Hewlett Packard
Enterprise

DIRECTIVES ROC

OPENACC SUMMIT
September 15, 2021

IN REMEMBRANCE

IN LOVING
MEMORY OF

Professor
i

! Guang R Gao

L 1945-2021

—

I
»

=

Let his legacy be
remembered and his
impact persist forever

LONG LIVE DIRECTIVES!

e New languages get a lot of
attention
« But few are widely adopted

e Directives have been a key means
to program supercomputers from
the earliest days
 Practical
e Performant
o Powerful
e Productive
e Sometimes portable

+ ASCI rec

1000+

ai’agon XP/

Cray T3L 5(6768)
- CM-£ '
100+ * > v
. .
- T90
'S ’ :
: CM-Z4 + mC90
10 . =
Y—mp PR -
X-mg_
1 B —
+ MPP
m Cray vecto
0.1 : ‘ ‘ ‘ ‘ |
1984 1986 1988 1990 1992 1994 1996

Year

HIGH PERFORMANCE FORTRAN (HPF)

e Directives extend Fortran for distributed
(inter-node) memory parallel programming

e First definition early 1993, revision 1997 IHPF$ DISTRIBUTE W (BLOCK)

e Japanese created additional features in JA-HPF HPFS INDEPENDENT, NEW (X), REDUCTION (SUM)
e Main idea is to enable the application DO)!:\}\’/('I“) (1-05)

developer to achieve data locality SUM = SUM + F (X)

END DO

e Main features are directives for data
mapping and parallel loops

« Work performed where the data is stored
« Some library routines

e Broad participation in standards effort

OPENMP

De-facto standard API to write shared memory
parallel applications in C, C++, and Fortran

ISOMP PARALLEL DO PRIVATE (X), SHARED (W)
ISOMP& REDUCTION (+: SUM)
DOI=1,N
X = W(I) * (I - 0.5)
SUM = SUM + F (X)
END DO
ISOMP END PARALLEL

1750 wg‘xEU

wi=NVIDIA GPU Single Precision

150 ~~worcr vaisn W‘
weiriel (U Singe redsion
whes|ntel CPU Double Precision

120 /

1 O)O GeForceGTXV

GeForce8800GTX

'Y
50 /
GeForee 7800 GTX W(QP U
2 O GeForce6800 Ultra

Peak Performance IGFLOPSI

N

o

3
XS

>
(@
g
g
8
:
k

—
N
(@’
N

80 GeForcenOOGTx/
force 6800 GT / C P Um
4

c Prescatt /
Harpertown

O3mmmmmmo

E
N

Memory Bandwidth [GByte/s]
x
g
N

TSUBAME2.0 GPU RATIONALIZATION

« ~3000 CPUs at 200+ Teraflops,
~4000 GPUs at 2.2 Petaflops

e Realistic best case: x5~6 perf gain
per socket
« Machine equivalent to 25,000~30,000 CPUs
« Alternative: CPU only, same $$$ and
Power, how big a system?

« Answer: at best 5~6000 CPUs (Tsubame
1.0) at 400+ Teraflops

 CPU equivalency = 1.4 x utilization x
perf gain > 1.0 then we winl

» No religious war but simple economics

Satoshi Matsuoka, TiTech, 2010

(0/' [? 0[/3[/

CAPS HMPP: ALREADY THINKING ABOUT
ACCELERATOR DEVICES

« Declare hardware specific
implementations of functions

(HMPP codelets)

« Can be specialized to the execution
context (data size, ...)

 Codelet calls (RPC)

« Synchronous, asynchronous
properties

 Data transfers
« Data prefetching

« Synchronization barriers

« Host CPU will wait until remote
computation is complete

« Use #D accelerators in parallel

#pragma omp parallel for, private (j)
for (jj=0;33i<#D;jj++) {

for (j=jj*(n/#D); 3<jj*(n/#D)+(n/#D); Jj++){

#pragma hmpp tospeedupl callsite

simplefuncl(n,tl[j],t2,t3[j],alpha);

}

#pragma hmpp tospeedupl release

}

HWA

#pragma omp parallel for, private (j)
for (jj=0;jj<#D;jj++)

for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){
#pragma hmpp tospeedupl callsite
simplefuncl(n,t1[j],t2,t3[jl,alpha);
}

