Porting VASP to GPU using OpenACC:
exploiting the asynchronous execution model

Martijn Marsman, Stefan Maintz, Alexey Romanenko, Markus Wetzstein,
and Georg Kresse

OpenACC Annual Meeting, Aug. 315t 2020

e 2 Lniversitat

ey wien

imulation

The Vienna Ab-initio
Simulation Package: VASP

Electronic structure from first principles:

Hy = Ey
* Approximations:
* Density Functional Theory (DFT)
* Hartree-Fock/DFT-HF hybrid functionals
* Random-Phase-Approximation
(GW, ACFDT)

3500+ licensed academic and industrial
groups world wide.

e 10k+ publications in 2015 (Google Scholar),
and rising.

* Developed in the group of Prof. G. Kresse at
the University Vienna and the VASP Software
GmbH.

VASP: Computational Characteristics

VASP does:

e Lots of “smallish” FFTs:
(e.g. 100X100X100)

* Matrix-Matrix multiplication
(DGEMM and ZGEMM)

* Matrix diagonalization: O (N3)
(N = #-of-electrons)

e All-2-all communication

Using (on CPU):

» fftw3d (or fftw-wrappers to mkl-ffts)
* LAPACK BLAS3 (mkl, OpenBLAS)

* scaLAPACK (or ELPA)

* MPI (OpenMPI, impi, ...) [+ OpenMP]

VASP is pretty well characterized by the
SPECfp2006 benchmark

VASP on GPU

* VASP has organically grown over more than 25 years
(450k+ lines of Fortran 77/90/2003/2008/... code)

* Previous VASP5.4.4 release: some features were ported with CUDA C
(DFT and hybrid functionals)

* Current VASP6.1.X releases: re-ported to GPU using OpenACC

* The OpenACC port is more complete already than the CUDA port
(Gamma-only version, support for reciprocal space projectors, ...)

Porting VASP to GPU using OpenACC

* Compiler-directive based: single source, readability, maintainability, ...
cuFFT, cuBLAS, cuSOLVER, CUDA aware MPIl and NCCL

Some dedicated kernel versions: e.g. batching FFTs, loop re-ordering

“Manual” deep copies of derived types (nested and/or with pointer members)
Multiple MPI ranks sharing a GPU (using MPS)

Use the OpenACC asynchronous execution infrastructure

VASP: The main task

* Solve N eigenvalue equations e (Default) distribution of work and data:
(Kohn-Sham, Roothaan, Quasiparticle, ...) over “orbitals”
1 . 2 MPI-ranks
|- §A+V(r)}¢z‘(r) = ei(r), 1=1,.,N
for the “one-electron orbitals” y;(r), and #1 #2
“one-electron energies” ¢;. ; 2
. . . 3 4
* Orbitals are expanded in a plane wave basis set
(i.e., store the Fourier coefficients, y;(G)) = 6

* Eigenvalue equation is solved by repeated
application of the Hamiltonian to the orbitals
(Krylov methods)

Many small kernels ...

doj =1, m * Alot of relatively
doi=1,n c(j) = a(j) + b(j) small kernels

call workl(psi(i), ..)

enddo \ enddo

call work_batch(psi(1:n), ..) * Some work is “batched” (often to maximize the performance of
BLAS2/3 calls inside)

doi=1, n

call work2(psi(i), ..) * Stepsinside loop intend to respect cache
call work3(psi(i), ..) coherency on “Xeon-like” hardware
enddo

OpenACC Annual Meeting 8/31/20 7

Many small kernels ...

