
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

OpenACC Support in LLVM

Joel E. Denny, Valentin Clement,
Seyong Lee, Jeffrey S. Vetter

Oak Ridge National Laboratory

https://csmd.ornl.gov/project/clacc

September 14, 2021: OpenACC Summit

22

Acknowledgement

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear Security
Administration, responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the nation’s exascale
computing imperative.

This research used resources of the Experimental Computing Laboratory (ExCL) at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

33

What is Clacc?

• Goal
– OpenACC C/C++ support for Clang and LLVM

• Design
– Translate OpenACC to OpenMP to build on OpenMP support

• Availability
– Web page: https://csmd.ornl.gov/project/clacc

– Source code: https://github.com/llvm-doe-org/llvm-project/wiki

• Funding
– Exascale Computing Project (ECP)

• Contact
– Joel E. Denny (dennyje@ornl.gov)

https://csmd.ornl.gov/project/clacc
https://github.com/llvm-doe-org/llvm-project/wiki
mailto:dennyje@ornl.gov

44

Clacc: Two Compilation Modes

• Traditional compilation
– OpenACC source  executable

• Similar to NVHPC or GCC
– OpenMP serves as an internal IR

• Diagnostics and profiling data expressed in terms
of original OpenACC source not OpenMP

• Maximizes reuse of OpenMP implementation

• Source-to-source
– OpenACC source  OpenMP source

• Target other OpenMP compilers and tools
• Port apps or benchmarks

– Uses Clang’s Rewrite facility
• Remains human-readable
• Appropriate for other OpenMP compilers, perhaps

targeting other architectures

LLVM OpenMP compiler

OpenACC source

OpenACC AST

OpenMP AST

LLVM IR

TransformACCToOMP

executable

CodeGen

Parse

OpenMP source

RewriteOpenACC

executable

55

Clacc: Does OpenMP have what OpenACC needs?

• Unrepresentable individual behaviors. For
example:

– Reference counters for device allocations
• OpenACC has two: structured and dynamic
• OpenMP has one: dynamic

– no_create clause

• Unrepresentable range of behaviors, each of
which is individually representable. For example:

– auto clause
– kernels construct

LLVM OpenMP compiler

OpenACC source

OpenACC AST

OpenMP AST

LLVM IR

executable

CodeGen

Parse

OpenMP source

RewriteOpenACC

executable

TransformACCToOMP

66

Clacc: Solution is OpenMP Extensions

• Clean design
– Supports unrepresentable individual behaviors and

unrepresentable ranges of behaviors
– Supports traditional compilation mode and source-

to-source mode (with a caveat we’ll discuss next)
– Distinct OpenACC vs. OpenMP representations

with full translation in one compiler phase
– Complex analyses and transformation passes can

be implemented on LLVM IR instead of Clang AST

• Improves OpenMP
– Following OpenACC’s history, leads to contributions

to the OpenMP specification
– Encourages prototyping new OpenMP features (for

OpenACC support) before standardizing

LLVM OpenMP compiler

OpenACC source

OpenACC AST

OpenMP AST

LLVM IR

TransformACCToOMP

executable

CodeGen

Parse

OpenMP source

RewriteOpenACC

executable

†

†

†

†

77

Clacc: User Impact of OpenMP Extensions

• Traditional compilation mode
– OpenMP is just an internal IR
– Clacc compiler quietly uses OpenMP extensions where needed

• Source-to-source mode
– Compile-time error diagnostic if translation uses OpenMP extension
– Option to disable diagnostic

• Useful if OpenMP compiler supports extension
– Option to convert error to warning

• Useful to find all occurrences to manually adjust
– Option to choose alternative, good enough translation to standard OpenMP

• User not compiler must verify if it’s good enough per application
• Can be used in traditional compilation mode to help test the alternative translation

88

Clacc: OpenACC Runtime Library and Profiling Interface

• Again, build on OpenMP plus extensions
– Clearly defined relationship between

OpenACC and OpenMP representations
– Provides support for source-to-source and

using other OpenMP runtimes
– Following OpenACC’s history, leads to

contributions to the OpenMP specification

• libacc2omp: OpenACC runtime
– Wrapper around OpenMP runtime
– Currently tested with LLVM’s OpenMP

runtime only
– Carefully defined interfaces to facilitate

extending support to other OpenMP
runtimes in the future

• OpenACC Runtime Library Routines
– libacc2omp wraps OpenMP runtime

library routines plus original extensions

• OpenACC Profiling interface
– libacc2omp wraps OpenMP’s OMPT plus

original extensions

• OpenACC Environment Variables
– libacc2omp requires OpenMP runtime to

call handler routines provided by
libacc2omp

• Clacc’s compiler currently does not
translate runtime library routine calls or
profiling libraries to OpenMP

99

Clacc: Development Status

• Directives
– Basic features are supported (e.g., data,

parallel, loop directives, acc routine seq)
– Some important features missing (e.g., kernels

directive, C++ support, async/wait)

