27, 314146

worker clause, 54, 784147

worker parallelism, 104148

worker-partitioned mode, 104149

worker-single mode, 104150

WP mode, 104151

WS mode, 104152

149

	Introduction
	Scope
	Execution Model
	Memory Model
	Language Interoperability
	Conventions used in this document
	Organization of this document
	References
	Changes from Version 1.0 to 2.0
	Corrections in the August 2013 document
	Changes from Version 2.0 to 2.5
	Changes from Version 2.5 to 2.6
	Changes from Version 2.6 to 2.7
	Changes from Version 2.7 to 3.0
	Topics Deferred For a Future Revision

	Directives
	Directive Format
	Conditional Compilation
	Internal Control Variables
	Modifying and Retrieving ICV Values

	Device-Specific Clauses
	Compute Constructs
	Parallel Construct
	Kernels Construct
	Serial Construct
	if clause
	self clause
	async clause
	wait clause
	num_gangs clause
	num_workers clause
	vector_length clause
	private clause
	firstprivate clause
	reduction clause
	default clause

	Data Environment
	Variables with Predetermined Data Attributes
	Variables with Implicitly Determined Data Attributes
	Data Regions and Data Lifetimes
	Data Structures with Pointers
	Data Construct
	Enter Data and Exit Data Directives
	Reference Counters
	Attachment Counter

	Data Clauses
	Data Specification in Data Clauses
	Data Clause Actions
	deviceptr clause
	present clause
	copy clause
	copyin clause
	copyout clause
	create clause
	no_create clause
	delete clause
	attach clause
	detach clause

	Host_Data Construct
	use_device clause
	if clause
	if_present clause

	Loop Construct
	collapse clause
	gang clause
	worker clause
	vector clause
	seq clause
	auto clause
	tile clause
	device_type clause
	independent clause
	private clause
	reduction clause

	Cache Directive
	Combined Constructs
	Atomic Construct
	Declare Directive
	device_resident clause
	create clause
	link clause

	Executable Directives
	Init Directive
	Shutdown Directive
	Set Directive
	Update Directive
	Wait Directive
	Enter Data Directive
	Exit Data Directive

	Procedure Calls in Compute Regions
	Routine Directive
	Global Data Access

	Asynchronous Behavior
	async clause
	wait clause
	Wait Directive

	Fortran Optional Arguments

	Runtime Library
	Runtime Library Definitions
	Runtime Library Routines
	acc_get_num_devices
	acc_set_device_type
	acc_get_device_type
	acc_set_device_num
	acc_get_device_num
	acc_get_property
	acc_init
	acc_shutdown
	acc_async_test
	acc_async_test_device
	acc_async_test_all
	acc_async_test_all_device
	acc_wait
	acc_wait_device
	acc_wait_async
	acc_wait_device_async
	acc_wait_all
	acc_wait_all_device
	acc_wait_all_async
	acc_wait_all_device_async
	acc_get_default_async
	acc_set_default_async
	acc_on_device
	acc_malloc
	acc_free
	acc_copyin
	acc_create
	acc_copyout
	acc_delete
	acc_update_device
	acc_update_self
	acc_map_data
	acc_unmap_data
	acc_deviceptr
	acc_hostptr
	acc_is_present
	acc_memcpy_to_device
	acc_memcpy_from_device
	acc_memcpy_device
	acc_attach
	acc_detach
	acc_memcpy_d2d

	Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	Profiling Interface
	Events
	Runtime Initialization and Shutdown
	Device Initialization and Shutdown
	Enter Data and Exit Data
	Data Allocation
	Data Construct
	Update Directive
	Compute Construct
	Enqueue Kernel Launch
	Enqueue Data Update (Upload and Download)
	Wait

	Callbacks Signature
	First Argument: General Information
	Second Argument: Event-Specific Information
	Third Argument: API-Specific Information

	Loading the Library
	Library Registration
	Statically-Linked Library Initialization
	Runtime Dynamic Library Loading
	Preloading with LD_PRELOAD
	Application-Controlled Initialization

	Registering Event Callbacks
	Event Registration and Unregistration
	Disabling and Enabling Callbacks

	Advanced Topics
	Dynamic Behavior
	OpenACC Events During Event Processing
	Multiple Host Threads

	Glossary
	Recommendations for Implementors
	Target Devices
	NVIDIA GPU Targets
	AMD GPU Targets
	Multicore Host CPU Target

	API Routines for Target Platforms
	NVIDIA CUDA Platform
	OpenCL Target Platform

	Recommended Options
	C Pointer in Present clause
	Autoscoping

	Index