I$acc parallel loop

do j =1, m * Alot of relatively
doi=1,n c(j) = a(j) + b(j) small kernels
call workl(psi(i), ..)

enddo \ enddo

call work_batch_acc(psi(1l:n), ..) * In case of the “batched” work it often pays off to write a
specific OpenACC version of the original routine

doi=1, n

call work2(psi(i), ..) + Stepsinside loop intend to respect cache
call work3(psi(i), ..) coherency on “Xeon-like” hardware
enddo

OpenACC Annual Meeting 8/31/20

Launch latency

I$acc parallel loop async(queue)

doi=1,n do j =1,
queue = 1 c(j) =

call workl(psi(i), ..) .
enddo \\\\\\\\\\\ enddo
I$acc wait

call work_batch _acc(psi(1l:n), ..)

doi=1,n
queue = 1
call work2(psi(i), ..)
call work3(psi(i), ..)
enddo

OpenACC Annual Meeting

m
a(j) + b(j)

Try to hide launch latency by submitting independent
kernels into subsequent asynchronous execution
gueues.

Since the CPU is not blocked by a running GPU kernel
it can proceed to enqueue the next:

e Avoids unnecessary costly synchronizations

 Hides CPU launch latency behind kernel execution
e ...orvice versa (when kernel runtime is small)

8/31/20

NVIDIA Nsight Sy 2020.21

[= Timeline View

fock_dbl.gdrep X RIGEGETGTESGEET ERGEGE TR GG IS A [rf_hamil_streams_full_rpr.gdrep X

~ [32463] vasp_std

0S runtime libraries

CUDA API

Profiler overhead

3 threads hidden...

» [All Streams]

» 15.4% Stream 18

» 14.9% Stream 25

» 11.6% Stream 20

» 11.6% Stream 19

-

11.6% Stream 21

» 11.6% Stream 24

» 11.6% Stream 22

» 11.6% Stream 23

-+

~ CUDA (Quadro GP100, 0000:0: . .

bl

“FFTS": 13(G) - P;(r)

549.980ms

k10 oo o 0.l bl o

1A
2l

b ool B |

o ol TR |

—

.
L
-—

wll Ll ol Ll L ol|_.._I..._l_...i_.._ll...l..._i.....hl..Jll...1I..il..nl..i|..|1..1|.|L.1_...L..l_,..1_._.1....[._.[...}_._.mulh _l...... " ¥ Hyw AR R RN N R

(“small” workload =) | o
Iy L

FFTs of 8 orbitals putinto | =

subsequent streams A
ali ,l l

Kernel exec. hidden
behind launch latency :

al al A, 1

T WY

i

1 bl b

OpenACC Annual Meeting

8/31/20

11

NVIDIA Nsi

2020.21

AT W I [T S 4l Irf_hamil_streams_part_rpr_tmp.qdrep X

Irf_hamil_streams_full_rpr.gdrep X

[= Timeline View

~ [32463] vasp_std

0S runtime libraries

w01 L 0ol 0, .

wel_nl ol il oli_.._I..._l_...i_.._ll...l..._i.....Jn.d..jl...1I..hl..ﬂ..ii..il..tlh.1_._.L_.l_,_.1_1_.1....|_._.|....L_._.mulh _l..... ™ N W AR R RN N R

CUDA API
Profiler overhead
3 threads hidden... e
~ CUDA (Quadro GP100, 0000:0: . . - =

» [All Streams] -
» 15.4% Stream 18 « oL
» 14.9% Stream 25 bl -y
» 11.6% Stream 20 - ol
» 11.6% Stream 19 « Ll
» 11.6% Stream 21 b
» 11.6% Stream 24 - .
» 11.6% Stream 22 b
» 11.6% Stream 23 "1

al,

al

ik

. | “ V) (r)”

- wi M Il
- Further operations on

‘these orbitals by the

next routine use the

same streams to avoid

synchronizations

I. I. 1 -.- o

T WY

TR WY

OpenACC Annual Meeting

8/31/20 12

ece NVIDIA Nsight Systems 2020.2.1
fock_dbl.gdrep X RIGEGETGTESGEET ERGEGE TR GG IS A [rf_hamil_streams_full_rpr.gdrep X

[£ Timeline View

552.515ms

~ [32463] vasp_std

“batched” routine

0S runtime libraries

0 00 0 sl T s bk T .
Stweads hidden.. =
- cun auscro 09100, 0000 Lt i et st Ml o b e bbb duddoatabodosbodoabed s b0 CE D RRERE G e b
rp— ,.
e il . o 1 " Sync. (Sacc wait)
ot 2| M e o Iy I I and runinsingle |
) Mexsweam0 u il A al. A | fu. | Stream
) noisremts % Ll i i | 1 | [L
R . el i il l i | il
) mewswesm2a W il i i i 1 . 1} L
) newswemz2 o i i |) ! L
\ 1165% Stream 23 o i i il i | 1 i B
] L I

OpenACC Annual Meeting 8/31/20 13

rmm-diis.qdrep X

[= Timeline View -]
I

CUDA API

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000!

