
Porting VASP to GPU using OpenACC:
exploiting the asynchronous execution model

Martijn Marsman, Stefan Maintz, Alexey Romanenko, Markus Wetzstein,
and Georg Kresse

OpenACC Annual Meeting, Aug. 31st 2020

OpenACC Annual Meeting

The Vienna Ab-initio
Simulation Package: VASP

Electronic structure from first principles:

!" = $"
• Approximations:

• Density Functional Theory (DFT)

• Hartree-Fock/DFT-HF hybrid functionals

• Random-Phase-Approximation

(GW, ACFDT)

• 3500+ licensed academic and industrial

groups world wide.

• 10k+ publications in 2015 (Google Scholar),

and rising.

• Developed in the group of Prof. G. Kresse at

the University Vienna and the VASP Software

GmbH.

8/31/20 2

OpenACC Annual Mee,ng

VASP: Computational Characteristics

VASP does:
• Lots of “smallish” FFTs:

(e.g. 100⨉100⨉100)
• Matrix-Matrix multiplication

(DGEMM and ZGEMM)
• Matrix diagonalization: " #$

(# ≈ #-of-electrons)
• All-2-all communication

Using (on CPU):
• fftw3d (or fftw-wrappers to mkl-ffts)
• LAPACK BLAS3 (mkl, OpenBLAS)
• scaLAPACK (or ELPA)
• MPI (OpenMPI, impi, …) [+ OpenMP]

VASP is pretty well characterized by the
SPECfp2006 benchmark

8/31/20 3

OpenACC Annual Meeting

VASP on GPU

• VASP has organically grown over more than 25 years

(450k+ lines of Fortran 77/90/2003/2008/… code)

• Previous VASP5.4.4 release: some features were ported with CUDA C

(DFT and hybrid funcQonals)

• Current VASP6.1.X releases: re-ported to GPU using OpenACC

• The OpenACC port is more complete already than the CUDA port

(Gamma-only version, support for reciprocal space projectors, …)

8/31/20 4

OpenACC Annual Meeting

Porting VASP to GPU using OpenACC

• Compiler-directive based: single source, readability, maintainability, …
• cuFFT, cuBLAS, cuSOLVER, CUDA aware MPI and NCCL
• Some dedicated kernel versions: e.g. batching FFTs, loop re-ordering
• “Manual” deep copies of derived types (nested and/or with pointer members)
• Multiple MPI ranks sharing a GPU (using MPS)
• Use the OpenACC asynchronous execution infrastructure

8/31/20 5

OpenACC Annual Mee,ng

VASP: The main task

8/31/20 6

• Solve N eigenvalue equations
(Kohn-Sham, Roothaan, Quasiparticle, …)

for the “one-electron orbitals” !" # , and
“one-electron energies” $".

⇥
� 1

2
�+ V (r)

⇤
 i(r) = ✏i i(r), i = 1, .., N

<latexit sha1_base64="nSYf/6Z9emqI+m5EQrFUKBwZOgo=">AAACTXicbVHLahsxFNU4bZy6TeK0y2xETcElzjDjGtIuAoZmkVVwoH6ANRiN5o4trHlU0hTMMD+QD8gP5G+6KWSXD+g+my4aSon8oLR2DwgO55yrx5GfCq6049xZpa0nT7fLO88qz1/s7u1XD172VJJJBl2WiEQOfKpA8Bi6mmsBg1QCjXwBfX/6ce73v4BUPIk/6VkKXkTHMQ85o9pIo2pAfD4e4mMSSspyt8ibBTkDoelRr54TP8SyeIvnGQ+TVPER/6OeYgJGEWYXvmY1MPmc0QDzU7dh242LUbXm2M4CeJO4K1JrH930rr9fveuMqrckSFgWQayZoEoNXSfVXk6l5kxAUSGZgpSyKR3D0NCYRqC8fNFGgd8YJcBhIs2KNV6of0/kNFJqFvkmGVE9UeveXPyfN8x0+N7LeZxmGmK2PCjMBNYJnleLAy6BaTEzhDLJzV0xm1DTqzYfUDEluOtP3iS9pu227A+Xpo0WWmIHHaLXqI5cdILa6Bx1UBcx9BXdo5/owfpm/bB+Wb+X0ZK1mnmF/kGp/AhtbrVB</latexit>

• (Default) distribution of work and data:
over “orbitals”

2 MPI-ranks

• Orbitals are expanded in a plane wave basis set
(i.e., store the Fourier coefficients, !" %)

• Eigenvalue equa,on is solved by repeated
applica,on of the Hamiltonian to the orbitals
(Krylov methods)

OpenACC Annual Meeting

Many small kernels ...

