Accelerating plasma simulation codes with portable frameworks: OpenACC and Kokkos

Yuuichi ASAHI¹

G. Latu², V. Grandgirard², J. Bigot³

QST, Rokkasho, Aomori, Japan
 IRFM, CEA, F-13108, St. Paul-lez-Durance cedex, France
 Maison de la Simulation, CEA, CNRS, 91191 Gif-sur-Yvette, France

Date: 2/September/2019

OpenACC Annual Meeting 2019, Kobe, Japan

energie atomique • energies alternativ

Plasma turbulence simulation

Each grid point has structure in real space (x, y, z) and velocity space (vII, v_{\perp})

→ 5D stencil computations

[Idomura et al., Comput. Phys. Commun (2008); Nuclear Fusion (2009)]

- Fusion plasma performance is dominated by plasma turbulence
- First principle full-f 5D gyrokinetic model is employed for plasma turbulence simulation
 - Peta-scale machine required due to huge computational cost (even for single-scale simulation: MPI + OpenMP approach)
- Concerning the dynamics of kinetic electrons, complicated geometry more computational resource is needed
 - Accelerators are key ingredients to satisfy huge computational demands at reasonable energy consumption: MPI + 'X'

Outline

Introduction: Demands of acceleration in GK codes

- Demands for MPI + 'X' for kinetic simulation codes
- Brief introduction of GYSELA code and miniapp
- Aim and setting of this research

Kokkos and OpenACC/OpenMP versions of mini-app

- Higher level abstraction in kokkos: memory and operation
- Mixed OpenACC/OpenMP implementation

Performance measurement and optimization

- Performance improvement with 3D Range policy in Kokkos
- Detailed analysis of kernels based on Roofline model
- Readability, Performance portability, Productivity in each implementation

Summary and future work

Outline

Introduction: Demands of acceleration in GK codes

- Demands for MPI + 'X' for kinetic simulation codes
- Brief introduction of GYSELA code and miniapp
- Aim and setting of this research

Kokkos and OpenACC/OpenMP versions of mini-app

- Higher level abstraction in kokkos: memory and operation
- Mixed OpenACC/OpenMP implementation

Performance measurement and optimization

- Performance improvement with 3D Range policy in Kokkos
- Detailed analysis of kernels based on Roofline model
- Readability, Performance portability, Productivity in each implementation

Summary and future work

[2] https://www.olcf.ornl.gov/summit/

Fluid vs Kinetic simulations

	Fluid	Kinetic
Resolution	~ 1000 grid points/	~ 100 grid points/dimension
Dimension	2D or 3D	4D or 5D
Number of	$10^9 \sim 10^{10}$	$10^8 \sim 10^{10}$

Fluid (3D space)

Kinetic (3D space + 2D vspace)

Ishizawa et al.

Idomura et al.

- Highly nested loop (4 or 5 dimensional)
- Relatively low loop counts in each dimension
- Many combinations of parallelization: collapse, SIMD, unroll

GYSELA code

Physics

- Modeling ITG turbulence in Tokamak
- Solving 5D Vlasov + 3D Poisson eqs.
 - Gyrokinetic equation: Solve f $\partial_t f - [H, f] = C + S + K$

C : collision S : source K : sink

Poisson equation: Solve electric field $-\nabla_{\perp} \cdot (P_1 \nabla_{\perp} \phi) + P_2 (\phi - \langle \phi \rangle) = \rho [f]$

- Semi-Lagrangian scheme to solve Vlasov eq.
- Interpolation of footpoints: Spline/Lagrange
- Parallelisation: MPI + OpenMP
- 3D domain decomposition by MPI $N_{\text{MPI}} = p_r \times p_{\theta} \times N_{\mu}$
- Good scalability up to 450 kcores
- More than 50k lines in Fortran 90

Aim: explore performance portable implementation with miniapp Requirements

- Productivity: Easy to modify and maintenance
- Readability: Easy to read for developers from many different fields
- Portability: A single code runs on many different devices
- High performance: Good performance on a given device

Possible approaches

- Directive based approach: OpenMP, OpenACC
- Higher level abstraction: Kokkos, RAJA, Alpaka

