
Acceleration of Unstructured Low-Order Finite-Element
Earthquake Simulation Using OpenACC

Takuma Yamaguchi

1

OpenACC annual meeting 2019
Sep. 2, 2019

Introduction

• Contribution of high-performance computing to earthquake mitigation
highly anticipated from society

• We are developing comprehensive earthquake simulation that
simulate all phases of earthquake disaster by full use of high-
performance computers

• Simulate all phases of earthquake by speeding up core solver
• SC14/15/18 Gordon Bell Prize Finalist & SC16/17 Best Poster Awards

• Today’s topic is porting this solver to GPU-based computers
• Report performance on Volta GPUs

2
Earthquake disaster process

K computer: 8 core CPU x 82944 node system

with peak performance of 10.6 PFLOPS

Comprehensive earthquake simulation

3

a) Earthquake wave propagation

-7 km

0 km

c) Resident evacuation

b) City response simulation

Shinjuku

Two million agents evacuating to nearest safe site

Tokyo station

Ikebukuro

Shibuya

Shinbashi

Ueno
Earthquake Post earthquake

Large finite-element simulation enabled

by developed solver

Target problem: Earth’s crust deformation problem

• Compute elastic response to given fault slip
• Many case analysis required for inverse analyses and Monte

Carlo simulations

• Compute using finite-element method: solve large
matrix equation many times

• Involves many random data access & communication

• Difficulty of problem
• Attaining load balance & peak-performance & convergency of

iterative solver & short time-to-solution at same time

• Smart use of compute precision space, constraints in solver
search space according to physical solution space required

4

Ku = f

Sparse, symmetric positive definite matrix

Unknown vector with up to 1 trillion degrees of freedom

Outer force vector

0

Earth’s crust deformation

problem

Designing scalable & fast finite-element
solver
• Design algorithm that can obtain equal granularity at O(million) cores

• Matrix-free matrix-vector multiplication (Element-by-Element method) is
promising: Good load balance when elements per core is equal

• Also high-peak performance as it is on-cache computation

• Combine Element-by-Element method with multi-grid, mixed
precision arithmetic, and adaptive conjugate gradient method

• Scalability & peak-performance good (core computation kernels are Element-
by-Element), convergency good, time-to-solution good

5

f = Σe Pe Ke Pe
T u

(Ke is generated on-the-fly,

Element-by-Element method
+=

…

+=

Element #0

Element #1

Ke

uf
Element #N-1

…

Solver algorithm

6

Equation to be solved

(double precision)

CG loop

Computations of

outer loop

Outer loop

Solving

preconditioning

matrix

Second ordered

tetrahedron

Solve system roughly using CG solver

Solve system roughly using CG solver

Use for preconditioner of outer loop

Solving preconditioning matrix (single precision)

Inner loop level 1

Inner loop level 0

Linear tetrahedron

Second ordered

tetrahedron

Coarsened equation

(P12
TA1P12)x2=P12

Tb1

Inner loop level 2

Solve system roughly using CG solver

Use x1←P12 x2 as

initial solution

Use x0←P01 x1 as

initial solution

A
lg

e
b

ra
ic

c
o
a
rs

e
n

in
g

G
e
o
m

e
tric

c
o
a
rs

e
n

in
g

K. Fujita, T. Ichimura, K. Koyama, H. Inoue,

M. Hori, L. Maddegedara, Proceedings of

the Platform for Advanced Scientific

Computing Conference (PASC), June 2017

Performance on K computer

• Developed solver significantly faster than
• PCGE (standard CG solver algorithm; preconditioning with 3x3 block diagonal

matrix)
• SC14 Gordon Bell Prize finalist solver

7

0

200

400

600

800

1000

1200

1400

1600

1800

e
la

p
s
e
d
 t
im

e
 o

f
s
o
lv

e
r

(s
,

9,216 18,432 36,864 73,728 147,456 294,912

1
3

8
.9

 s
 (

2
1

.3
%

)

2
7

2
.0

 s
 (

2
1

.9
%

)

1
3

7
5

 s
 (

1
8

.5
%

)

1
4

0
.0

 s
 (

2
1

.2
%

)

2
7

7
.5

 s
 (

2
1

.6
%

)

1
5

4
6

 s
 (

1
8

.1
%

)

1
4

4
.5

 s
 (

2
0

.9
%

)

2
9

2
.7

 s
 (

2
1

.4
%

)

1
5

7
2

 s
 (

1
8

.1
%

)

1
5

1
.3

 s
 (

2
0

.1
%

)

3
1
1

.8
 s

 (
2

1
.3

%
)

1
6

8
0

 s
 (

1
8

.3
%

)

1
4

8
.7

 s
 (

2
0

.1
%

)

3
0

8
.5

 s
 (

2
0

.5
%

)

1
5

7
3

 s
 (

1
7

.9
%

)

1
4

6
.5

 s
 (

2
0

.6
%

)

3
1

9
.7

 s
 (

2
0

.4
%

)

1
6

2
9

 s
 (

1
7

.6
%

)

of CPU cores

Elapsed time

Floating-point

arithmetic

efficiency to peak

• 94.8% scalability from

9216 to 294912 cores

• 4 times peak performance

of HPCG benchmark

(HPCG on K computer:

5.3% in double precision)

Introduction of GPU computations
• Further speedup of the simulation by introducing GPUs

