
DIRECTIVES ROCK!

OPENACC SUMMIT
September 15, 2021

IN REMEMBRANCE

2

LONG LIVE DIRECTIVES!

• New languages get a lot of
attention
• But few are widely adopted

• Directives have been a key means
to program supercomputers from
the earliest days
• Practical
• Performant
• Powerful
• Productive
• Sometimes portable

CM-2

CM-5

Paragon XP/S
(6768)Cray T3D

ASCI red

Y-mp

C90

T90

X-mp

0.1

1

10

100

1000

1984 1986 1988 1990 1992 1994 1996

Year

G
FL
O
PS

MPP
Cray vector

HIGH PERFORMANCE FORTRAN (HPF)

• Directives extend Fortran for distributed
(inter-node) memory parallel programming
• First definition early 1993, revision 1997
• Japanese created additional features in JA-HPF

• Main idea is to enable the application
developer to achieve data locality

• Main features are directives for data
mapping and parallel loops
• Work performed where the data is stored
• Some library routines

• Broad participation in standards effort

!HPF$ DISTRIBUTE W (BLOCK)
!HPF$ INDEPENDENT, NEW (X), REDUCTION (SUM)

DO I = 1, N
X = W(I) * (I - 0.5)
SUM = SUM + F (X)

END DO

* Team of processes execute
entire program

* Loop iterations are
distributed among processes
based on data distribution

* Communication at end of loop
to obtain global value SUM

OPENMP

!$OMP PARALLEL DO PRIVATE (X) , SHARED (W)
!$OMP& REDUCTION (+: SUM)

DO I = 1, N
X = W(I) * (I - 0.5)
SUM = SUM + F (X)

END DO
!$OMP END PARALLEL

* All threads access same W
* Each executing thread has its own

copy of variable X
* Each thread creates and initializes a

private copy of shared variable SUM.
* SUM is updated at next

synchronization point

* Team of threads execute
parallel region

* Loop iterations are
distributed among threads

* Implicit synchronization
at end of region

De-facto standard API to write shared memory
parallel applications in C, C++, and Fortran

TSUBAME2.0 GPU RATIONALIZATION

• ~3000 CPUs at 200+ Teraflops,
~4000 GPUs at 2.2 Petaflops

• Realistic best case: x5~6 perf gain
per socket
• Machine equivalent to 25,000~30,000 CPUs

• Alternative: CPU only, same $$$ and
Power, how big a system?
• Answer: at best 5~6000 CPUs (Tsubame

1.0) at 400+ Teraflops
• CPU equivalency = 1.4 x utilization x

perf gain > 1.0 then we win!
• No religious war but simple economics

GPU
Pe

ak
 P

er
fo

rm
an

ce
 [G

FL
O

PS
]

1250

1000

750

500

250

0

1500

CPU

1750

GPU

CPU

160

120

200

40

0

80

M
em

or
y

Ba
nd

w
id

th
 [G

By
te

/s
]

Satoshi Matsuoka, TiTech, 2010

CAPS HMPP: ALREADY THINKING ABOUT
ACCELERATOR DEVICES

• Use #D accelerators in parallel

#pragma omp parallel for, private (j)
for (jj=0;jj<#D;jj++){
for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){

#pragma hmpp tospeedup1 callsite
simplefunc1(n,t1[j],t2,t3[j],alpha);

}
#pragma hmpp tospeedup1 release
}

• Declare hardware specific
implementations of functions
(HMPP codelets)
• Can be specialized to the execution

context (data size, …)

• Codelet calls (RPC)
• Synchronous, asynchronous

properties

• Data transfers
• Data prefetching

• Synchronization barriers
• Host CPU will wait until remote

computation is complete

RAPID GROWTH OF ACCELERATED HPC BEGINS

• Announced Supercomputing 2011
• Initial work by NVIDIA, Cray, PGI, CAPS

• Directive-based programming for accelerators
• For Fortran, C, C++
• Loop-based computations

• Compilers: PGI, Cray, CAPS, OpenARC, OpenUH,
GCC (4.9)