Methodology

- Directive based and abstraction based implementation of miniapp
- Explore performance portable implementation over different devices: Nvidia GPU, Intel CPU, ARM CPU

Encapsulate key GYSELA features into mini-app

GYSELA (3D torus) $(r, \theta, \phi, v_{\parallel}, \mu)$

Mini-app (periodic) (x, y, v_x, v_y)

 \mathcal{X}

	GYSELA	Mini-app	
System	5D Vlasov + 3D Poisson	4D Vlasov + 2D Poisson	
Geometry	Realistic tokamak geoemtry	Periodic boundary conditions	
Scheme	Semi-Lagrangian + Operator splitting (2D + 1D + 1D)	Semi-Lagrangian + Operator splitting (1D + 1D + 1D + 1D)	
MPI	Yes	Νο	
Х	OpenMP	OpenACC/OpenMP/Kokkos	
Language	Fortran 90	C++	
Lines of codes	More than 50k	About 5k	

- Extract the Semi-Lagrangian + operator splitting strategy for Vlasov solver
- Geometry and boundary conditions are simplified

Testbed description

	P100	SKL	ARM
Processor	NVIDIA Tesla P100 (Pascal)	Intel Xeon Gold 6148 (Skylake)	Marvell Thunder X2 (ARMv8)
Number of cores	1792 (DP)	20	32
L2 Cache [MB]	4	45	32
GFlops (DP)	5300	1536	563.2
Peak B/W [GB/s]	732	127.97	170.69
STREAM B/W [GB/s]	540	80	120
SIMD width	-	512 bit	128 bit
B/F ratio	0.138	0.083	0.30
TDP [W]	300	145	180
Compiler	cuda/8.0.61, pgi19.1	intel19.0.0.117	armclang++ 19.2.0
Compiler options	-ta=nvidia:cc60 -O3	-xCORE-AVX512 -O3	-std=C++11 -O3

- Relatively low B/F ratio, suitable for compute intense kernels
- Huge diversity in terms of L2 Cache, number of cores, B/W, GFLops
- Different compilers, careful compiler option settings needed for porting

Kernel description

Metric	Advect (x)	Advect (y)	Advect (vx)	Advect (vx)	Integral
Memory accesses	1 load + 1 store	1 load + 1 store	1 load + 1 store	1 load + 1 store	1 load
Access pattern	Indirect access along x direction	Indirect access along y direction	Indirect access along vx direction	Indirect access along vy direction	Reduction by row (along vx and vy)
Flop/Byte (f/b)	67/16	67/16	65/16	65/16	1/8

4D advection with Strang splitting [1]

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} = 0 \text{ at } (y, v_x, v_y) \text{ fixed}$$
$$\frac{\partial f}{\partial t} + v_y \frac{\partial f}{\partial y} = 0 \text{ at } (x, v_x, v_y) \text{ fixed}$$
$$\frac{\partial f}{\partial t} + E_x \frac{\partial f}{\partial v_x} = 0 \text{ at } (x, y, v_y) \text{ fixed}$$
$$\frac{\partial f}{\partial t} + E_y \frac{\partial f}{\partial v_y} = 0 \text{ at } (x, y, v_x) \text{ fixed}$$

Velocity space integral (4D to 2D) appeared in Poisson equation

$$\rho(t, \mathbf{x}) = \int d\mathbf{v} f(t, \mathbf{x}, \mathbf{v})$$

[1] G. Strang, et al, SIAM Journal on Numerical analysis (1968)

- More than 95% of the costs are coming from these 5 kernels
- Advection kernels are almost identical but the performance is quite different particularly on CPUs due to cache and vectorization effects
- Integral kernel reduces a 4D array into a 2D array (reduction by row)

