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Overview of porting GTS to GPU
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GTS (Gyrokinetic Tokamak Simulation)

• OpenACC directives ported the code to GPU keeping compatibilities with CPU machine

Porting to GPU machine

• A global gyrokinetic particle simulation code for micro-turbulence study in tokamak

• Recently upgraded for physics studies associated with the thermal quench transport

- Significant speed-up (>20x) for the particle parts

• Particle-In-Cell algorithm (particles + grid-based field solve)

• GTS is now running production simulations on Traverse with a significant acceleration,
making efficient use of the Traverse computational resource

- Field solve part (Poisson equation) will be ported to GPU via some libraries (ex. PETSc, Hypre, AMGx)

• Attended GPU Hackathon in 2019 at Princeton University  (Mentor: Rueben Budiardja (ORNL))
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❑ A global gyrokinetic particle simulation code to study 
the micro turbulence physics of the fusion plasma in tokamaks

GTS (Gyrokinetic Tokamak Simulation)

- Mainly written in Fortran, partly in C

- Parallelized using MPI + OpenMP (previously), now using MPI+OpenACC

- 𝛿𝑓 particle-in-cell code in 3-dimensional curvilinear coordinate



Gyrokinetic Equation
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▪ The gyrokinetic equation for particle distribution in 5-dimension phase space

a (or ρ): radial coordinates (a flux surface label)

𝜃 and 𝜙: poloidal and toroidal angle

𝑣∥: parallel velocity

𝜇 = 𝑚𝑠𝑣⊥
2/2𝐵 : magnetic moment

𝐵∗ = 𝐵 + 𝑚𝑠𝑣∥/𝑒𝑠 b · ∇ × b

𝑓𝑠: gyro-center distribution function

[G. Hunt, Ph.D. Thesis, University of Leicester, 2016]



Gyrokinetic Poisson Equation

5

Z

▪ Electron and Ion densities from the distribution function

▪ Quasi-neutrality and gyrokinetic Poisson equation

[Dubin, et. al., Phys. Fluids 26, 3524 (1983)]



Particle-In-Cell Method
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Particle-In-Cell Method
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Move particles to new positions
(Particles only)

Charge deposition to Grid Nodes
(Particles to Grid)

Assigning fields to particles
(Grid to Particles)

Update potential & electric fields
(Grid only)
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Acceleration of Particle Parts by OpenACC
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▪ Assigning fields to particles (Grid to Particles)

➢ Particle arrays are global variables and created on device side to reduce the communication time

➢ Particles are independent from each other and has a single level loop

➢ A simple acc parallel directives is very efficient for a huge number of marker particles (𝑁𝑀 > 106)

▪ Particle parts are easily and efficiently parallelized by OpenACC



Acceleration of Particle Parts by OpenACC
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▪ Charge deposition to Grid Nodes (Particles to Grid)

▪ Move particles to new positions (Particles only)



Gyrokinetic Poisson Equation
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▪ Coupled (2D+1D) field equations on Unstructured Mesh (use FEM)

▪ A direct 3D field equation on Structured Mesh (use FDM)

Unstructured grid

Structured grid

Solved iteratively

▪ Algebraic Multigrid solver is used to invert linearized equations

𝑨𝒙 = 𝒃

- BoomerAMG method in Hypre library through PETSc interface

- (CPU version) vs (cuda version)



Traverse Cluster at Princeton University

Traverse consists of:
• 46 IBM AC922 Power 9 nodes, with each node having

– 2 IBM Power 9 processors (sockets)

• 16 cores per processor

• 4 hardware threads per core

– 32 cores per node

– 256 GB of RAM per node

– 4 NVIDIA V100 GPUs (2 per socket) with 32GB of memory each

– 3.2TB NVMe (solid state) local storage (not shared between nodes)

– EDR InfiniBand, 1:1 per rack, 2:1 rack to rack interconnect

– GPFS high performance parallel scratch storage: 2.9PB raw

– Globus transfer node (10 GbE external, EDR to storage)

• InfiniBand Network

– EDR InfiniBand (100 Gb/s)

– Fully non-blocking (1:1) within a chassis, 2:1 oversubscription between chassis.
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Elapsed Time
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Speed-Up Factor
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Full Power of 1 node on Traverse
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Performance Comparison 
(original Poisson vs new 3D Poisson)
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Breakdown of Elapsed Time
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Algebraic Multigrid Solver: (HYPRE) vs (GAMG)
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HYPRE vs GAMG in Production Run case
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Summary
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GTS (Gyrokinetic Tokamak Simulation)

• OpenACC directives ported the code to GPU keeping compatibilities with CPU machine

Porting to GPU machine

• A global gyrokinetic particle simulation code for micro-turbulence study in tokamak

• Recently upgraded for physics studies associated with the thermal quench transport

- Significant speed-up (>20x) for the particle parts

• Particle-In-Cell algorithm (particles + grid-based field solve)

• GTS is now running production simulations on Traverse with a significant acceleration,
making efficient use of the Traverse computational resource

- Field solve part (Poisson equation) will be ported to GPU via some libraries (ex. PETSc, Hypre, AMGx)

• Attended GPU Hackathon in 2019 at Princeton University  (Mentor: Rueben Budiardja (ORNL))