» [All Streams] b

» 28.4% Stream 18 b

» 18.7% Default stream (W

» 18.0% Stream 20 b

-

17.8% Stream 19 «

17.1% Stream 21

cuStreamSynchronize

| R

2 errors, 9 warnings, 30 messages

4

OpenA

NVIDIA Nsight Systems 2020.2.1

rmm-diis.qdrep X

[= Timeline View -]
|

CUDA API

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000!

» [All Streams] b

» 28.4% Stream 18 b

» 18.7% Default stream (W

» 18.0% Stream 20 b

» 17.8% Stream 19 «

17.1% Stream 21

P ,_C)=, €3 2 errors, 9 warnings, 30 messages

cuStreamSynchronize

4

rmm-diis.qdrep X

[= Timeline View -]
I

CUDA API

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000!

» [All Streams] b

» 28.4% Stream 18 b

» 18.7% Default stream (W

» 18.0% Stream 20 b

-

17.8% Stream 19 &

17.1% Stream 21

J NI

P ,_D=,' €3 2 errors, 9 warnings, 30 messages

cuStreamSynchronize

4

OpenA

OpenA

rmm-diis.qdrep X

[£ Timeline View -] > ._D=.‘ @ 2 errors, 9 warnings, 30 messages

CUDA AP] I I I II I I I | cuStreamSynchronize

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000/ 5 l | ‘
» [All Streams] b

s mansreamn o ol N e S I . di

» 18.7% Default stream (W

) Bokoemz) | S O O il
pexsuemie | IS I

-

17.1% Stream 21

<« [|

Launch latency

I$acc parallel loop async(queue)

do1i=1, n doj =1, m
queue = i c(j) = a(j) + b(j)
call workl(psi(i), ..) .

enddo \\\\\\\\\\\ enddo

I$acc wait

call work_batch _acc(psi(1l:n), ..)

doi=1, n
queue = 1
call work2(psi(i), ..)
call work3(psi(i), ..)

enddo

OpenACC Annual Meeting

Hide launch latency by submitting independent
kernels into subsequent asynchronous execution

queues:

Can yield a performance gain of 20-30% for our
standard electronic minimization algorithms!
(RMM-DIIS and blocked Davidson)

... often kernels hide behind launch overhead ...

8/31/20

19

OpenACC + OpenMP

* Another idea: hide the launch latency by means of OpenMP (“concurrent” kernel launches)

async(queue)

doi=1, n doj=1,m

c(j) = a(j) + b(j)
call workl(psi(i), ..)

queue = 1

Unfortunately this does not work (yet): the current CUDA drivers serialize the kernel launches inside
the OpenMP parallelized loop ...

Hiding collective communication using NCCL

Work in async. exec. queue 1,

Start non-blocking coll. comm. (NCCL)

Wait for coll. comm.

on data in buffer 1 in async. exec. queuel, of data in buffer 1 in async. exec. queue 1 to finish
1 1 I_, WAIT WAIT
[\ \ RED GTH
| |
01 FWD FFT GTH RED = BCK FWD
02 > BCK FWD FET GTH RED
, WAIT WAIT
RED GTH
J\ J
| 1
Wait for coll. comm. Work in async. exec. queue 2, Start non-blocking coll. comm. (NCCL)
in async. exec. queue 2 to finish on data in buffer 2 in async. exec. queue 2, of data in buffer 2
8/31/20 21