Baseline OpenMP implementation

```
#pragma omp for schedule(static) collapse(2)
for(int ivy = 0; ivy < nvy; ++ivy) {</pre>
  for(int ivx = 0; ivx < nvx; ++ivx) {</pre>
    const float64 vx = vx_min + ivx * dvx;
    const float64 depx = dt * vx;
    for(int iy = 0; iy < ny; ++iy) {</pre>
      for(int ix = 0; ix < nx; ++ix) {</pre>
        const float64 x = x \min + ix * dx;
        const float64 xstar = x_{min} + fmod(Lx + x - depx - x_{min}, Lx);
        int ipos1 = floor((xstar - x_min) * inv_dx);
        const float64 d_prev1 = LAG_0FFSET
                              + inv_dx * (xstar - (x_min + ipos1 * dx));
        ipos1 -= LAG OFFSET;
        float64 coef[LAG_PTS];
        lag_basis(d_prev1, coef);
        float64 ftmp = 0.;
        for(int k = 0; k <= LAG ORDER; k++)</pre>
          ftmp += coef[k] * fn[ivy][ivx][iy][(nx + ipos1 + k) % nx];
        fnp1[ivy][ivx][iy][ix] = ftmp;
                  Langrange interpolation with degree of 5
                  load: fn, load/store: fnp1 f/b = 67 \text{flop}/16 \text{bytes}
```

- Relatively high compute intensity: $f/b \sim 4$
- OpenMP parallelization applied to the outermost loops (collapsed by 2)
- Bottlenecked with indirect memory accesses: load from fn

Outline

Introduction: Demands of acceleration in GK codes

- Demands for MPI + 'X' for kinetic simulation codes
- Brief introduction of GYSELA code and miniapp
- Aim and setting of this research

Kokkos and OpenACC/OpenMP versions of mini-app

- Higher level abstraction in kokkos: memory and operation
- Mixed OpenACC/OpenMP implementation

Performance measurement and optimization

- Performance improvement with 3D Range policy in Kokkos
- Detailed analysis of kernels based on Roofline model
- Readability, Performance portability, Productivity in each implementation

Summary and future work

Kokkos introduction: abstraction

Execution patterns: Types of parallel operations Kokkos::parallel_for Kokkos::parallel_reduce

Kokkos::parallel_scan

Execution space: Where the operations performed GPUs or CPUs

Execution policy: How the operation is performed RangePolicy, TeamPolicy

Example: parallel reduction (operation defined by user)

struct squaresum {
 // Specify the type of the reduction value with a "value_type"
 // typedef. In this case, the reduction value has type int.
 typedef int value_type;

```
KOKKOS_INLINE_FUNCTION
void operator () (const int i, int& lsum) const {
    lsum += i*i; // compute the sum of squares
};
```

Kokkos::parallel_reduce (n, squaresum (), sum);

From tutorial

Abstract memory management: view

Layout Right (C style)

• Default style for OpenMP background

Row-major order

Layout Left (Fortran style)

• Default style for CUDA background

int i=blockIdx.x*blockDim.x+threadIdx.x;
for(int j=0; j<3; j++) {
 a(i,j) = ...
} Contiguous along "i" (coalesced)</pre>

Kokkos 2D view: a(i,j)

Column-major order

https://en.wikipedia.org/wiki/Row-_and_column-major_order

Outermost independent loop preferable for OpenMP Innermost independent loop preferable for CUDA

Kokkos implementation: 1D range

```
struct advect_1D_x_functor {
  Config* conf_;
 view_4d fn_, fnp1_;
  advect_1D_x_functor(Config*conf, const view_4d fn, view_4d fnp1, double dt)
    : conf_(conf), fn_(fn), fnp1_(fnp1), dt_(dt) {
   const Domain *dom = &(conf_->dom_);
   nx = dom -> nx;
    . . .
  }
  KOKKOS INLINE FUNCTION
  void operator()( const int &i ) const {
    int4 idx_4D = Index::int2coord_4D(i, nx_, ny_, nvx_, nvy_);
   int ix = idx_4D.x, iy = idx_4D.y, ivx = idx_4D.z, ivy = idx_4D.w;
   // Compute Lagrange bases
    . . .
   float64 ftmp = 0.;
   for(int k=0; k<=LAG ORDER; k++) {</pre>
     int idx_ipos1 = (nx_ + ipos1 + k) % nx_;
     ftmp += coef[k] * fn_(idx_ipos1, iy, ivx, ivy);
    fnp1_(ix, iy, ivx, ivy) = ftmp; Flatten 1D loop
                                     (manual unpacking)
Kokkos::parallel_for(nx*ny*nvx*nvy, advect_1D_x_functor(conf, fn, fnp1, dt));
```

