
New developments of the QUANTUM ESPRESSO code:
a combined CUF-OpenACC approach

Ivan Carnimeo

Scuola Internazionale Superiore di Studi Avanzati (SISSA) – Trieste, Italy

QUANTUM
ESPRESSOTM is an
open initiative involving
a large community of
developers and
contributors from
different regions
of the world

QUANTUM ESPRESSOTM (QE) is an integrated suite of Open-Source computer codes
for electronic-structure calculations and materials modeling at the nanoscale. It is
based on density-functional theory, plane waves, and pseudopotentials.

QUANTUM ESPRESSO

Pwscf, the core of QE, computes the electronic
structure of molecules and materials by solving
the Kohn-Sham (KS) equations, within the
Density Functional Theory framework:

using Plane-Wave and Pseudopotential methods:

QUANTUM ESPRESSO

KS Solvers

Input

Chem/Phys properties

Energy Forces

Stress

Magnetism

Band structure

Make KS potential

Iterative solution of
the KS equations

QUANTUM ESPRESSO workflow

molecular geometry

Output

The most
recent

developments
have been
done using
OpenACC

All the most important features of QUANTUM ESPRESSOTM have been ported
to GPU-accelerated architectures in the last years using CUDA Fortran

QUANTUM ESPRESSO on GPU

The CUDA Fortran version of the code has a significantly better performance than
the CPU version, but also comes with some drawbacks that we want to tackle using
OpenACC

Size:
 el = 5232
 Nat = 1532
 Ecut = US/25/200 Ry
 NPW = 27M
 Nbnd = 2616
 Nks = Gamma only

QUANTUM ESPRESSO on GPU

If we synchronize host and device
variables every time one of the copies
changes, the computational burden of
the calculations explodes.

We use flags that keep track whether
the last change on a given variable has
occurred on the host or device copy

Very efficient but redundant
code!!!

Data transfer

P. Bonfa’

Code duplication

In many cases we have to duplicate memory allocations creating both host and
device copies of the variables.

This lead to a frequent duplication of subroutines and code in general, that has
a strong impact on the maintenance of the code, and makes it more difficult to add
new features

USPP

OpenACC allows to reduce code duplication

(e.g. by declaring vkb as present inside init_us_2) but we have to be very careful
with synchronizations as the data transfer burden quickly explodes

Blue and cyan marks:
host – device data
synchronizations are done
only when strictly needed

Red hollow marks:
host – device data
synchronizations are done
every time one of the two
copies is changed

VdW (D3)

In this part of the code we have many complex nested loops

VdW (D3)

For complex and nested loops OpenACC provides more flexible optimization
directives than CUF

Black bars
DFT + D3 parallelized
with MPI

Blue bars
DFT + D3 parallelized
with MPI, excluding the
three body energy term
with
dftd3_threebody=.
false.

Red bars
DFT + D3 parallelized
with MPI and
accelerated with
OpenACC

VdW (D3)

(n-1)-th PW iter.

n-th PW iteration

(n+1)-th PW iter.

Build potential V
(out of density)

XClib library
(DFT functionals)

• XClib, library of functionals with
large number of kernels and acc
routines

• Vxc, potential calculation with calls
to XClib and FTTs

• XClib and Vxc in OpenACC (no
code duplication) with CUDA FFTs
(already present)

F. Ferrari Ruffino

XC functionals

F. Ferrari Ruffino

MPI MPI+GPU acc MPI+GPU cuda
0

50

100

150

200

250

300

350

400

450

500

CaSiN - PBE

Vxc WALL
XClib WALL

1) 40% less code w.r.t. CUF

2) Same performance as CUF

3) No need to rewrite large
portions of code when
passing from CPU to
OpenACC

XC functionals

Car-Parrinello MD

The code has been partially
accelerated using CUDA Fortran but
significant parts still run on CPU

P. Delugas

Car-Parrinello molecular dynamics using plane waves and pseudopotentials:
most of the simulation time is spent in the main_loop repeated for each step of the
dynamics

● Replacing the multithreading
with OpenACC directives we
observe a reduction from ~100
to few ms

P. Delugas, F. Ferrari Ruffino, S. Orlandini

Car-Parrinello MD

● The exch_corr part benefits from
the work done in XClib with a 2X
speedup without any code
change

● Currently the overall acceleration
of each step is ~ 3X

● Further speedup can be achieved
● Using accelerated FFTs
● Improving data locality and

syncronization

For those parts of the code where OpenACC and OpenMP overlap,
compilation directives (taken from the Yambo Code) are employed
to choose one of the two, on the basis of the available architectures

P. Delugas, P. Bonfa’, A. Ferretti

Car-Parrinello MD

Conclusions and perspectives

● CUF-OpenACC interoperability is one of the key aspects of QE acceleration

● OpenACC logic for handling device variables is helpful for reducing code
duplication

● Portability of the code to different hardware architectures is very important

● Other important codes of the QUANTUM ESPRESSO suite will be accelerated
(e.g. TDDFPT, PHonon)

● Paolo Giannozzi, University of Udine
● Stefano Baroni, SISSA
● Pietro Delugas, SISSA
● Pietro Bonfa’, University of Parma
● Ivan Carnimeo, SISSA
● Fabrizio Ferrari Ruffino, CNR-IOM
● Oscar Baseggio, SISSA
● Elena De Paoli, CNR-IOM

Acknowledgements

QUANTUM ESPRESSO GPU development group

● Filippo Spiga, Nvidia
● Louis Stuber, Nvidia

Nvidia Technical support

● Sergio Orlandini, CINECA

CINECA Technical support

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 23
	Slide 24
	Slide 25