OpenACC Annual Meeting

Hiding collective communication using NCCL

gather: gather:
ncclRes = ncclGroupStart()
call MPI_ibcast(..., ncclRes = ncclBcast(...,
irank, MPI_Comm, irank, NCCL_Comm,
buf%srequest, acc_get_cuda_stream(buf%squeue)
) ncclRes = ncclGroupEnd()
wait—-gather: wait—-gather:
call MPI_wait(buf%request, ...) I$acc wait(bufsqueue)

Straightforward: NCCL calls pretty much “drop-in” for non-blocking MPI calls!

ece NVIDIA Nsight 2020.21

fock_dbl.gdrep X

D oy e f— & 2 errors, 8 warnings, 32 messages
Bs i 8.1s i =l

5 G S48 2% 202 1l et e el e L D e o) &is 2 LR o

= Timeline View - I

~ [23124] vasp_std

NVTX

CUDA API

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000/

~ [All Streams]

» >99.9% Kernels

oy fi

<0.1% Memory

~ 88.2% Stream 18

||l||ﬂ||ﬂ|ll|ﬂllllll| A
» >99.9% Kernels b
A fi
» <0.1% Memory
NVTX <
~ 6.5% Stream 21

» 100.0% Kernels bl

NVTX

2 streams hidden... ==

[JoX NVIDIA Nsight 2020.2.1
= Timeline View - I Lo e f——e @ 2 errors, 8 warnings, 32 messages

~ [23124] vasp_std

0S runtime libraries

NVTX

CUDA API

Profiler overhead

3 threads hidden... ===

~ CUDA (Quadro GP100, 000/

~ [All Streams]

» >99.9% Kernels b

<0.1% Memory

~ 88.2% Stream 18

» >99.9% Kernels b
A

» <0.1% Memory "1

~ 6.5% Stream 21

» 100.0% Kernels

NVTX

2 streams hidde ===j= 94 ‘

- DSOS e—
A

4

VASP on GPU benchmarks

“Si256_VJT HSE06”
* Vacancy in Si (Q =5200 A3)

255 Si atoms (1020 e-)
DFT/HF-hybrid functional
Conjugate gradient
Batched FFTs

Explicit overlay of computation
and communication using
non-blocking collectives (NCCL)

OpenACC Annual Meeting

Speedup vs. CPU

w
(92}

= N N w
(O] o (92 o

=
o

(9]

o

CPU 1V100 m2V100 m4V100 m8V100

VASP 6

* CPU:2X E5-2698 v4 @ 2.20 GHz: 40 physical cores

8/31/20

25

VASP on GPU: multi-node behaviour

“Si256_VJT_HSE06”

* Vacancy in Si (Q =5200 A3)

~N

(0))]

255 Si atoms (1020 e-)
DFT/HF-hybrid functional
Conjugate gradient
Batched FFTs

Explicit overlay of computation
and communication using
non-blocking collectives (NCCL)

Speedup (X)
= N w S u

o

8 V100 total 8 V100 per node par. eff.

120

100

80

60

40

20

2 4 6 8
nodes

* Node: DGX1 feat. 8X NVIDIA V100-SXM2-16GB

* Interconnect: Mellanox ConnectX-6 Infiniband with HDR200 cards

Parallel efficiency (%)

Conclusions

“Many small kernels” “Hiding collective communication”
* Submit (identical) independent kernels in e Use NCCL as a “drop-in” for non-blocking MPI
subsequent async. exec. queues: collectives (bcast, reduce, ...) and overlay
comm. and comp. by putting them in their
+ Hide CPU-sided launch effort behind own async. exec. queues.
kernel execution
? OpenMP + OpenACC ... — Additional library dependency
— Ranks that communicate through NCCL
” may not share a GPU ... (issue for small

e Batching small kernels in specific “OpenACC

routines would be better performance-wise, workloads) |
but more invasive ? NVIDIA hardware is covered, what about

other GPUs ...

THE END

Special thanks to Stefan Maintz, Alexey Romanenko, Andreas Hehn,
and Markus Wetzstein from NVIDIA and PGI!

And to Ani Anciaux-Sedrakian and Thomas Guignon at IFPEN!

And to you for listening!