Parallel execution of 1D advection with 1D range policy

:Pattern :Policy

OpenACC implementation

```
float64 *dptr_fn = fn.raw(); // Raw pointer to the 4D view fn
float64 *dptr_fnp1 = fnp1.raw();
```

```
const int n = nx * ny * nvx * nvy;
#pragma acc data present(dptr_fn[0:n],dptr_fnp1[0:n])
  #pragma acc parallel loop collapse(3)
  for(int ivy = 0; ivy < nvy; ivy++) {</pre>
    for(int ivx = 0; ivx < nvx; ivx++) {</pre>
      for(int iy = 0; iy < ny; iy++) {</pre>
        #pragma acc loop vector independent
        for(int ix = 0; ix < nx; ix++) {
          // Compute Lagrange bases
          float64 ftmp = 0.;
          for(int k=0; k<=LAG_ORDER; k++) {</pre>
            int idx_ipos1 = (nx + ipos1 + k) % nx;
            int idx = idx_ipos1 + iy*nx + ivx*nx*ny + ivy*nx*ny*nvx;
            ftmp += coef[k] * dptr_fn[idx];
          int idx = ix + iy*nx + ivx*nx*ny + ivy*nx*ny*nvx;
          dptr_fnp1[idx] = ftmp;
        }
      }
```

- Loops collapsed by 3 and vectorized (innermost)
- Using 1D flatten index and raw pointer (avoid using in-house data strucţure)

Mixed OpenACC/OpenMP implementation

```
#if defined( ENABLE_OPENACC )
  #pragma acc data present(dptr_rho,dptr_ex,dptr_ey,...)
#endif
    #if defined( ENABLE OPENACC )
      #pragma acc host_data use_device(dptr_rho, dptr_rho_hat)
    #endif
    fft ->rfft2(dptr rho, dptr rho hat);
    #if defined( ENABLE OPENACC )
      #pragma acc parallel loop
    #else
      #pragma omp for schedule(static)
    #endif
    for(int ix1=0; ix1<nx1h; ix1++) {</pre>
      int idx = ix1; float64 kx = ix1 * kx0;
      dptr ex hat[idx] = -kx * I * dptr rho hat[idx] * dptr filter[ix1] / (nx1*nx2);
      /* Similar computations ... */
    }
    #if defined( ENABLE OPENACC )
      #pragma acc host data use device(dptr rho,...)
      {
    #endif
        fft ->irfft2(dptr rho hat, dptr rho);
        // Inverse FFTs for dptr Ex hat and dptr Ey hat
    #if defined( ENABLE_OPENACC )
    #endif
#if defined( ENABLE OPENACC )
  }
#endif
```

- Macro heavy implementation or code duplications
- Macro free implementation is also difficult to follow

Outline

Introduction: Demands of acceleration in GK codes

- Demands for MPI + 'X' for kinetic simulation codes
- Brief introduction of GYSELA code and miniapp
- Aim and setting of this research

Kokkos and OpenACC/OpenMP versions of mini-app

- Higher level abstraction in kokkos: memory and operation
- Mixed OpenACC/OpenMP implementation

Performance measurement and optimization

- Performance improvement with 3D Range policy in Kokkos
- Detailed analysis of kernels based on Roofline model
- Readability, Performance portability, Productivity in each implementation

Summary and future work

- Unvectorized advection (vy) in Arm (kokkos) slowest
- Kokkos Skylake/Arm performance unsatisfactory

