
www.mentor.com/embedded
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Qt is a registered trade mark of Qt Company Oy. All other trademarks mentioned in this document are trademarks of their respective owners.

Improving GCC’s
Performance on OpenACC
Applications

March 27, 2018
Randy Allen

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Overview
n Compiler optimization is guaranteed employment

— Compilers are complex illustrations of the phrase “NP complete”
— Tuning an optimizer takes much time and many lines of sample code

n In “compiler” terms, GCC’s support of OpenACC is relatively young

n The omnipresent questions:
— How well tuned is code generation
— What are key improvements we can make

n Inquiring minds wanted to know

Title - Month, Year2

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

The Process
n Take a real world application on which GCC performs poorly

relative to PGI

n Profile and analyze it to determine the slowdowns

n Effect optimizations in GCC to address the slowdowns

n See how much work is required to get to PGI level performance

n See how general the changes are

Title - Month, Year3

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

The Application: LSDalton
n Large Scaled Coupled-Cluster Calculations of Supramolecular Wires
n Quantum chemistry code targeting

— Enzyme-catalyzed chemical reactions
— Carbon nanotubes and graphene
— Preferred crystal form of organic molecules

n Regular releases, tested with gfortran, ifort, pgf90
n Widely used

Title - Month, Year4

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Preparation
n LSDalton made extensive use of cuBLAS library, particularly for matrix-vector

and matrix-matrix multiplication
— This defeated the purpose, since the core computation not compiler generated
— Replaced those calls with netlib source, annotated with OpenACC directives

n LSDalton used a highly-optimized PGI host BLAS library that was incompatible
GCC due to OpenMP
— Given it was host, it provided a small performance boost
— Replaced with netlib source compiled with respective compilers to normalize the

comparisons

n Some minor source changes to work around problems in each compiler

n Baseline execution times on the sample data set:
— GCC: 216 seconds
— PGI: 104 seconds

Title - Month, Year5

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Hardware and Options
n Hardware

— NVIDIA GeForce GTX 1080 with 8113 MiB RAM
— Intel® Xeon® CPU ES-2640 v4 @3.10 GHz with 32 GB of RAM
— CUDA 8.0.44

n PGI Compiler: 17.9-0 64-bit target on x86-64 Linux
— “-ta=host,tesla:cc60 -lnvidia-fatbinaryloader –lcuda”

n GCC: internal version
— ”-fopenacc –lcuda”

Title - Month, Year6

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Analysis
n LSDalton enabled the compiler option -ffloat-store

— Causes every floating value to be stored to memory when computed and
loaded on every use

— Obviously bad for performance
— Presumably invoked to work around a compiler problem

n Startup code for parallel regions
— PGI was significantly faster than GCC
— PGI launched by dispatching parameters as part of the startup
— GCC launched by dispatching a pointer to global memory location holding

parameters

n Treatment of reduction variables
— Fortran parameters used to accumulate reductions were not well optimized

Title - Month, Year7

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Improvements and Results
n LSDalton enabled the compiler option -ffloat-store

— Mentor tracked down and fixed the compiler problem
– It actually affected only one loop nest in one routine
– If OpenACC disabled on this one loop nest alone, most of performance gain would have

been kept
— With removal of –ffloat-store, execution time decreased by ~25% (70 seconds)

n Startup code for parallel regions
— Mentor rewrote initiation code to dispatch parameters directly rather than through

global memory
— The speedup was significant, indicating that lots of threads accessing the same

memory, even when no writes are involved, is slow
— Speed up was ~30 seconds, ~20%

n Treatment of reduction variables
— Mentor optimized out the reduction variable, giving a small (~6%) speedup

Title - Month, Year8

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

LSDalton performance

March 27, 2018

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Impact on Other Applications
n Overall improvement on Mentor performance regression suite: 3%
n Improvement on Cloverleaf: 10%
n Improvement on subset of SPEC: 6%

Title - Month, Year10

© Mentor Graphics Corp. Company Confidential

www.mentor.com/embedded

Lessons Learned
n The writing of compilers is a noble profession

n Be conservative in using compiler options that disable performance

n Little inefficiencies add up when multiplied by 1000

n For this application, PGI and GCC are now roughly performance
equivalent

n For both compilers, the difference between generated code and hand-
coded BLAS is non-trivial, but not large either
— Fastest PGI version (both hand-coded BLAS) 92 seconds – roughly 10% faster

than our final with source
— Means that code can be written in source that will run well across multiple

platforms

n Improved version of gcc available from randy_allen@mentor.com.

Title - Month, Year11