#pragma hmpp tospeedupl release

}

shared memory

core core

HWA

RAPID GROWTH OF ACCELERATED HPC BEGINS

e Announced Supercomputing 2011

6000000

o Initial work by NVIDIA, Cray, PGI, CAPS

5000000 e Directive-based programming for accelerators

4000000

3000000

1000000

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

Our largest HPC system have O(10°) cores

Many of the high end system use hybrid architectures

Energy usage is a major concern
Programming has become more of a critical issue

For many applications performance is measured i
per cent of peak.

e For Fortran, C, C++
e Loop-based computations

e Compilers: PGI, Cray, CAPS, OpenARC, OpenUH,
2000000 GCC (49)

n a few

OPENUH - AN OPEN SOURCE OPENACC COMPILER

ettt

------------1

OpenUH Compiler Infrastructure |

FRONTENDS
(C/C++,F90,0penMP,OpenACC)
Y

f IPA A
(Inter Procedural Analyzer)

v
PRELOWER
(Preprocess OpenACC)

!

!

J

!

i

S
LNO I
!

|

i

!

l

!

i

(Loop Nest Optimizer)

LOWER
(Transformation of OpenACC) |

v
WOPT
(Global Scalar Optimizer)

v
[WHIRL2C & WHIRL2CUDA
| (IR-to-source for other targets)

!
CG :
(Code for 1A-32,1A-64,X86_64) :

Source Code
with OpenACC

Directives

GPU Code

NVCC
Compiler

CPU Code

General CPU

Compiler

PTX
Assembler
L oaded

Dynamically

m« Librar

- CPU Binary

Executable

PERFORMANCE PORTABILITY ACROSS COMPILERS?

e Same OpenACC thread setting does not guarantee best
performance for both OpenUH and PGI compilers (PGI 15.7)

40 \ 40

I
w:l6,v:32 I W'16V 32 s

w:8,v:64 I w: 8 V: 64 I
| w:l6,v:64 mmm. | | w:16,v:64 .
30 I wiq,vi128 30 1 wig,vi128
w:8,v:128 w:8,v:128
25 - N 25 -
@ @
() L _ (0] L
E 20 £ 20
[[
15 - N 15 -
10 B 10
| 1! [1!
0 0
10073 20073 30073 40073 50073 10073 20073 30073 40073 50073
Problem Size Problem Size

Fig: OpenUH performance for micro-RTM Fig: PGI performance for micro-RTM

THE ROAD AHEAD

e Applications are long-lived

e Multiple GPUs on node

e High rate of innovation in hardware
e Including accelerators

» What new accelerators will be configured
on HPC platforms?

e New classes of users

e Still need scalable performance and
productive programming models

e We need good compilers and mature
programming ecosystems

% £ \f@@r £

1. Dis sf

Canld 2. Excitement Asfomshmenf
I can doitil How will | do it?
W [J @
f (
4.Enthusiasm Loy,]
| got hold of the flowll Mefellent programmer! 6. Dusnllusnonmcnf
Code is not functioning properly
s =)) kk
) TR ‘\
:\ - /) =
it :)
2 s s
9. Fury
7. Fright 8. Horror - Damn with computers
Wwill this Togic wolf? Another A level bug!! NG5 @
; I ' /
10. Frustration 11. The End (o) Riyush Jain

Itis notworking in expected manner Project Appraisal

HPE CRAY PROGRAMMING ENVIRONMENT

Essential toolset for HPC organizations developing HPC code in-house.

Fully integrated software suite with compilers, tools,
and libraries designed to increase programmer
productivity, application scalability, and performance.

Complete toolchain

For the whole application
development process.

"""
Scalability
Improving performance of
applications on systems of
any size—up to Exascale
deployments.

—

Holistic solution
Unlike processor-specific
tools, the suite enables
software development for
the full system (including
CPUs, GPUs and
interconnect) for the best
performance.

Complete Support
HPE Pointnext Services
support the whole suite,
not just the tools we
developed.

Programmability
Offering users intuitive
behaviour, automation of

tasks and best

performance for their
applications with little
effort.