High dimensional loop support: 3D range policy

```
struct advect_1D_x_functor {
  Config* conf ;
  view_4d fn_, fnp1_;
  advect 1D x functor(Config*conf, const view 4d fn, view 4d fnp1, double dt)
    : conf_(conf), fn_(fn), fnp1_(fnp1), dt_(dt) {
  }
                                                  3D indices
  KOKKOS INLINE FUNCTION
  void operator()(const int ix, const int iy, const int ivx) const {
    // Compute Lagrange bases
    . . .
    for(int ivy=0; ivy<nvy; ivy++) {</pre>
      float64 ftmp = 0.;
      for(int k=0; k<=LAG ORDER; k++) {</pre>
        int idx_ipos1 = (nx_ + ipos1 + k) % nx_;
        ftmp += coef[k] * fn (idx ipos1, iy, ivx, ivy);
      }
      fnp1_(ix, iy, ivx, ivy) = ftmp;
    }
}
typedef typename Kokkos::Experimental::MDRangePolicy< Kokkos::Experimental::Rank<</pre>
3, Kokkos::Experimental::Iterate::Default, Kokkos::Experimental::Iterate::Default>
> MDPolicyType 3D;
                                                                     3D tiling
MDPolicyType_3D mdpolicy_3d( {{0,0,0}}, {{nx,ny,nvx}}, {{TX,TY,TZ}} );
Kokkos::parallel for( mdpolicy 3d, advect 1D x functor(conf, fn, fnp1, dt) );
```

3D policy facilitates SIMD on CPUs and cache on GPUs :Pattern :Policy

In our high dimensional loop with low loop counts
 3D MD range policy (3D tiling) improves performance
 (worse performance reported for 3D MHD code in [1])

Kokkos vs OpenMP (Skylake)

- Performance evaluated based upon Roofline model [1] Attainable GFlops/s = $\min(F, B \times f/b)$.
- Good performance with advection (x/vx) for Kokkos, advection (y) for OpenMP (cache + vectorization)
 - → Second innermost direction is the best
- OpenMP atomic operation for reducing 4D to 2D array harms the performance (integral)

 Good performance with advection (x/vx) for Kokkos, but poor performance with advection (y) for OpenMP

Difference in cache behavior

- OpenMP atomic operation for reducing 4D to 2D array shows terrible performance (integral)
 - → Alternative implementation needed

nvprof metrics	Advect (x)	Advect (y)	Advect (vx)	Advect (vy)
Hit ratio for global loads in I1/tex cache [%]	96.67/96.46	61.93/0.0	44.86/0.37	42.14/2.46
Achieved occupancy	0.28/0.55	0.29/0.55	0.28/0.55	0.28/0.54
I2_write_throughput [GB/s]	162.6/90.1	57.0/88.3	108.9/78.2	51.72/85.3
I2_read_throughput [GB/s]	162.6/79.9	130.1/466.9	385.2/479.7	241.5/526.2

Flop/Byte

 Higher L2 throughput in Kokkos version for advection along x direction (innermost)

Flop/Byte

Kokkos uses L1 cache more likely than OpenACC

Achieved performance

Davias	Kernel	f/b	ldeal Gflops	Achieved performance	
Device				GFlops	GB/s (relative to STREAM %)
	Advect (x)	67/16	335	271.7/41.8	64.9 (81.1%)/9.98 (12.5%)
	Advect (y)	67/16	335	63.5/291.1	15.2 (19.0%)/69.51 (86.9%)
Skylake (Kokkos/OpenMP)	Advect (vx)	65/16	325	278.5/31.94	68.6 (85.7%)/7.86 (9.8%)
	Advect (vy)	65/16	325	24/31.5	5.9 (7.4%)/7.74 (9.6%)
	Integral	1/8	10	11.4/5.5	91.6 (114 %)/43.7 (54.7%)
	Advect (x)	67/16	502.5	228.0/30.1	54.4 (45.4%)/7.20 (6.0%)
	Advect (y)	67/16	502.5	24.6/32.1	5.88 (4.9%)/6.40 (6.4%)
Arm (<mark>Kokkos/OpenMP</mark>)	Advect (vx)	65/16	487.5	266.6/27.9	65.6 (54.9%)/6.86 (5.7%)
	Advect (vy)	65/16	487.5	27.7/25.6	6.82 (5.7%)/6.30 (5.3%)
	Integral	1/8	15	9.1/0.63	72.8 (60.7%)/5.06 (4.2%)
P100 (<mark>Kokkos/OpenACC</mark>)	Advect (x)	67/16	2261.3	1739.9/710.8	415.0 (76.9%)/169.8 (31.4%)
	Advect (y)	67/16	2261.3	704.4/695.6	168.2 (31.1%)/166.1 (30.8%)
	Advect (vx)	65/16	2193.8	935.7/605.2	230.3 (42.7%)/149.0 (27.6%)
	Advect (vy)	65/16	2193.8	638.6/657.5	157.2 (29.1%)/161.8 (30.0%)
	Integral	1/8	67.5	68.8/16.9	550.0 (101.9%)/134.9 (25.0%)