...

do i = 1, n

call work1(psi(i), ..)

enddo

call work_batch(psi(1:n), ..)

do i = 1, n

call work2(psi(i), ..)

call work3(psi(i), ..)

enddo

...

8/31/20 7

do j = 1, m
c(j) = a(j) + b(j)
...

enddo

• A lot of rela9vely
small kernels

• Steps inside loop intend to respect cache
coherency on “Xeon-like” hardware

• Some work is ”batched” (often to maximize the performance of
BLAS2/3 calls inside)

OpenACC Annual Meeting

Many small kernels …

...

do i = 1, n

call work1(psi(i), ..)

enddo

call work_batch_acc(psi(1:n), ..)

do i = 1, n

call work2(psi(i), ..)

call work3(psi(i), ..)

enddo

...

8/31/20 8

!$acc parallel loop
do j = 1, m

c(j) = a(j) + b(j)
...

enddo

• A lot of rela8vely

small kernels

• In case of the “batched” work it often pays off to write a

specific OpenACC version of the original routine

• Steps inside loop intend to respect cache

coherency on “Xeon-like” hardware

OpenACC Annual Meeting

Launch latency

do i = 1, n

queue = i

call work1(psi(i), ..)

enddo

!$acc wait

call work_batch_acc(psi(1:n), ..)

do i = 1, n

queue = i

call work2(psi(i), ..)

call work3(psi(i), ..)

enddo

8/31/20 9

!$acc parallel loop async(queue)
do j = 1, m

c(j) = a(j) + b(j)
...

enddo

Try to hide launch latency by submitting independent
kernels into subsequent asynchronous execution
queues.

Since the CPU is not blocked by a running GPU kernel
it can proceed to enqueue the next:

• Avoids unnecessary costly synchronizations
• Hides CPU launch latency behind kernel execution
• … or vice versa (when kernel runtime is small)

OpenACC Annual Meeting 8/31/20 11

“FFTs”: !" # → !" %

FFTs of 8 orbitals put into
subsequent streams

Kernel exec. hidden
behind launch latency
(“small” workload ☹)

OpenACC Annual Mee,ng 8/31/20 12

“! " #$ " ”

Further operations on
these orbitals by the
next routine use the
same streams to avoid
synchronizations

OpenACC Annual Meeting 8/31/20 13

Sync. ($acc wait)
and run in single
stream

“batched” rouFne

OpenACC Annual Mee,ng 8/31/20 15

“large” workload:
CPU sided launch latency << kernel exec. time

“FFTs”

OpenACC Annual Meeting 8/31/20 16

CPU sided launch of second kernel is hidden
behind the ongoing GPU work associated with
the previous launch!

OpenACC Annual Meeting 8/31/20 17

and so on …

OpenACC Annual Meeting 8/31/20 18

… and so on!

OpenACC Annual Meeting

Launch latency

do i = 1, n

queue = i

call work1(psi(i), ..)

enddo

!$acc wait

call work_batch_acc(psi(1:n), ..)

do i = 1, n

queue = i

call work2(psi(i), ..)

call work3(psi(i), ..)

enddo

8/31/20 19

!$acc parallel loop async(queue)
do j = 1, m

c(j) = a(j) + b(j)
...

enddo

• Hide launch latency by submi>ng independent
kernels into subsequent asynchronous execuDon
queues:

Can yield a performance gain of 20-30% for our
standard electronic minimizaDon algorithms!
(RMM-DIIS and blocked Davidson)

… oSen kernels hide behind launch overhead …

OpenACC Annual Meeting

OpenACC + OpenMP

!$omp parallel do

do i = 1, n

queue = i

call work1(psi(i), ..)

enddo

!$omp end parallel do

8/31/20 20

!$acc parallel loop async(queue)
do j = 1, m

c(j) = a(j) + b(j)
...

enddo

• Another idea: hide the launch latency by means of OpenMP (“concurrent” kernel launches)

Unfortunately this does not work (yet): the current CUDA drivers serialize the kernel launches inside
the OpenMP parallelized loop ...

