XcalableACC: Overview and Prospects

Hitoshi Murai RIKEN R-CCS

Sep. 2, 2019

Background

- "Accelerator and Communication Unification for Scientific Computing" Project (2012-2018) [https://post-peta-crest.github.io/
 - part of JST CREST post-petascale software program
 - PI: Prof. Boku @ U. Tsukuba
 - U. Tsukuba, Keio U. & RIKEN
- Tightly-coupled accelerators (TCA)
 - communication support by FPGA (PEACH2)
 - enables direct comm. between GPUs
 - GPU-accelerated language

Introduction (1)

- Accelerated clusters (e.g. GPU clusters) have become very popular HPC platforms.
- MPI+CUDA style programming lowers productivity.
- Two directive-based languages exist:
 - Xcalable MP (XMP) as an alternative to MPI
 OpenACC as an alternative to CUDA

Introduction (2)

- GPU accelerated cluster HPC system
 - A collection of nodes has GPUs as an accelerator
 - GPUs may have their own direct interconnect (i.e. *tightly-coupled accelerators*)
- Challenges in such accelerated clusters
 - Efficient (unified) programming model (not MPI+X)
 - Support of direct connection between accelerators
 - TCA by PEACH2
 - GPUDirect
 - etc.

Goals

- Proposing a new programming language for accelerated clusters by <u>combining XcalableMP and OpenACC</u>
 - unified programming
 - direct communication among accelerators
- Developing its compiler

Realizing high performance and productivity on accelerated clusters

Outline of This Talk

- What's XcalableMP (and OpenACC)?
- Design of the XcalableACC language
- Implementation of the Omni XcalableACC compiler
- Case study (QCD code)
- Prospects

What's XcalableMP? xcalablemp.org

- Directive-based PGAS extension for Fortran and C
 - Proposed by XMP Spec. WG of PC Cluster Consortium.
 - C++ support planned.
- Supports two parallelization paradigms:
 - Global-view (with HPF-like data/work mapping directives)
 - Local-view (with coarray)
- Allows mixture with MPI and/or OpenMP.

Stericii Co

Sep. 2, 2019

What's OpenACC?

Sep. 2, 2019

Basic Concepts of XACC

• XACC = XMP + OpenACC + XACC Extensions

XMP directives	distributed-memory parallelism among nodes
OpenACC directives	accelerator(s) within a node
XACC Extensions	 (hierarchical parallelism) direct comm. between ACCs

• With XACC, XMP features (including coarray) can be applied to ACCs for productivity.

Execution Model of XACC

Syntax of XACC

- Diagonal combination of XMP and OpenACC
 - XMP outer and OpenACC inner (first distribute among nodes, and then onto accelerators)
- XACC extension
 - XMP's comm. directives with the acc clause target data on the device

#pragma xmp reflect (a) acc

Example (Himeno BMT)

Serial (original) code

```
float p[MIMAX][MJMAX][MKMAX];
...
for(i=1 ; i<MIMAX ; ++i)
for(j=1 ; j<MJMAX ; ++j){
for(k=1 ; k<MKMAX ; ++k){
    S0 = p[i+1][j][k] * ..;</pre>
```

Sep. 2, 2019

Example (Himeno BMT)

XMP code

Sep. 2, 2019

Example (Himeno BMT)

Example (Himeno BMT)

Omni Compiler Infrastructure

- A collection of programs and libraries that allow users to build code transformation compilers.
- <u>Source-to-source translation</u>
- Supported base languages:
 C99
 - Fortran 2008
 - C++ (planned)

- Supported directives:
 - OpenMP (C, F)
 - OpenACC (C)
 - XcalableMP (C, F)
 - XcalableACC (C, F)

Omni XcalableACC

- Based on the Omni compiler infrastructure
- Direct comm. between devices is based on:
 - TCA by PEACH2 for HA-PACS/TCA, or
 - GPUDirect for general machines

Omni OpenACC

- Accepts C with OpenACC 1.0 (+ part of 2.0).
- Translates OpenACC into CUDA or OpenCL.
- Can work as the back-end compiler of Omni XACC.