• Some kernels achieved almost ideal performance

Readability, Portability, Productivity

	OpenACC/ OpenMP	Kokkos
Readability	Medium	High
Portability	High	High
Performance	High	High
Productivity	Medium	Low

	Time [s]	Speedup
Skylake (OpenMP)	278	1.0
Skylake (Kokkos)	192	1.45
Arm (OpenMP)	589	0.47
Arm (Kokkos)	335	0.83
P100 (OpenACC)	21.5	12.95
P100 (Kokkos)	15.6	17.83

Speedup relative to SKL (OpenMP)

• Readability

OpenACC/OpenMP: multiple macros harm readability Kokkos: easy to read, but hard to understand what is exactly done

• Productivity/Portability

OpenACC/OpenMP:reasonable solution to port large Fortran codesKokkos:large porting costs for Fortran code(less costly for C++),
maintenance costs may be suppressed

Outline

Introduction: Demands of acceleration in GK codes

- Demands for MPI + 'X' for kinetic simulation codes
- Brief introduction of GYSELA code and miniapp
- Aim and setting of this research

Kokkos and OpenACC/OpenMP versions of mini-app

- Higher level abstraction in kokkos: memory and operation
- Mixed OpenACC/OpenMP implementation

Performance measurement and optimization

- Performance improvement with 3D Range policy in Kokkos
- Detailed analysis of kernels based on Roofline model
- Readability, Performance portability, Productivity in each implementation

Summary and future work

Summary and future works

Directive based approach: mixed OpenACC/OpenMP

- Mixed OpenACC/OpenMP achieves high performance except for ARM
- Suitable for **porting a large legacy code** (e.g. more than 50k LoCs)
- Mixed approach harms the readability due to multiple macros
- Insufficient performance in some kernels due to lack of memory abstraction

Higher level abstraction: Kokkos

- Kokkos can achieve performance portability over several devices
- Appropriate choice of a range policy seems critical for CPUs
- Kokkos requires large initial investments but may suppress maintenance costs due to a good readability and abstraction

Future tasks

[Y. Asahi et al., submitted to waccpd SC19)]

MPI parallelization of mini-app and test scalability

Backup slides

Remarks for OpenACC implementation Using external library (e.g. cufft) from accelerated region

void Efield::solve_poisson_fftw(float64 xmax, float64 ymax)

```
// Use local pointer to avoid issues with "use device" [See Known limitations 3.5]
88
    float64 *dptr_rho = rho_.raw(), *dptr_ex = ex_.raw();
89
    float64 *dptr_ey = ey_.raw(), *dptr_filter = filter_.raw();
90
    complex64 *dptr_rho_hat = rho_hat_.raw(), *dptr_ex_hat = ex_hat_.raw(), *dptr_ey_hat = ey_hat_.raw();
91
92
    #pragma acc data present(dptr_rho,dptr_ex,dptr_ey,dptr_rho_hat,dptr_ex_hat,dptr_ey_hat,dptr_filter)
93
94
      // Forward 2D FFT (Real to Complex)
95
      #pragma acc host_data use_device(dptr_rho, dptr_rho_hat)
96
      fft_->fft2(dptr_rho, dptr_rho_hat);
97
```

 Issue with "use_device" for class members "use_device" does not work for class members [See Known limitations 3.5] <u>https://www.pgroup.com/</u> resources/docs/19.1/x86/openacc-gs/index.htm

Issue with cuda streams cuda stream used for cufft (default stream) and openacc is not identical Set OpenACC stream on cufft

- 121 // Force cuFFT on OpenACC stream
- https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/openacc/5-openacc-interoperability.pdf?__blob=publicationFile
- 122 cudaStream_t accStream = (cudaStream_t) acc_get_cuda_stream(acc_async_sync);
- 123 cufftSetStream(forward_plan_, accStream);
- 124 cufftSetStream(backward_plan_, accStream);