OpenACC Annual Meeting

Hiding collective communication using NCCL

8/31/20 21

Work in async. exec. queue 1,
on data in buffer 1

Work in async. exec. queue 2,
on data in buffer 2

Start non-blocking coll. comm. (NCCL)
in async. exec. queue1, of data in buffer 1

Wait for coll. comm.
in async. exec. queue 1 to finish

Wait for coll. comm.
in async. exec. queue 2 to finish

Start non-blocking coll. comm. (NCCL)
in async. exec. queue 2, of data in buffer 2

OpenACC Annual Meeting

Hiding collective communication using NCCL

gather:

call MPI_ibcast(...,
irank, MPI_Comm,
buf%request,
...

)

wait-gather:

call MPI_wait(buf%request, ...)

gather:

ncclRes = ncclGroupStart()

ncclRes = ncclBcast(...,
irank, NCCL_Comm,
acc_get_cuda_stream(buf%queue)

)

ncclRes = ncclGroupEnd()

wait-gather:

!$acc wait(buf%queue)

8/31/20 22

Straightforward: NCCL calls pretty much “drop-in” for non-blocking MPI calls!

OpenACC Annual Meeting 8/31/20 23

CPU starts “gather”

OpenACC Annual Mee,ng 8/31/20 24

NCCL broadcast is hidden behind work in “fock_fwd”

OpenACC Annual Meeting

VASP on GPU benchmarks

“Si256_VJT_HSE06”
• Vacancy in Si (Ω ≅5200 Å3)
• 255 Si atoms (1020 e−)
• DFT/HF-hybrid functional
• Conjugate gradient
• Batched FFTs
• Explicit overlay of computation

and communication using
non-blocking collectives (NCCL)

• CPU: 2⨉ E5-2698 v4 @ 2.20 GHz: 40 physical cores

8/31/20 25

1.0
4.7

9.0

15.9

28.7

0

5

10

15

20

25

30

35

VASP 6

Sp
ee

du
p

vs
. C

PU

CPU 1 V100 2 V100 4 V100 8 V100

OpenACC Annual Meeting

VASP on GPU: multi-node behaviour

“Si256_VJT_HSE06”
• Vacancy in Si (Ω ≅5200 Å3)
• 255 Si atoms (1020 e−)
• DFT/HF-hybrid functional
• Conjugate gradient
• Batched FFTs
• Explicit overlay of computation

and communication using
non-blocking collectives (NCCL)

• Node: DGX1 feat. 8⨉ NVIDIA V100-SXM2-16GB

• Interconnect: Mellanox ConnectX-6 Infiniband with HDR200 cards

8/31/20 27

0

20

40

60

80

100

120

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Pa
ra

lle
l e

ffi
cie

nc
y

(%
)

Sp
ee

du
p

(⨉
)

nodes

8 V100 total 8 V100 per node par. eff.

OpenACC Annual Meeting

Conclusions

“Many small kernels”
• Submit (identical) independent kernels in

subsequent async. exec. queues:

+Hide CPU-sided launch effort behind
kernel execution

−… or vice versa (small workloads)
? OpenMP + OpenACC …

• Batching small kernels in specific “OpenACC”
routines would be better performance-wise,
but more invasive

“Hiding collective communication”
• Use NCCL as a “drop-in” for non-blocking MPI

collectives (bcast, reduce, …) and overlay
comm. and comp. by putting them in their
own async. exec. queues:

+Works really well (on- and across-node)
−Additional library dependency
−Ranks that communicate through NCCL

may not share a GPU … (issue for small
workloads)

? NVIDIA hardware is covered, what about
other GPUs …

8/31/20 28

OpenACC Annual Mee,ng

THE END

Special thanks to Stefan Maintz, Alexey Romanenko, Andreas Hehn,

and Markus Wetzstein from NVIDIA and PGI!

And to Ani Anciaux-Sedrakian and Thomas Guignon at IFPEN!

And to you for listening!

8/31/20 29