XACC Case Study: QCD Mini-apps

- The XACC code based on an existing Lattice QCD mini-application (http://research.kek.jp/people/matufuru/Research/Programs/index.html)
 - By High Energy Accelerator Research Organization, Japan
 - Written in C, SLOC (Source Lines of Code) is 842
 - Implemented by extracting the main kernel of the Bridge++
- Parallelized in the directive-based global-view model by XcalableACC

Sep. 2, 2019

How Do We Evaluate Productivity ?

- Delta Source Lines of Codes (Delta-SLOC) metric
 - Indicates how many lines are changed from a serial code to a parallel code
 - Sum of three components: how many lines are added, deleted and modified
 - When the Delta-SLOC is small, productivity is good.

SLOC of the serial code is 842

HA-PACS/TCA Cluster : TCA test-bed

- 64 nodes, 364TF total
- Each node has:
 - Intel IvyBridge x 2
 - NVIDIA Tesla K20X x 4
 - PEACH2 board
 - IB QDR x 2

Network	InfiniBand Mellanox Connect-X3 4xQDR x 2rails 8GB/s
GPU/Memory	NVIDIA Tesla K20X / GDDR5 6GB 250GB/s x 4
CPU/Memory	Intel Xeon-E5 2680V2 2.8 GHZ / DDK3 SDKAM 128GB 59.7GB/S X 2

• Shutdown on Oct. 2018

Performance of QCD in XACC

Data size is 32x32x32x32 (T x Z x Y x X axes) with strong scaling. Each process deals with a single GPU, 4 processes run on a single compute node

The performance of XACC is 100 - 104% of that of MPI+OpenACC, and 95 - 99% of that of MPI+CUDA

Prospects

- FPGA-accelerated clusters have emerged as HPC platforms.
 - A collection of nodes has FPGA as an accelerator
 - FPGAs may have their own direct interconnect.
- More complicated programming is needed.
 - GPU & FPGA
 - Host CPU-GPU & FPGA
 - Multi-GPU & FPGA

Cygnus: Multi-Hybrid Accelerated Cluster

- New supercomputer @ CCS, U. Tsukuba
 - Operation started in April 2019
 - 2x Intel Xeon CPUs, 4x NVIDIA V100 GPUs, 2x Intel Stratix10 FPGAs
 - Deneb: 46 nodes
 - CPU + GPU
 - Albireo: 32 nodes
 - CPU + GPU + FPGA
 - 2D torus network for FPGAs
 - 100Gbps per link

Cygnus cluster @ CCS, U. Tsukuba

Intel Stratix10 FPGA + NVIDIA V100 GPU

Ongoing Projects (1)

- High-level programming for FPGA
 - Omni translates an OpenACC kernel to an OpenCL kernel + an SPGen module.
 - SPGen is a framework for generating stream processors on FPGA, developed by Sano, RIKEN R-CCS.
 - OpenCL kernel for handling memory accesses and invoking the SPGen module
 - SPGen module for pipelined computation

Ongoing Projects (2)

- Unified programming model for GPU-FPGA heterogeneous systems, such as Cygnus
 - (described by Kobayashi-san)
 - OpenACC constructs are processed for GPU, or converted into OpenCL for FPGA, by Omni.
- Both of the two projects target FPGA and single-node execution.
- We plan to extend them to multi-node on the basis of the technologies derived from XACC.

Sep. 2, 2019

Summary

- A new programming language XcalableACC for accelerated clusters is proposed.
- XACC = XMP + OpenACC + XACC extensions
- The evaluation showed high performance and productivity of XACC.
- We are planning to apply XACC for FPGA clusters.
- (Offloading to FPGA in task-based programming)