Using C++ class with OpenACC

Shallow and deep copies needed for class members

- 45 #pragma acc enter data copyin(this) // shallow copy
- 46 #pragma acc enter data create(dptr_rho[0:n1],dptr_ex[0:n1],dptr_ey[0:n1],dptr_phi[0:n1]) // deep copy data members
- 47 #pragma acc enter data create(dptr_rho_hat[0:n2],dptr_ex_hat[0:n2],dptr_ey_hat[0:n2],dptr_filter[0:nx1h]) // deep copy data members
- 48 #pragma acc update device(dptr_filter[0:nx1h]) // update filter

Macro free OpenACC + OpenMP implementation

- The code works with naively inserting directives
- It seems less clear how the parallelization performed with each directive

Kokkos implementation when calling libraries

```
fft_->rfft2(rho_.ptr_on_device(), rho_hat_.ptr_on_device());
complex_view_2d ex_hat = ex_hat_, ey_hat = ey_hat_, rho_hat = rho_hat_;
                filter = filter ;
view 1d
float64 normcoeff = 1./(nx*ny);
Kokkos::parallel_for(nx1h, KOKKOS_LAMBDA (const int ix1) {
  float64 kx = ix1 * kx0;
  {
    int ix2 = 0;
    ex hat(ix1, ix2) = -kx * I * rho hat(ix1, ix2) * filter(ix1) * normcoeff;
    ey hat(ix1, ix2) = 0;
    rho_hat(ix1, ix2) = rho_hat(ix1, ix2) * filter(ix1) * normcoeff;
  }
  for(int ix2=1; ix2<nx2h; ix2++) {</pre>
    float64 ky = ix2 * ky0; float64 k2 = kx * kx + ky * ky;
    ex hat(ix1, ix2) = -(kx/k2) * I * rho hat(ix1, ix2) * normcoeff;
    ey hat(ix1, ix2) = -(ky/k2) * I * rho hat(ix1, ix2) * normcoeff;
    rho_hat(ix1, ix2) = rho_hat(ix1, ix2) / k2 * normcoeff;
  }
  for(int ix2=nx2h; ix2<nx2; ix2++) {</pre>
    float64 ky = (ix2-nx2) * ky0; float64 k2 = kx*kx + ky*ky;
    ex hat(ix1, ix2) = -(kx/k2) * I * rho hat(ix1, ix2) * normcoeff;
    ey_hat(ix1, ix2) = -(ky/k2) * I * rho_hat(ix1, ix2) * normcoeff;
    rho hat(ix1, ix2) = rho hat(ix1, ix2) / k2 * normcoeff;
  }
});
fft ->irfft2(rho hat.ptr on device(), rho .ptr on device());
fft_->irfft2(ex_hat.ptr_on_device(), ex_.ptr_on_device());
fft_->irfft2(ey_hat.ptr_on_device(), ey_.ptr_on_device());
```

FFT class wraps 2D FFT based on cufft or fftw with OpenMP parallelization

Remarks for Kokkos implementation

Kokkos view: multidimensional array with execution space

#include <Kokkos_Core.hpp>
#include <Kokkos_Complex.hpp>
typedef double float64;
typedef Kokkos::complex<double> complex64;
typedef Kokkos::DefaultExecutionSpace execution_space;
typedef Kokkos::View<float64*, execution_space> view_1d;
typedef Kokkos::View<float64***, execution_space> view_2d;
typedef Kokkos::View<float64*****, execution_space> view_4d;
typedef Kokkos::View<complex64**, execution_space> complex_view_1d;
typedef Kokkos::View<complex64*****, execution_space> complex_view_1d;

Complex data type support (works with reduction)

KOKKOS_LAMABDA with C++ class

```
complex_view_2d ex_hat = ex_hat_, ey_hat = ey_hat_, rho_hat = rho_hat_;
view_1d filter = filter_;
Kokkos::parallel_for(nx1h, KOKKOS_LAMBDA (const int ix1) {
float64 kx = ix1 * kx0;
{
int ix2 = 0;
ex_hat(ix1, ix2) = -kx * I * rho_hat(ix1, ix2) * filter(ix1) * normcoeff;
....
}
```

Shallow copy to capture class members (nvcc 8.0)