C O M P U T E (((((|(((((S T O R E (((((|(((((A N A L Y Z E

Mar. 31, 2014

HPC Advisory Council, Lugano

6

● A common directive programming model for today’s GPUs

●  Announced at SC11 conference
●  Offers portability between compilers

●  Drawn up by: NVIDIA, Cray, PGI, CAPS

●  Multiple compilers offer:
●  portability, debugging, permanence

●  Works for Fortran, C, C++
●  Standard available at openacc.org
●  Initially implementations targeted at NVIDIA GPUs

● Compiler support: all now complete

●  Cray CCE: complete OpenACC 2.0 in v8.2

●  PGI Accelerator: version 12.6 onwards

●  CAPS: Full support in v1.3
●  gcc:work started in late 2013, aiming for 4.9

●  Various other compilers in development

• Our largest HPC system have O(106) cores
• Many of the high end system use hybrid architectures
• Energy usage is a major concern
• Programming has become more of a critical issue
• For many applications performance is measured in a few

per cent of peak.

0

1000000

2000000

3000000

4000000

5000000

6000000

20
0
0

20
0
1

20
0
2

20
0
3

20
0
4

20
0
5

20
0
6

20
0
7

20
0
8

20
0
9

20
1
0

20
1
1

20
1
2

OPENUH – AN OPEN SOURCE OPENACC COMPILER

PERFORMANCE PORTABILITY ACROSS COMPILERS?

• Same OpenACC thread setting does not guarantee best
performance for both OpenUH and PGI compilers (PGI 15.7)

 0

 5

 10

 15

 20

 25

 30

 35

 40

100^3 200^3 300^3 400^3 500^3

Ti
m

e(
s)

Problem Size

w:16,v:32
w:32,v:32
w:8,v:64

w:16,v:64
w:4,v:128
w:8,v:128

 0

 5

 10

 15

 20

 25

 30

 35

 40

100^3 200^3 300^3 400^3 500^3

Ti
m

e(
s)

Problem Size

w:16,v:32
w:32,v:32
w:8,v:64

w:16,v:64
w:4,v:128
w:8,v:128

Fig: OpenUH performance for micro-RTM Fig: PGI performance for micro-RTM

THE ROAD AHEAD

• Applications are long-lived
• Multiple GPUs on node
• High rate of innovation in hardware
• Including accelerators

• What new accelerators will be configured
on HPC platforms?

• New classes of users
• Still need scalable performance and

productive programming models

• We need good compilers and mature
programming ecosystems

Complete Support
HPE Pointnext Services
support the whole suite,
not just the tools we
developed.

12

Essential toolset for HPC organizations developing HPC code in-house.
HPE CRAY PROGRAMMING ENVIRONMENT

Fully integrated software suite with compilers, tools,
and libraries designed to increase programmer
productivity, application scalability, and performance.

Application
information

Queries for
application

optimization

Compiler
information

Performance
analysis

Export/import
program
analyses

Debug
information Complete toolchain

For the whole application
development process.

Holistic solution
Unlike processor-specific
tools, the suite enables
software development for
the full system (including
CPUs, GPUs and
interconnect) for the best
performance.

Scalability
Improving performance of
applications on systems of
any size—up to Exascale
deployments.

Programmability
Offering users intuitive
behaviour, automation of
tasks and best
performance for their
applications with little
effort.

From HPC experts for
HPC experts
Developed for over 30
years in close interaction
and contributions
from our users.

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on HPE &
HPE Cray systems

HPE CRAY PROGRAMMING ENVIRONMENT

13

3rd party HPE –authored

Debugging

Debuggers

Valgrind for HPC
Memory debugging at scale

Tool for Abnormal Termination
Processing

Manage core files at scale

GDB for HPC
Parallelized gdb for HPC

TotalView

DDT

Setup & Runtime

Environment Setup

Modules / Lmod

Tool Enablement
(for Spack, CMake, EasyBuild, etc)

Development

Optimized Libraries

LAPACK & ScaLAPACK

LibSci (BLAS)

FFTW

Deep Learning Plug-in

LibSci_ACC

IRT

NetCDF HDF5

DL / AI Tools

I/O Libraries

Programming Languages

C

Programming Environments

Compiling Environment

GNU

NVIDIA HPC SDK

Intel Programming Environment

AMD Programming Environment

OpenMP | OpenACC

AMD ROCm HIP | NVIDIA CUDA

UPC | Fortran co-arrays

HPE Cray MPI

SHMEM

Programming Models

Python

Comparative Debugger
Compare two versions of an application

Fortran C++

R

Performance Analysis Tool (PAT)
Whole program performance analysis,

exposing wide set of indicators, identifying
bottlenecks and automatically generating

suggestions to improve performance.

