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The Vienna Ab-initio
Simulation Package: VASP

Electronic structure from first principles:

Hy = Ey
* Approximations:
* Density Functional Theory (DFT)
* Hartree-Fock/DFT-HF hybrid functionals
* Random-Phase-Approximation
(GW, ACFDT)

3500+ licensed academic and industrial
groups world wide.

e 10k+ publications in 2015 (Google Scholar),
and rising.

* Developed in the group of Prof. G. Kresse at
the University Vienna and the VASP Software
GmbH.




VASP: Computational Characteristics

VASP does:

e Lots of “smallish” FFTs:
(e.g. 100X100X100)

* Matrix-Matrix multiplication
(DGEMM and ZGEMM)

* Matrix diagonalization: O (N3)
(N = #-of-electrons)

e All-2-all communication

Using (on CPU):

» fftw3d (or fftw-wrappers to mkl-ffts)
* LAPACK BLAS3 (mkl, OpenBLAS)

* scaLAPACK (or ELPA)

* MPI (OpenMPI, impi, ...) [+ OpenMP]

VASP is pretty well characterized by the
SPECfp2006 benchmark



VASP on GPU

* VASP has organically grown over more than 25 years
(450k+ lines of Fortran 77/90/2003/2008/... code)

* Previous VASP5.4.4 release: some features were ported with CUDA C
(DFT and hybrid functionals)

* Current VASP6.1.X releases: re-ported to GPU using OpenACC

* The OpenACC port is more complete already than the CUDA port
(Gamma-only version, support for reciprocal space projectors, ... )



Porting VASP to GPU using OpenACC

* Compiler-directive based: single source, readability, maintainability, ...
cuFFT, cuBLAS, cuSOLVER, CUDA aware MPIl and NCCL

Some dedicated kernel versions: e.g. batching FFTs, loop re-ordering

“Manual” deep copies of derived types (nested and/or with pointer members)
Multiple MPI ranks sharing a GPU (using MPS)

Use the OpenACC asynchronous execution infrastructure



VASP: The main task

* Solve N eigenvalue equations e (Default) distribution of work and data:
(Kohn-Sham, Roothaan, Quasiparticle, ...) over “orbitals”
1 . 2 MPI-ranks
|- §A+V(r)}¢z‘(r) = ei(r), 1=1,.,N
for the “one-electron orbitals” y;(r), and #1 #2
“one-electron energies” ¢;. ; 2
. . . 3 4
* Orbitals are expanded in a plane wave basis set
(i.e., store the Fourier coefficients, y;(G)) = 6

* Eigenvalue equation is solved by repeated
application of the Hamiltonian to the orbitals
(Krylov methods)



Many small kernels ...

doj =1, m * Alot of relatively
doi=1,n c(j) = a(j) + b(j) small kernels

call workl( psi(i), .. )

enddo \ enddo

call work_batch( psi(1:n), .. ) * Some work is “batched” (often to maximize the performance of
BLAS2/3 calls inside)

doi=1, n

call work2( psi(i), .. ) * Stepsinside loop intend to respect cache
call work3( psi(i), .. ) coherency on “Xeon-like” hardware
enddo
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Many small kernels ...

I$acc parallel loop

do j =1, m * Alot of relatively
doi=1,n c(j) = a(j) + b(j) small kernels
call workl( psi(i), .. )

enddo \ enddo

call work_batch_acc( psi(1l:n), .. ) * In case of the “batched” work it often pays off to write a
specific OpenACC version of the original routine

doi=1, n

call work2( psi(i), .. ) + Stepsinside loop intend to respect cache
call work3( psi(i), .. ) coherency on “Xeon-like” hardware
enddo
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Launch latency

I$acc parallel loop async(queue)

doi=1,n do j =1,
queue = 1 c(j) =

call workl( psi(i), .. ) .
enddo \\\\\\\\\\\ enddo
I$acc wait

call work_batch _acc( psi(1l:n), .. )

doi=1,n
queue = 1
call work2( psi(i), .. )
call work3( psi(i), .. )
enddo
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m
a(j) + b(j)

Try to hide launch latency by submitting independent
kernels into subsequent asynchronous execution
gueues.

