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Overview
n Compiler optimization is guaranteed employment

— Compilers are complex illustrations of the phrase “NP complete”
— Tuning an optimizer takes much time and many lines of sample code

n In “compiler” terms, GCC’s support of OpenACC is relatively young

n The omnipresent questions:
— How well tuned is code generation
— What are key improvements we can make

n Inquiring minds wanted to know
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The Process
n Take a real world application on which GCC performs poorly 

relative to PGI

n Profile and analyze it to determine the slowdowns

n Effect optimizations in GCC to address the slowdowns

n See how much work is required to get to PGI level performance

n See how general the changes are
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The Application: LSDalton
n Large Scaled Coupled-Cluster Calculations of Supramolecular Wires
n Quantum chemistry code targeting

— Enzyme-catalyzed chemical reactions
— Carbon nanotubes and graphene
— Preferred crystal form of organic molecules

n Regular releases, tested with gfortran, ifort, pgf90
n Widely used
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Preparation
n LSDalton made extensive use of cuBLAS library, particularly for matrix-vector 

and matrix-matrix multiplication
— This defeated the purpose, since the core computation not compiler generated
— Replaced those calls with netlib source, annotated with OpenACC directives

n LSDalton used a highly-optimized PGI host BLAS library that was incompatible 
GCC due to OpenMP
— Given it was host, it provided a small performance boost
— Replaced with netlib source compiled with respective compilers to normalize the 

comparisons

n Some minor source changes to work around problems in each compiler

n Baseline execution times on the sample data set:
— GCC:   216 seconds
— PGI:    104 seconds
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Hardware and Options
n Hardware

— NVIDIA GeForce GTX 1080 with 8113 MiB RAM
— Intel® Xeon® CPU ES-2640 v4 @3.10 GHz with 32 GB of RAM
— CUDA 8.0.44

n PGI Compiler: 17.9-0 64-bit target on x86-64 Linux 
— “-ta=host,tesla:cc60 -lnvidia-fatbinaryloader –lcuda”

n GCC: internal version
— ”-fopenacc –lcuda”
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Analysis
n LSDalton enabled the compiler option -ffloat-store

— Causes every floating value to be stored to memory when computed and 
loaded on every use

— Obviously bad for performance
— Presumably invoked to work around a compiler problem

n Startup code for parallel regions
— PGI was significantly faster than GCC
— PGI launched by dispatching parameters as part of the startup
— GCC launched by dispatching a pointer to global memory location holding 

parameters

n Treatment of reduction variables
— Fortran parameters used to accumulate reductions were not well optimized
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Improvements and Results
n LSDalton enabled the compiler option -ffloat-store

— Mentor tracked down and fixed the compiler problem
– It actually affected only one loop nest in one routine
– If OpenACC disabled on this one loop nest alone, most of performance gain would have 

been kept
— With removal of –ffloat-store, execution time decreased by ~25% (70 seconds)

n Startup code for parallel regions
— Mentor rewrote initiation code to dispatch parameters directly rather than through 

global memory
— The speedup was significant, indicating that lots of threads accessing the same 

memory, even when no writes are involved, is slow
— Speed up was ~30 seconds, ~20%

n Treatment of reduction variables
— Mentor optimized out the reduction variable, giving a small (~6%) speedup
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Impact on Other Applications
n Overall improvement on Mentor performance regression suite: 3%
n Improvement on Cloverleaf:  10%
n Improvement on subset of SPEC:  6%
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Lessons Learned
n The writing of compilers is a noble profession

n Be conservative in using compiler options that disable performance

n Little inefficiencies add up when multiplied by 1000

n For this application, PGI and GCC are now roughly performance 
equivalent

n For both compilers, the difference between generated code and hand-
coded BLAS is non-trivial, but not large either
— Fastest PGI version (both hand-coded BLAS) 92 seconds – roughly 10% faster 

than our final with source
— Means that code can be written in source that will run well across multiple 

platforms

n Improved version of gcc available from randy_allen@mentor.com.
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