From HPC experts for

HPC experts
Developed for over 30
years in close inferaction
and conftributions

from our users.

Compiler Debug

information information

<> Gx

Application

Export/import information
program
analyses

® Dul

Queries for
application
optimization

Performance
analysis

HPE CRAY PROGRAMMING ENVIRONMENT

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on HPE &
HPE Cray systems

Performance Analysis &

Development
Optimization

Debugging

Setup & Runtime

Programming Models Programming Languages
HPE Cray MPI

Comparative Debugger Environment Setup

Compare two versions of an application

Performance Analysis Tool (PAT)

C++ Fortran

Whole program performance analysis,

GDB for HPC
Parallelized gdb for HPC

Python

exposing wide set of indicators, identifying

bottlenecks and automatically generating _

OpenMP | OpenACC P! 5 7

P | Op Optimized Libraries) . Modules / Lmod
suggestions to improve performance.

AMD ROCm HIP | NVIDIA CUDA

LibSci (BLAS) Valgrind for HPC

Memory debugging at scale

UPC | Fortran co-arrays

LAPACK & ScaLAPACK Visualization Tool

Complements text reports with summary Su ppor‘l'ed sys1'ems:

of performance data in graphs and
charts, allowing users to drill down and

Tool for Abnormal Termination resolve issues e HPE Cray supercomputers

Global Arrays

LibSci_ACC
Programming Environments

Compiling Environment

o
|_||||

Processing + HPE Apollo 2000
el I/O Libraries Manage core files at scale Code Parallelization Assistant e HPE ProLiant DL systems
Reveal hidden potential of an application e Legacy Cray systems
Intel Programming Environment NetCDF gacy ysy

TotalView via code restructuring

AMD Programming Environment DL / Al Tools

DDT

NVIDIA HPC SDK Deep Learning Plug-in

HPE —authored

d party

|

I
O
i)
(6]

HPE CRAY PROGRAMMING ENVIRONMENT
Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on HPE &
HPE Cray systems

Performance Analysis &
Optimization

Setup & Runtime

Debugging

Development

Environment Setup

Performance Analysis Tool (PAT)
Whole program performance analysis,

Programming Languages Comparative Debugger

HPE Cray MPI Compare two versions of an application

o 5 5 Parallelized gdb for HPC
% Optimized Libraries
AMD ROCm HIP | NVIDIA CUDA

exposing wide set of indicators, identifying
bottlenecks and automatically generating
suggestions to improve performance.

Modules / Lmod

Valgrind for HPC
Memory debugging at scale

S LibSci (BLAS)
UPC | Foriran co-arrays
Global Arrays
-

IRT
_ Tool for Abnormal Termination

Visualization Tool
Complements text reports with summary Su ppor‘l'ed sys1'ems:

of performance data in graphs and

charts, allowing users to drill down and
resolve issues e HPE Cray supercomputers

Programming Environments

Compiling Environment e e HPE Apollo 2000
e 1/O Libraries Manage core files at scale Code Parallelization Assistant e HPE ProLiant DL systems
Reveal hidden potential of an application e |egacy Cray systems
Intel Programming Environment NetCDF HDF5 TotalVie via code restructuring gacy ey
iew

AMD Programming Environment DL / Al Tools

Deep Learning Plug-in

NVIDIA HPC SDK BRI

I]
il

HPE PERFORMANCE AND OPTIMIZATION TOOLS —
0"

Reduce time and effort associated with porting and tuning of applications on Cray/HPE systems

Highlights:

 Different tools to fit different developer needs—from quick
visual analysis to variety of different experiments, integration
with compilers and more...

e Target scalability issues in all areas of tool development—
designed to improve performance on the largest of systems

¢ l#

e Provide whole program performance analysis across many
nodes to identify critical performance bottlenecks within a
program

e Help to uncover issues but also suggestions to improve
performance

e Unique and valuable load imbalance analysis

e Target ease of use with simple and advanced user interfaces

Our performance tools profiled production
applications with over 256,000 ranks.