Performance Analysis &
Optimization

Visualization Tool
Complements text reports with summary

of performance data in graphs and
charts, allowing users to drill down and

resolve issues

Code Parallelization Assistant
Reveal hidden potential of an application

via code restructuring

Supported systems:

• HPE Cray supercomputers
• HPE Apollo 2000
• HPE ProLiant DL systems
• Legacy Cray systems

HPE Added-value to 3rd party

Global Arrays
Stack Trace Analysis Tool

Stack tracing at scale

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on HPE &
HPE Cray systems

HPE CRAY PROGRAMMING ENVIRONMENT

14

3rd party HPE –authored

Debugging

Debuggers

Valgrind for HPC
Memory debugging at scale

Tool for Abnormal Termination
Processing

Manage core files at scale

GDB for HPC
Parallelized gdb for HPC

TotalView

DDT

Setup & Runtime

Environment Setup

Modules / Lmod

Tool Enablement
(for Spack, CMake, EasyBuild, etc)

Development

Optimized Libraries

LAPACK & ScaLAPACK

LibSci (BLAS)

FFTW

Deep Learning Plug-in

LibSci_ACC

IRT

NetCDF HDF5

DL / AI Tools

I/O Libraries

Programming Languages

C

Programming Environments

Compiling Environment

GNU

NVIDIA HPC SDK

Intel Programming Environment

AMD Programming Environment

OpenMP | OpenACC
AMD ROCm HIP | NVIDIA CUDA

UPC | Fortran co-arrays

HPE Cray MPI

SHMEM

Programming Models

Python

Comparative Debugger
Compare two versions of an application

Fortran C++

R

Performance Analysis Tool (PAT)
Whole program performance analysis,

exposing wide set of indicators, identifying
bottlenecks and automatically generating

suggestions to improve performance.

Performance Analysis &
Optimization

Visualization Tool
Complements text reports with summary

of performance data in graphs and
charts, allowing users to drill down and

resolve issues

Code Parallelization Assistant
Reveal hidden potential of an application

via code restructuring

Supported systems:

• HPE Cray supercomputers
• HPE Apollo 2000
• HPE ProLiant DL systems
• Legacy Cray systems

HPE Added-value to 3rd party

Global Arrays
Stack Trace Analysis Tool

Stack tracing at scale

cp2k.popt.cray-xc30.sandybridge.tiger.PE-5.0.32.cray-8.1.9.109.libsci-12.1.00.mpt-6.0.0.aries.dynamic.2013Jun25-15159.pat-6.1.1--gmpi.x.cp2k-cce.64pe.32ppn.ap2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

0.000001 0.000436 0.000872

Reduce time and effort associated with porting and tuning of applications on Cray/HPE systems
HPE PERFORMANCE AND OPTIMIZATION TOOLS

Highlights:
• Different tools to fit different developer needs—from quick

visual analysis to variety of different experiments, integration
with compilers and more…

• Target scalability issues in all areas of tool development—
designed to improve performance on the largest of systems

• Provide whole program performance analysis across many
nodes to identify critical performance bottlenecks within a
program

• Help to uncover issues but also suggestions to improve
performance

• Unique and valuable load imbalance analysis

• Target ease of use with simple and advanced user interfaces

Our performance tools profiled production
applications with over 256,000 ranks.

15

Gain valuable insight into performance of your application
PERFORMANCE ANALYSIS TOOL (PAT)

• Provides performance
analysis information
automatically, with a
minimum of user interaction.

• Starting point for users who
wish to explore a program’s
behavior further using the
full toolset.

• Collects and present computation, communication, I/O and memory statistics, including
automatic:

• Identification & display of program’s top time-consumers for future analysis

• Identification of and bottlenecks, for example, load imbalance = “Where are the slow paths
in the code?”

• Automatically generates observations and suggestions based on analysis of collected data.

