Acceleration without breaking

The search for sustainable portable performance in
CASTEP

Phil Hasnip, Ed Higgins, Arjen Tamerus and Matt Smith

"-'gg UNIVERSITY

BB UNIVERSITY OF
¥ CAMBRIDGE

OpenACC Summit
August 2020

Introduction

CASTEP

@ Aim: predict materials’ behaviour from first principles
i.e. no knowledge of what they’ll do beforehand

@ Properties governed by electrons
@ Electrons behave according to quantum mechanics

@ Solve the Schrédinger equation via density functional
theory

The material’s behaviour should emerge from the simulation

@ Created late 1980s, rewritten 1999-2001

e o Portable
o Efficient
o Parallel
User-friendly

@ Language: ~500kLOC of Fortran 2003
@ Libraries: BLAS, LAPACK & FFT
@ Parallelism: MPI + OpenMP

@ Licence: dual academic (free) and commercial (from
BIOVIA)

CASTEP’s core development is done by researchers at the
universities of York, Royal Holloway, Oxford, Durham and
Cambridge.

CASTEP workload

CASTEP @ CASTEP solves the DFT equations iteratively
@ Solution written in a Fourier basis
@ Needs repeated application of a Hamiltonian matrix

H = T+ Vloc + an + anxc

@ T diagonal in Fourier space
@ V), diagonal in direct space
@ Vy low-rank matrix update

@ V. Operations in direct and Fourier space
(only present for certain classes of calculation)

GPU porting project

Enter the GPU

@ Focused on applying H

@ OpenACC

o Generates kernels
e Manages data transfers

@ Libraries: cuBLAS, cuFFT
(cuSOLVER, MAGMA)

@ CPU handles communication

GPU porting project

Enter the GPU

H = T+ Vloc + an + anxc

@ V, low-rank matrix update

@ CPU time spent entirely in BLAS

@ Use OpenACC to transfer data to device
@ cuBLAS for the operation

Initial performance

Benchmark calculations on cluster with 12-core Ivy Bridge,
2-GPU K20c nodes.

SERICI) Benchmark 1: solid benzene, 384 atoms, 1 node

CPU Cores CPU (s) GPU (s) Speedup
4 1212.57 718.29 1.69
12 564.74 391.18 1.44

Benchmark 2: sapphire surface, 120 atoms, 2 nodes

CPU Cores CPU (s) GPU (s) Speedup
8 2007.99 1165.99 1.72
24 954.68 591.37 1.61

Fourier transforms

H = T+ Vloc + an + anxc

Enter the GPU

@ Vi, and Vi both require Fourier transforms

@ Vyix usually FFT-bound
@ CPU time spent either in:

e 3D FFT (if Fourier components not distributed)
e 1D FFTs and MPI comms (if Fourier components
distributed)

@ Use OpenACC to transfer data to device
@ cuFFT for the operation

Enter the GPU

= =
o N

@

CPU vs GPU relative performance

CPU

Initial GPU

FFT performance

@ x6 speed

@ However, less than half speed-up from memory
Optimisations bandwidth

@ Why?

FFT performance

@ x6 speed

Optimisations bandwidth
@ Why?

@ Lots of kernels launched
@ Kernels short
@ Lots of waiting

API calls: 61.32% 50.7906s 4028791 ...
31.40% 26.0067s 1792327 ...

@ However, less than half speed-up from memory

cudaLaunchKernel
cuStreamSynchronize

Timeline analysis

OpendCC
Conpute T

37.5% void composite_2way_ffeu.|

18.45% nlc_apply.slce_nspinorco.
Optimisations 15.6% void composite 2way_ftu.. [] [] ']]
15.5% b apply.slce_nspiorco]]

11.5% nhc_apply_slce_nspinorco | |

Timeline analysis

I acc com.| I I acc omp.. acc,u,‘. Il jacc.comp.. II I acc_com. I I acc omp.. III acc_Comp.. |I |
- - . - - - . -

OpendCC

Optimisations |} i | I

15.5% nixcapply !

11.5% nixcapply_lice_nspinorco. | | |

@ Refactor to fuse OpenACC kernels
@ Use batched FFTs

Timeline analysis

OpenACC I

Compte ' N
37.5% void composite way fteu. |
18.45% nlc_apply.slce_nspinorco.
Optimisations 156% void composie_2way feu. [
15.5% ke apply.slice nspinorco

11.5% nix_apply_lice_nspinorco.

@ Refactor to fuse OpenACC kernels
@ Use batched FFTs

TR ace_compute_construct@nxc F03230 & compute construct@nixc F03272 acc_compute construct@nbc FI0...
penk
acc wat@nbc 03230 e wait@nbeF03212 ‘ A Wait@nbc FE3161
Conpute T
397%void composte vy e
200% void composite 2wy e

ic_applysice.nspino. | mikc_applysice nspinorcomps1 ¢

[composie -]
163%nhe ppl.sice_nspinorco. b apply sice nspinorcomps1.c.
"11.7% ic_apply_sice nspinorco. [nbxc_apply slice_nspino.

Accelerating NLXC calculations

@ Use NLXC calculation benchmark (Fe,VAI)

[
-y

Optimisations

= =
o N

=]

CPU vs GPU relative performance

CPU Initial GPU Refactored GPU

Conclusions @ Matt Smith
@ NVIDIA

@ Sheffield and ORNL hackathon teams
@ EPSRC

Challenges

@ OpenACC is a low-barrier route to GPU acceleration
@ Optimising is more work
@ Still many challenges!

@ Data transfer is an issue

Conclusions

@ Encapsulation of data and code makes it hard to
optimise data movement
@ In MPI-parallel, what is best mode of operation?

e 1 MPI process per GPU, OpenMP threads for excess
cores
Need to understand interplay of OpenMP and
OpenACC

e Many MPI processes share GPUs
Optimisations need access to GPU shared memory

@ For distributed FFTs, CUDA-aware MPI for data
transpositions

	CASTEP
	Enter the GPU
	Optimisations
	Conclusions