Since the CPU is not blocked by a running GPU kernel
it can proceed to enqueue the next:

e Avoids unnecessary costly synchronizations

 Hides CPU launch latency behind kernel execution
e ...orvice versa (when kernel runtime is small)
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Launch latency

I$acc parallel loop async(queue)

do1i=1, n doj =1, m
queue = i c(j) = a(j) + b(j)
call workl( psi(i), .. ) .

enddo \\\\\\\\\\\ enddo

I$acc wait

call work_batch _acc( psi(1l:n), .. )

doi=1, n
queue = 1
call work2( psi(i), .. )
call work3( psi(i), .. )

enddo
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Hide launch latency by submitting independent
kernels into subsequent asynchronous execution

queues:

Can yield a performance gain of 20-30% for our
standard electronic minimization algorithms!
(RMM-DIIS and blocked Davidson)

... often kernels hide behind launch overhead ...
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OpenACC + OpenMP

* Another idea: hide the launch latency by means of OpenMP (“concurrent” kernel launches)

async(queue)

doi=1, n doj=1,m

c(j) = a(j) + b(j)
call workl( psi(i), .. )

queue = 1

Unfortunately this does not work (yet): the current CUDA drivers serialize the kernel launches inside
the OpenMP parallelized loop ...



Hiding collective communication using NCCL

Work in async. exec. queue 1,

Start non-blocking coll. comm. (NCCL)

Wait for coll. comm.

on data in buffer 1 in async. exec. queuel, of data in buffer 1 in async. exec. queue 1 to finish
1 1 I_, WAIT WAIT
[ \ \ RED GTH
| |
01 FWD FFT GTH RED = BCK FWD
02 > BCK FWD FET GTH RED
, WAIT WAIT
RED GTH
J\ J
| 1
Wait for coll. comm. Work in async. exec. queue 2, Start non-blocking coll. comm. (NCCL)
in async. exec. queue 2 to finish on data in buffer 2 in async. exec. queue 2, of data in buffer 2
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Hiding collective communication using NCCL

gather: gather:
ncclRes = ncclGroupStart()
call MPI_ibcast( ..., ncclRes = ncclBcast( ...,
irank, MPI_Comm, irank, NCCL_Comm,
buf%srequest, acc_get_cuda_stream(buf%squeue)
) ncclRes = ncclGroupEnd()
wait—-gather: wait—-gather:
call MPI_wait( buf%request, ... ) I$acc wait(bufsqueue)

Straightforward: NCCL calls pretty much “drop-in” for non-blocking MPI calls!
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VASP on GPU benchmarks

“Si256_VJT HSE06”
* Vacancy in Si (Q =5200 A3)

255 Si atoms (1020 e-)
DFT/HF-hybrid functional
Conjugate gradient
Batched FFTs

Explicit overlay of computation
and communication using
non-blocking collectives (NCCL)
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Speedup vs. CPU
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* CPU:2X E5-2698 v4 @ 2.20 GHz: 40 physical cores
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VASP on GPU: multi-node behaviour

“Si256_VJT_HSE06”

* Vacancy in Si (Q =5200 A3)

~N

(0))]

255 Si atoms (1020 e-)
DFT/HF-hybrid functional
Conjugate gradient
Batched FFTs

Explicit overlay of computation
and communication using
non-blocking collectives (NCCL)

Speedup (X)
= N w S u

o
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* Node: DGX1 feat. 8X NVIDIA V100-SXM2-16GB

* Interconnect: Mellanox ConnectX-6 Infiniband with HDR200 cards

Parallel efficiency (%)



Conclusions

“Many small kernels” “Hiding collective communication”
* Submit (identical) independent kernels in e Use NCCL as a “drop-in” for non-blocking MPI
subsequent async. exec. queues: collectives (bcast, reduce, ...) and overlay
comm. and comp. by putting them in their
+ Hide CPU-sided launch effort behind own async. exec. queues.
kernel execution
? OpenMP + OpenACC ... — Additional library dependency
— Ranks that communicate through NCCL
” may not share a GPU ... (issue for small

e Batching small kernels in specific “OpenACC

routines would be better performance-wise, workloads) |
but more invasive ? NVIDIA hardware is covered, what about

other GPUs ...



THE END
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