• Enable developers to perform sampling, profile, and trace experiments on single- or multi-
processor executables., including API for fine-grained instrumentation

• Detects communication grids and presents rank re-ordering analysis and suggestions

• Improve application performance by maximizing on-node communication.

• Supports programs written in Fortran, C or C++ with MPI, SHMEM, UPC, OpenMP or OpenACC,
CUDA or HIP, and their combinations.

Main Features: Lightweight version:

16

PROFILE INFORMATION

Table 1: Calltree with Loop Inclusive Time
Incl | Incl | Loop Exec | Loop | Calltree

Time% | Time | | Trips |
| | | Avg |

100.0% | 54.61 | -- | -- | Total
|--
| 100.0% | 54.61 | -- | -- | hackakernel_
||---
|| 95.1% | 51.92 | 1 | 96.0 | hackakernel_.LOOP.04.li.121
|||--
3|| 92.2% | 50.34 | 96 | 240.0 | hackakernel_.LOOP.08.li.166
||||---
4||| 92.2% | 50.34 | 23,040 | 100.0 | hackakernel_.LOOP.09.li.170
|||||--
5|||| 92.1% | 50.27 | 2,304,000 | 8,000.0 | hackakernel_.LOOP.10.li.177
||||===
3|| 2.8% | 1.50 | 96 | 240.0 | hackakernel_.LOOP.11.li.192
||||---
4||| 1.6% | 0.88 | 22,944 | 6,000.0 | hackakernel_.LOOP.12.li.215
|==

Let’s start by putting triple nested loop on the GPU

First column is percent of inclusive time
Second column is inclusive time
Third column is number of times executed
Fourth column is average loop iteration count
Last column is name of program unit, LOOP or
Routine, line number in source

GET ANNOTATED LISTING BY USING –H LIST=A

166. + 1 G--------< !$ACC parallel
167. 1 G !$ACC loop private(ifreq)
168. 1 G g------< do ifreq=1,nFreq
169. 1 G g
170. 1 G g schDt = (0D0,0D0)
171. 1 G g
172. 1 G g !$ACC loop private(my_igp,igmax,schDtt)
173. 1 G g g----< do my_igp = 1, ngpown
174. 1 G g g
175. 1 G g g if (my_igp .gt. ncouls .or. my_igp .le. 0) cycle
176. 1 G g g
177. 1 G g g igmax=ncouls
178. 1 G g g
179. 1 G g g schDtt = (0D0,0D0)
180. 1 G g g !$ACC loop vector private(ig,I_epsRggp_int,I_epsAggp_int,schD)reduction(+:schDtt)
181. 1 G g g g--< do ig = 1, igmax
182. 1 G g g g I_epsRggp_int = I_epsR_array(ig,my_igp,ifreq)
183. 1 G g g g I_epsAggp_int = I_epsA_array(ig,my_igp,ifreq)
184. 1 G g g g schD=I_epsRggp_int-I_epsAggp_int
185. 1 G g g g schDtt = schDtt + matngmatmgpD(ig,my_igp)*schD
186. 1 G g g g--> enddo
187. 1 G g g schdt_array(ifreq) = schdt_array(ifreq) + schDtt
188. 1 G g g----> enddo
189. 1 G g
190. 1 G g------> enddo
191. 1 G--------> !$ACC end parallel

G – Kernel
g – parallel levels

PAT_REPORT <STATISTIC DIRECTORY>

Table 5: Time and Bytes Transferred for Accelerator Regions

Host | Host | Acc | Acc | Acc Copy | Acc Copy | Events | Calltree
Time% | Time | Time% | Time | In | Out | | Thread=HIDE

| | | | (MiBytes) | (MiBytes) | |

100.0% | 58.54 | 100.0% | 58.31 | 563,672 | 0.35 | 480 | Total
|---
| 100.0% | 58.54 | 100.0% | 58.31 | 563,672 | 0.35 | 480 | hackakernel_
| | | | | | | | hackakernel_.ACC_REGION@li.166
|||---
3|| 97.9% | 57.33 | 97.9% | 57.10 | 563,672 | -- | 96 | hackakernel_.ACC_COPY@li.166
3|| 2.1% | 1.20 | -- | -- | -- | -- | 96 | hackakernel_.ACC_SYNC_WAIT@li.191
3|| 0.0% | 0.00 | 2.1% | 1.21 | -- | -- | 96 | hackakernel_.ACC_ASYNC_KERNEL@li.166
|===

Bottom line, the kernel runs 45
times faster than one core on
the host; however, the data
movement takes all the time –
need to move data outside
outer loop.