—

PERFORMANCE ANALYSIS TOOL (PAT)

Gain valuable insight into performance of your application

Main Features: Lightweight version:
e Collects and present computation, communication, I/O and memory statistics, including e Provides performance
automatic: analysis information

« |dentification & display of program’s top time-consumers for future analysis automatically, with a

L . . minimum of user interaction.
« |dentification of and bottlenecks, for example, load imbalance = “Where are the slow paths M oTuse cractio

in the code?” Starting point for users who
« Automatically generates observations and suggestions based on analysis of collected data. wish to explore a program’s
behavior further using the

e Enable developers to perform sampling, profile, and trace experiments on single- or multi- cull toolset
processor executables, including API for fine-grained instrumentation '
e Detects communication grids and presents rank re-ordering analysis and suggestions
e Improve application performance by maximizing on-node communication.

e Supports programs written in Fortran, C or C++ with MPI, SHMEM, UPC, OpenMP or OpenACC,
CUDA or HIP, and their combinations.

— .

First column is percent of inclusive time

Third column is number of times executed

Fourth column is average loop iteration count
Last column is name of program unit, LOOP or

Let’s start by putting triple nested loop on the GPU

PROFILE INFORMATION
Second column is inclusive fime
Table 1: Calltree with Loop Inclusive Time
Incl | Incl | Loop Exec | Loop | Calltree Routine, line number in source
Time% | Time | | Trips |
| | | Avg |
100.0% | 54.61 | -— | -- | Total
| __
| 100.0% | 54.01 | -—= | -—- | hackakernel
| = e
|l 95.1% | 51.92 | 1 | 96.0 | hackakernel .LOOP.04.1i.121
] = o e
311 92.2% | 50.34 | 96 | 240.0 | hackakernel .LOOP.08.11.166
] == e o e
4111 92.2% | 50.34 | 23,040 | 100.0 | hackakernel .LOOP.09.11.170
L = = o e e e
51111 92.1% | 50.27 | 2,304,000 | 8,000.0 | hackakernel .LOOP.10.11.177
R R
31| 2.8%5 | 1.50 | 96 | 240.0 | hackakernel .LOOP.11.11.192
] == e e e
411 | 1.6 | 0.88 | 22,944 | 6,000.0 | hackakernel .LOOP.12.11i.215

GET ANNOTATED LISTING BY USING -H LIST=A

—

166.
167.
168.
169.

170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.

FRPR PP RPRRPRRRPRPRRPRPRRRRRRERPRRRRRRR BB

Qoo ©ono

Lﬁl)
|
|
|
VAN

QYU QU OV Quvuuuuyyuwy

!'SACC parallel
!'SACC loop private (ifreq)
do ifreg=1,nFreq G — Kernel
g — parallel levels
schDt = (0DO, 0DO)

!SACC loop private(my igp,igmax, schDtt)
do my igp = 1, ngpown

if (my igp .gt. ncouls .or. my igp .le. 0) cycle

igmax=ncouls

schDtt = (0DO, 0DO)
!$SACC loop vector private(ig,I epsRggp int,I epsAggp int, schD)reduction (+:schDtt)
do ig = 1, igmax

I epsRggp int = I epsR array(ig,my igp,ifreq)
I epsAggp int = I epsA array(ig,my igp,ifreq)
schD=I epsRggp int-I epsAggp int
schDtt = schDtt + matngmatmgpD (ig,my igp) *schD
enddo B
schdt array(ifreq) = schdt array(ifreq) + schDtt
enddo

enddo
!SACC end parallel

PAT_REPORT <STATISTIC DIRECTORY>

Table 5: Time and Bytes Transferred for Accelerator Regions Bottom line, the kernel runs 45
times faster than one core on
the host; however, the data

Host | Host| Acc| Acc| Acc Copy | Acc Copy | Events | Calltree movement takes all the time -
Time% | Time| Time%| Time | In | Out | | Thread=HIDE need to move data outside
| | | | (MiBytes) | (MiBytes) | | outer loop.
100.0% | 58.54 |1 100.0% | 5831 | 563,672 035| 480] Total Only show part of profile

| 100.0% | 58541 100.0% 15831 | 563,672| 0.35| 480 | hackakernel_
| I I | | | hackakernel_ACC_REGION@Ii.166

