Porting Non-equilibrium Green's functions to GPUs

Alessandro Pecchia, ISMN-CNR, Rome, Italy

Daniele Soccodato, University of Rome 'Tor Vergata'

Sebastian Achilles, Edoardo Di Napoli, *Julich Supercomputing Centre* Collaboration with NVIDIA Application Lab at Jülich

Non-Equilibrium Green's Functions

- Many-Body Non-equilibrium Quantum Systems
- *lib*NEGF library (FEM/TB/DFT Hamiltonians)
- **Computationally intensive** (dense matrix cmplx algebra)
- Objective of **EoCoE**: NEGF to eXa-Scale (neXtGf)

libNEGF

Iterative algorithm (Schur-complement)

Linear Algebra: Matrix Inversions and MxM multiplications

- Modern Fortran
- Linear Libraries (MKL BLAS/LAPACK)

- GPU port path: OpenACC & CUDA
- CUBLAS/CUSOLVER

Parallelization

Green's functions are k- and E- dependent.

$$G^{r}(E,k) = \left[ES(k) - H(k) + \Sigma_{c}^{r}(E,k) + \Sigma_{\phi}^{r}(E,k) \right]^{-1}$$

800

700 600

dnpəəds 300

 $200 \\ 100 \\ 0$

125

250

Distribution of E and k over an MPI 2D cartesian grid

Strong scaling: 3 nm Si system. 4 tasks per node, 12 threads per task.

375

nodes

3.0 nm

750

Contact Self-Energies, Σ_c^r

Iterative renormalization algorithm

$$g^s = A^s_{i\to\infty}$$

 \rightarrow converge to the Surface GF and $\Sigma_c^r = \tau_{Dc} g_s^r(E) \tau_{Dc}^{\dagger}$

 \rightarrow OpenACC implementation

M P Lopez Sancho, J M Lopez Sancho and J Rubio, J. Phys. F: Met. Phys. 15 851 (1985)

GPU vs CPU

Ampere 100 vs Intel Xeon Platinum 8168 (24 cores)

Profiling of the **decimation** algorithm (complex-single-precision) openACC implementation nvfortran 21.3

0.0	Size	Mat Size	CPU (threaded)	GPU	TensC	Speedup
	4.8 nm	5832	119 s	1.4 s	0.42 s	x30 - x300
	6.5 nm	10368	450 s	4.0 s	1.19 s*	x100 - x400
	9.2 nm	20736	3600 s	30.0 s	8.2 s*	x120 - x440

* Increase GF parameter δ x2 $\,$ (5.0e-4) due to precision loss FP32 \rightarrow TF32 $\,$

Peak performance on CGEMM:

**FLOPS = $2xN^3x^4$ /Time

6.5 nm

Size	M.Size	TensC
4.8 nm	5832	60 Tflops**
6.5 nm	10368	91 Tflops**
9.2 nm	20736	72 Tflops**

Insight into one iteration

Data copies go as ~N² Computations go as ~N³

 \Rightarrow winning for large matrices

© '

Implementation Details

type z_DNS

complex(dp), allocatable :: val(:,:) end type Derived-type datastructures to hold matrices

Keep control over data movements: explicit copyin/copyout

subroutine copyToGPU(A)
type(z_DNS), intent(in) :: A
!\$acc enter data copyin(A,A%val)
end subroutine copyToGPU

subroutine copyFromGPU(A)
type(z_DNS), intent(in) :: A
!\$acc host update(A%val)
end subroutine copyFormGPU

We have not used recent features like 'deepcopy'

Also we do not use 'managed' memory (automatic migration)

Linear Algebra calls

Matrix Inversion $(A \rightarrow LU \rightarrow LUA_{inv} = I)$

!\$acc data create(LU, work, pivot, err1, err2)
!\$acc host_data use_device(A, Ainv, LU, work, pivot, err1, err2)
istat=cublasCcopy(hcublas, n*n, A, 1, LU, 1)
istat=cusolverDnCgetrf(hcusolver, n, n, LU, n, work, pivot, err1)
Ainv = Id !OpenACC kernel
istat=cusolverDnCgetrs(hcusolver, CUBLAS_OP_N, n, n, LU, n, pivot, Ainv, n, err2)

MxM multiplications (C = AB)

!\$acc enter data present(A,B,C)

!\$acc host_data use_device(A, B, C)

istat = cublasCgemm(hcublas, 'N', 'N', m, n, k, alpha, A, m, B, k, beta, C, m)

Porting the code

Iterative algorithm: example of gpu code structure

 $G_{i,i-1}^{r} = g_{i}^{p} H_{i,i-1} G_{i-1,i-1}^{r} \quad \text{example:}$ call createAll(work1, \cdot , \cdot)
call copyToGPU(ESH(i,i-1)) \leftarrow call matmul_gpu(hh, one, gD(i)%val, ESH(i,i-1)%val, zero, work1%val)
call deleteGPU(ESH(i,i-1)) \leftarrow call createAll(Gr(i,i-1), \cdot , \cdot)
call matmul_gpu(hh, mone, work1%val, Gr(i-1,i-1)%val, zero, Gr(i,i-1)%val)
call destroyAll(work1) \leftarrow

Explicit memory management

Double precision speedup

Ampere 100 vs Intel Xeon Platinum 8168 (24 cores)

Timing of the **decimation** algorithm

Double precision speedup

Ampere 100 vs Intel Xeon Platinum 8168 (24 cores)

Timing for a complete calculation of **ballistic Transmission**

Speedup of GPU vs CPU

C Y

CUDA Implementation

- OpenACC has several advantages in the development speed.
- NVIDIA Fortran compiler triggers a dependence chain (Fortran Modules) This can be <u>problematic</u> sometimes.
- CUDA offers a larger range of features, kernel flexibility and optimizations.

• The final code improves porting.

Conclusions

- We have ported the whole *lib*NEGF to GPU using OpenACC
- double-precision speed-up of up to 7.5 (large matrices)
- Miniapps in single precision exploiting tensor cores show much bigger speedups (100-400)
- We are currently fixing the library to recompile in sp

THANKS !

GPU porting strategy

Port to GPU linear algebra operations performed at single task level

Interaction Self-Energies

$$\Sigma_{L\mu,L'\nu}^{<}(k_{t},E) = \sum_{q_{t}\in BZ} I(k_{t},q_{t},|z_{L\mu}-z_{L'\nu}|) \Big[(N_{q}+1)G_{L\mu,L'\nu}^{<}(q_{t},E+\omega_{q}) + N_{q}G_{L\mu,L'\nu}^{<}(q_{t},E-\omega_{q}) \Big]$$

Implementation with cuTENSOR

- Requires outer loop around cuTENSOR call
- Extra mops to decompress A
- 2x FLOPS to account for B + B
- \rightarrow extra MOPS and extra FLOPS