• Good load balance, Reduced computation cost & data transfer size is
also beneficial for GPUs

• High performance can be obtained using OpenACC
with low development cost

• GPU architecture is different from CPU architecture
• More difficult to attain good performance with random data access

• Relatively smaller cache size

➔Simple porting of the CPU code is not sufficient

8

Key kernel: Element-by-Element kernel
• Most costly kernel; involves data recurrence

• Algorithm for avoiding data recurrence on CPUs
• Use temporary buffers per core & per SIMD lane

• Suitable for small core counts with large cache capacity

• Algorithm for avoiding data recurrence on GPUs
• It’s difficult to use buffer per core,

but recent GPUs have atomic operations supported on hardware

• Random access becomes bottleneck

9

Element-by-Element method

+=

…
+=

Data recurrence

(add into same node)

Element #0

Element #1

Ke

Element #N-1

uf …

Performance in simple porting

Computational Environment

K computer Reedbush-H

of nodes 20 10

CPU/node 1 x

SPARC64

VIIIfx

2 x Intel

Xeon E5-

2695 v4

GPU/node
--

2 x NVIDIA

P100

Hardware

peak FLOPS

/process

128

GFLOPS

5.30

TFLOPS

Memory

bandwidth

/process

64 GB/s 732 GB/s

10

39.00

7.75

0 10 20 30 40

K computer

Reedbush-H

Elapsed time of solver (s,

Outer Inner level 0 Inner level 1 Inner level 2

1/5.0

DP_FLOPS efficiency (%) 24.91 21.23 9.54 21.47

MEM. Efficiency (%) 22.81 16.78 43.81 23.18

DOF: 125,177,217, # of elements: 30,720,000

• Simple porting achieved 5.0 times speedup

• However, there is some room for improvement

• Memory bandwidth is 11 times larger

Strategy for Introduction of OpenACC

• To attain higher performance, algorithm/implementation suitable
for GPUs should differ from that for CPUs

Thereby, we

1. Design the solver algorithm suitable for the GPU architectures

2. Port the solver to GPUs using OpenACC

11

Modification of Algorithm for GPUs

• Reduce random memory accesses

• Target applications (Inverse analyses, Monte Carlo method etc.)
solve many systems of equations

• Same stiffness matrix

• Different right-hand side input vectors

• Multiple equations at the same time

K u1, u2 , u3 , … , u16
𝑇 = f1, f2 , f3 , … , f16

𝑇

Instead of Ku1 = f1,Ku2 = f2,Ku3 = f3, …

12

…

Element #0

Element #1

u1

k
e

f1
ke

f2 f3 f4

u2 u3 u4

…

…

…

Element-by-Element kernel

Introduction of OpenACC – 1/3
Control of data transfer

13

Input vector f

Output vector u

Solve u=K−1f

!$acc data copy(u, …) copyin(f, …)

!$acc end data

Read data

!$acc update host(err)

Check convergence

CPU computation

GPU computation

Data transfer between CPU and GPUs

is minimized in the solver

• Only in convergence check part

• GPUDirect is used for

MPI point-to-point communication

Computation (i.e, EBE)

Introduction of OpenACC – 2/3
Insertion of some directives for
parallel computation

Example for Element-by-Element
multiplication

• Assign 16 threads for one
element

• Introduce atomic functions to
avoid data race

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

!$acc parallel loop collapse(2)

do i_ele = 1, n_element

do i_vec = 1, 16

cny1 = connect(1, i_ele)

cny10 = connect(10, i_ele)

u0101 = u(i_vec, 1, cny1)

u1003 = u(i_vec, 3, cny10)

Ku01 = …

Ku30 = …

!$acc atomic

r(i_vec, 1, cny1) = r(i_vec, 1, cny1) + Ku01

!$acc atomic

r(i_vec, 3, cny10) = r(i_vec, 3, cny10) + Ku30

enddo

enddo

!$acc end parallel

…
…

…
…

Introduction of OpenACC – 3/3

Minor tuning for OpenACC parameters

• The allocation of gang and vector

• The length of vector

Optimize fine-grain control of parallelism

(Not large effect on performance)

15

Performance of the proposed solver

Computational Environment

K computer Reedbush-H

of nodes 20 10

CPU/node 1 x

SPARC64

VIIIfx

2 x Intel

Xeon E5-

2695 v4

GPU/node
--

2 x NVIDIA

P100

Hardware

peak FLOPS

/process

128

GFLOPS

5.30

TFLOPS

Memory

bandwidth

/process

64 GB/s 732 GB/s

16

39.00

7.75

2.75

26.43

0 10 20 30 40

K computer
1 vector

Reedbush-H
1 vector

K computer
16 vectors

Reedbush-H
16 vectors

Elapsed time of solver (s,

Outer Inner level 0 Inner level 1 Inner level 2

1/5.0

DP_FLOPS efficiency (%) 24.91 21.23 9.54 21.47

MEM. Efficiency (%) 22.81 16.78 43.81 23.18

1/14.2

K computer
16 vectors()

1/9.6

DOF: 125,177,217, # of elements: 30,720,000

Conclusion

• Accelerate the unstructured implicit low-order finite element
solvers by OpenACC

• Design the solver appropriate for GPU computations

• Port the key kernel to GPUs

• Obtain high performance with low development costs and better
portability and maintainability

17