• Runtime Library Routines, Preprocessor,
Environment Variables

– Most features supported (e.g., async/wait
routines are missing)

• Profiling interface
– All events supported except wait events
– Some profiling data missing (e.g., kernel_name,

num_gangs, num_workers, vector_length)
– var_name support
– Integrated with TAU

• Supported Architectures
– x86_64, Power 9, NVIDIA GPU
– AMD CPU and GPU underway

• Ongoing activities
– CI testing on ORNL’s ExCL cluster and

Ascent (Summit training system)
– Issue tracking on LLVM DOE Fork in github

• Identifies potential external contributions
– Upstream Clang/LLVM

• Merging into Clacc
• Contributed dual ref count support: OpenMP

ompx_hold map type modifier extension
• Contributing various other improvements

– Contributing improvements to OpenACC
spec (eventually OpenMP spec)

The most noteworthy new efforts from the past year are shown in bold

1010

What is Flacc?

• Goal
– OpenACC Fortran support for upstream LLVM Flang

• Design
– Lowers OpenACC to mix of FIR and OpenACC dialects in MLIR

• Availability
– Upstreamed to LLVM Flang as developed

• Funding
– Exascale Computing Project (ECP)

• Contact
– Valentin Clement

1111

Flacc: Progressive Lowering

- F18 = older name for
upstream LLVM Flang

- Mix of FIR and OpenACC
dialects

- Optimizations can happen at
multiple levels

- Multiple approach possible to
lower to LLVM IR

- Using lower level dialect
like the GPU dialect

- Leveraging the work in
the OpenMP IR Builder

1212

Flacc: Progressive Lowering

- F18 = older name for
upstream LLVM Flang

- Mix of FIR and OpenACC
dialects

- Optimizations can happen at
multiple levels

- Multiple approach possible to
lower to LLVM IR

- Using lower level dialect
like the GPU dialect

- Leveraging the work in
the OpenMP IR Builder

1313

Clacc and Flacc: Planned Implementation Reuse

• OpenACC Directive Support in Compiler
– Clacc is based on Clang (no MLIR)
– Flacc is based on Flang (targets MLIR)
– Little opportunity for reuse

• OpenACC Directive Support in Runtime
– Both use LLVM’s OpenMP runtime
– Both benefit from Clacc’s OpenMP

runtime extensions (e.g., dual ref count)

• Clang’s OpenMP Directive Extensions
– E.g., ompx_hold to select 2nd ref count
– Clacc directly benefits
– Flacc benefits indirectly because they are

used to test OpenMP runtime extensions

• OpenACC Runtime Library Routines
– libacc2omp’s C routines directly support

Clacc
– Expect that libacc2omp will grow Fortran

routines that wrap the C routines

• OpenACC Profiling Interface
– C interface for OpenACC profiling libraries

(e.g., TAU) not for OpenACC apps
– OpenACC app language is irrelevant
– Expect Flacc to reuse libacc2omp’s

support from Clacc w/o modification

• OpenACC Environment Variables
– Expect Flacc to reuse libacc2omp’s

support from Clacc w/o modification

1414

Takeaways

• Clacc
– OpenACC C/C++ support for Clang/LLVM
– Builds on OpenMP plus extensions
– Two compilation modes: traditional and source-to-

source

• Flacc
– OpenACC Fortran support for Flang/LLVM
– Lowers to MLIR dialects
– Plan to reuse Clacc’s runtime and profiling support

• Join Us
– Oak Ridge National Laboratory
– Hiring interns, postdocs, research and technical staff
– External collaborators welcome

• URLs
– Web: https://csmd.ornl.gov/project/clacc

– Source: https://github.com/llvm-doe-org/llvm-
project/wiki

– Email: dennyje@ornl.gov

• Publications
– OpenACC Profiling Support for Clang and LLVM

using Clacc and TAU, Camille Coti, Joel E.
Denny, Kevin Huck, Seyong Lee, Allen D.
Malony, Sameer Shende, and Jeffrey S. Vetter,
ProTools, GA, USA (November 2020)

– Clacc: Translating OpenACC to OpenMP in
Clang, Joel E. Denny, Seyong Lee, and Jeffrey
S. Vetter, 2018 IEEE/ACM 5th Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-
HPC), Dallas, TX, USA, (November 2018).

https://csmd.ornl.gov/project/clacc
https://github.com/llvm-doe-org/llvm-project/wiki
mailto:dennyje@ornl.gov

	OpenACC Support in LLVM
	Acknowledgement
	What is Clacc?
	Clacc: Two Compilation Modes
	Clacc: Does OpenMP have what OpenACC needs?
	Clacc: Solution is OpenMP Extensions
	Clacc: User Impact of OpenMP Extensions
	Clacc: OpenACC Runtime Library and Profiling Interface
	Clacc: Development Status
	What is Flacc?
	Flacc: Progressive Lowering
	Flacc: Progressive Lowering
	Clacc and Flacc: Planned Implementation Reuse
	Takeaways