3| 97.9% 5733 97.9%|57.10| 563,672 | --| 96 | hackakernel _ACC_COPY@Ii.166
31 21%| 1201 -] --| - | | 96 | hackakernel_ACC_SYNC_WAIT@!i.191
3|l 0.0%] 000| 21%| 121 - | --| 96 | hackakernel_ACC_ASYNC_KERNEL@!i.166

GET MORE KERNEL AND DATA TRANSFER DATA

ACC:

ACC: End transfer (to acc 6156803840 bytes, o host O bytes, time 604039 usec)

ACC:

ACC: Start kernel hackakernel_$ck_L166_1 async(auto) from bgwfQ0:166

ACC: flags: CACHE_MOD CACHE_FUNC AUTO_ASYNC FLEX_BLOCKS

ACC: mod cache: Ox4c4880

ACC: kernel cache: Ox4c4840

ACC: asyncinfo: 0x15554939c4e0

ACC: arguments: GPU argument info

ACC: param size: 168

ACC: param pointer: Ox7fffffff5120 Setenv CRAY ACC DEBUG=3
ACC: blocks: 240 - -
ACC: threads: 128

ACC: eventid: 3

ACC: Start tracking event 3 index O (total 1) stream Ox1736764d0

ACC: loading module data

ACC: getting function

ACC: stats threads=640 threadblocks per sm=5 shared=2048 total shared=10240

ACC:. prefer L1 cache

ACC: kernel information

ACC: num registers: 88

ACC: max theads per block: 640
ACC: shared size: 2048 bytes
ACC: const size: 0 bytes
ACC: local size : 0 bytes
ACC:

ACC: launching kernel new

ACC: caching function

ACC: caching module

ACC: End tracking event 3 index O (total 1)
ACC: End kernel

HPE CRAY PROGRAMMING ENVIRONMENT

Features At-a-Glance

Compiling Environment, Programming Models, and

Languages

o Our Fortran, C and C++ compilers are designed to extract
maximum performance from the systems regardless of the
underlying architecture, including :

Compiler optimization feedback for app tuning

Integration w/performance tools to optimize performance
Support for standard programming languages and programs
and focus on compliance for investment protection
Integration with 3™ party programming environments for
more convenience

o Scalable communication libraries

HPE Cray MPI: supports extreme scaling for job startup,
memory footprint and collective algorithms including use of
HW collectives

Performance-optimized SHMEM

Scientific, Math & 1/0 Libraries

Comprehensive collection of highly tuned linear algebra

subroutines designed to extract maximum possible performance

with minimum effort.

» Customized LibSci (including BLAS, LAPACK, and ScalL ACK), our
iterative refinement toolkit, and LibSci_ACC (accelerated BLAS;
and LAPACK) are designed to take full advantage of the
underlying hardware and interconnect.

—

Debuggers

Traditional debuggers combined with new innovative

technigues allowing users to address debugging problems at

a broader range and scale:

» Comparative debugger—this market-unique tool helps
programmers uncover issues easier by running two
versions of an application side by side.

» Valgrind for HPC—parallel memory analysis tool

» GDB for HPC—provides a gdb debugging experience for
applications that run at scale across many nodes.

o Stack Trace Analysis Tool (STAT): Helps developers
identify if an application is hung or still making progress
when running.

o Abnormal Termination Processing (ATP) tool: When an
application crashes, the tool detects a signal and
generates a merged-backtrace resulting in a minimal core
file set

Support for 3™ party debuggers (Arm Forge & TotalView)

Deep Learning Plug-in

Helps to optimize scaling and performance across multiple
machine learning and deep learning frameworks =
streamlining the deep learning training on the HPE HPC
systems.

Performance Profiling

Comprehensive collection of tools designed to reduce the

fime and effort associated with porting and tuning of

applications:

» Performance analysis tool (PAT) brings valuable insight
when analyzing bottlenecks to improve performance of
applications that run across the whole system

« A visualization tool helps to assess the type and severity
of performance issues quickly. Drill down to get to the
bottom of issues.

 Code parallelization assistant helps developers reveal
targets for parallelism and assists with adding OpenMP to

an application.

|25

=

Hewlett Packard
Enterprise

IZ()

mailto:barbara.chapman@hpe.com

