
Acceleration without breaking
The search for sustainable portable performance in

CASTEP

Phil Hasnip, Ed Higgins, Arjen Tamerus and Matt Smith

OpenACC Summit
August 2020



CASTEP

Enter the GPU

Optimisations

Conclusions

Introduction

Aim: predict materials’ behaviour from first principles
i.e. no knowledge of what they’ll do beforehand
Properties governed by electrons
Electrons behave according to quantum mechanics
Solve the Schrödinger equation via density functional
theory

The material’s behaviour should emerge from the simulation



CASTEP

Enter the GPU

Optimisations

Conclusions

CASTEP

Created late 1980s, rewritten 1999-2001
Portable
Efficient
Parallel
User-friendly

Language: ∼500kLOC of Fortran 2003
Libraries: BLAS, LAPACK & FFT
Parallelism: MPI + OpenMP
Licence: dual academic (free) and commercial (from
BIOVIA)

CASTEP’s core development is done by researchers at the
universities of York, Royal Holloway, Oxford, Durham and
Cambridge.



CASTEP

Enter the GPU

Optimisations

Conclusions

CASTEP workload

CASTEP solves the DFT equations iteratively
Solution written in a Fourier basis
Needs repeated application of a Hamiltonian matrix

H = T + Vloc + Vnl + Vnlxc

T diagonal in Fourier space
Vloc diagonal in direct space
Vnl low-rank matrix update
Vnlxc operations in direct and Fourier space
(only present for certain classes of calculation)



CASTEP

Enter the GPU

Optimisations

Conclusions

GPU porting project

Focused on applying H

OpenACC
Generates kernels
Manages data transfers

Libraries: cuBLAS, cuFFT
(cuSOLVER, MAGMA)
CPU handles communication



CASTEP

Enter the GPU

Optimisations

Conclusions

GPU porting project

H = T + Vloc + Vnl + Vnlxc

Vnl low-rank matrix update
CPU time spent entirely in BLAS
Use OpenACC to transfer data to device
cuBLAS for the operation



CASTEP

Enter the GPU

Optimisations

Conclusions

Initial performance

Benchmark calculations on cluster with 12-core Ivy Bridge,
2-GPU K20c nodes.

Benchmark 1: solid benzene, 384 atoms, 1 node

CPU Cores CPU (s) GPU (s) Speedup
4 1212.57 718.29 1.69

12 564.74 391.18 1.44

Benchmark 2: sapphire surface, 120 atoms, 2 nodes

CPU Cores CPU (s) GPU (s) Speedup
8 2007.99 1165.99 1.72

24 954.68 591.37 1.61



CASTEP

Enter the GPU

Optimisations

Conclusions

Fourier transforms

H = T + Vloc + Vnl + Vnlxc

Vloc and Vnlxc both require Fourier transforms
Vnlxc usually FFT-bound
CPU time spent either in:

3D FFT (if Fourier components not distributed)
1D FFTs and MPI comms (if Fourier components
distributed)

Use OpenACC to transfer data to device
cuFFT for the operation



CASTEP

Enter the GPU

Optimisations

Conclusions

Accelerating NLXC calculations



CASTEP

Enter the GPU

Optimisations

Conclusions

FFT performance

x6 speed
However, less than half speed-up from memory
bandwidth
Why?

API calls: 61.32% 50.7906s 4028791 ... cudaLaunchKernel
31.40% 26.0067s 1792327 ... cuStreamSynchronize

Lots of kernels launched
Kernels short
Lots of waiting



CASTEP

Enter the GPU

Optimisations

Conclusions

FFT performance

x6 speed
However, less than half speed-up from memory
bandwidth
Why?

API calls: 61.32% 50.7906s 4028791 ... cudaLaunchKernel
31.40% 26.0067s 1792327 ... cuStreamSynchronize

Lots of kernels launched
Kernels short
Lots of waiting



CASTEP

Enter the GPU

Optimisations

Conclusions

Timeline analysis

Refactor to fuse OpenACC kernels
Use batched FFTs



CASTEP

Enter the GPU

Optimisations

Conclusions

Timeline analysis

Refactor to fuse OpenACC kernels
Use batched FFTs



CASTEP

Enter the GPU

Optimisations

Conclusions

Timeline analysis

Refactor to fuse OpenACC kernels
Use batched FFTs



CASTEP

Enter the GPU

Optimisations

Conclusions

Accelerating NLXC calculations

Use NLXC calculation benchmark (Fe2VAl)



CASTEP

Enter the GPU

Optimisations

Conclusions

Thanks

Matt Smith
NVIDIA
Sheffield and ORNL hackathon teams
EPSRC



CASTEP

Enter the GPU

Optimisations

Conclusions

Challenges

OpenACC is a low-barrier route to GPU acceleration
Optimising is more work
Still many challenges!
Data transfer is an issue
Encapsulation of data and code makes it hard to
optimise data movement
In MPI-parallel, what is best mode of operation?

1 MPI process per GPU, OpenMP threads for excess
cores
Need to understand interplay of OpenMP and
OpenACC
Many MPI processes share GPUs
Optimisations need access to GPU shared memory

For distributed FFTs, CUDA-aware MPI for data
transpositions


	CASTEP
	Enter the GPU
	Optimisations
	Conclusions