Only show part of profile

GET MORE KERNEL AND DATA TRANSFER DATA

ACC:
ACC: End transfer (to acc 6156803840 bytes, to host 0 bytes, time 604039 usec)
ACC:
ACC: Start kernel hackakernel_$ck_L166_1 async(auto) from bgw.f90:166
ACC: flags: CACHE_MOD CACHE_FUNC AUTO_ASYNC FLEX_BLOCKS
ACC: mod cache: 0x4c4880
ACC: kernel cache: 0x4c4840
ACC: async info: 0x15554939c4e0
ACC: arguments: GPU argument info
ACC: param size: 168
ACC: param pointer: 0x7fffffff5120
ACC: blocks: 240
ACC: threads: 128
ACC: event id: 3
ACC: Start tracking event 3 index 0 (total 1) stream 0x1736764d0
ACC: loading module data
ACC: getting function
ACC: stats threads=640 threadblocks per sm=5 shared=2048 total shared=10240
ACC: prefer L1 cache
ACC: kernel information
ACC: num registers : 88
ACC: max theads per block : 640
ACC: shared size : 2048 bytes
ACC: const size : 0 bytes
ACC: local size : 0 bytes
ACC:
ACC: launching kernel new
ACC: caching function
ACC: caching module
ACC: End tracking event 3 index 0 (total 1)
ACC: End kernel

Setenv CRAY_ACC_DEBUG=3

Features At-a-Glance
HPE CRAY PROGRAMMING ENVIRONMENT

Deep Learning Plug-in
Helps to optimize scaling and performance across multiple
machine learning and deep learning frameworks =
streamlining the deep learning training on the HPE HPC
systems.

Compiling Environment, Programming Models, and
Languages
• Our Fortran, C and C++ compilers are designed to extract

maximum performance from the systems regardless of the
underlying architecture, including :
• Compiler optimization feedback for app tuning
• Integration w/performance tools to optimize performance
• Support for standard programming languages and programs

and focus on compliance for investment protection
• Integration with 3rd party programming environments for

more convenience
• Scalable communication libraries

• HPE Cray MPI: supports extreme scaling for job startup,
memory footprint and collective algorithms including use of
HW collectives

• Performance-optimized SHMEM

Scientific, Math & I/O Libraries
Comprehensive collection of highly tuned linear algebra
subroutines designed to extract maximum possible performance
with minimum effort.
• Customized LibSci (including BLAS, LAPACK, and ScaLACK), our

iterative refinement toolkit, and LibSci_ACC (accelerated BLAS,
and LAPACK) are designed to take full advantage of the
underlying hardware and interconnect.

Performance Profiling
Comprehensive collection of tools designed to reduce the
time and effort associated with porting and tuning of
applications:
• Performance analysis tool (PAT) brings valuable insight

when analyzing bottlenecks to improve performance of
applications that run across the whole system

• A visualization tool helps to assess the type and severity
of performance issues quickly. Drill down to get to the
bottom of issues.

• Code parallelization assistant helps developers reveal
targets for parallelism and assists with adding OpenMP to
an application.

Debuggers
Traditional debuggers combined with new innovative
techniques allowing users to address debugging problems at
a broader range and scale:
• Comparative debugger—this market-unique tool helps

programmers uncover issues easier by running two
versions of an application side by side.

• Valgrind for HPC—parallel memory analysis tool
• GDB for HPC—provides a gdb debugging experience for

applications that run at scale across many nodes.
• Stack Trace Analysis Tool (STAT): Helps developers

identify if an application is hung or still making progress
when running.

• Abnormal Termination Processing (ATP) tool: When an
application crashes, the tool detects a signal and
generates a merged backtrace resulting in a minimal core
file set

• Support for 3rd party debuggers (Arm Forge & TotalView)

25

THANK YOU

Barbara Chapman, barbara.chapman@hpe.com

26

mailto:barbara.chapman@hpe.com

