
On the Road to Code Portability
Stéphane Ethier

Princeton Plasma Physics Laboratory
OpenACC Summit 2021

September 14, 2021

What we do at PPPL: Magne&c
Confinement Fusion

• This is our main mission (h#ps://www.pppl.gov/about/pppl-glance)
• Deuterium plasma heated to 100 Million degrees!
• Device wall must be kept at a few 100s degrees
• Strong magne=c field confines the hot plasma
• Large gradients of temperature and density lead to

interes=ng physics that can be studied with:
• Magnetohydrodynamics codes, for fluid-like

plasma and magne=c field evolu=on
• Kine=c codes, Par=cle-in-Cell (PIC) or mesh-based,

for velocity-dependent physics, such as turbulence
and wave-par=cle resonances

• Specific to fusion community: Gyrokine)cs!

9/3/21 2

NSTX-U

https://www.pppl.gov/about/pppl-glance

Plasma Science and Technology
• We study pretty much everything

related to plasmas
– Space plasmas
– heliophysics
– Plasma propulsion
– Industrial plasmas

• Plasma processes in microchips
fabrication is a hot topic!

• There is a strong need for 6D PIC
codes that can simulate these
processes with all the chemistry
that is involved

9/14/2021 OpenACC Summit 2021 3

The Gyrokinetic Tokamak Simulation code (GTS)
• Ported to GPU using OpenACC during

the June 2019 Princeton Hackathon
• 5D gyrokineKc PIC code
• To study microturbulence in the

“core” plasma of tokamaks
• ~10,000 lines of FORTRAN + some C
• MPI + OpenMP parallelism
• All parKcle rouKnes now running on

GPU (most Kme-consuming parts)
• Charge accumulaKon (memory

scaXer operaKon) on the grid
requires fast atomic updates on GPU

9/14/2021 OpenACC Summit 2021 4

Weixing Wang (P.I.) Stéphane Ethier, Chenhao
Ma, Min-Gu Yoo, Ed Startsev, Reuben
Budiardja (mentor, ORNL) and inputs from
Mathew Colgrove (Nvidia)

GTS Speed up on P9+V100 (Traverse)

0
5

10
15
20
25
30

Total

push_ion
shifti

ch
arge

_ion

poiss
on

co
llis

ion_ion

co
llis

ion_eon

push_eon
shifte

ch
arge

_eon

Sp
ee

d
(a

u)

4MPI
4 MPI per GPU
2 MPI per GPU
1 MPI per GPU

Higher is better

Low Temperature Plasma PIC (LTP-PIC)
• Ported to GPU with OpenACC during

the June 2020 Princeton Hackathon
• Full 6D PIC code to study low

temperature plasmas for industrial
applicaKons (including propulsion)

• WriXen in C with MPI+OpenMP
hybrid parallelism

• Also highly dependent on fast
atomic operaKons on GPU

• Ported Mersenne Twister pseudo-
random number generator to GPU

• Studied GPU performance of Hypre
solver
9/14/2021 OpenACC Summit 2021 6

Team Members: Andrew Tasman Powis (Princeton
U./PPPL), Johan Carlsson (Radiaso@ LLC), Alex
Khanales (PPPL), Arjun Agarwal (PPPL summer
student)
Mentors: Stéphane Ethier (PPPL), Mathew Colgrove
(NVIDIA), Mozhgan Chimeh (NVIDIA)

LTP-PIC ParDcle RouDne AcceleraDon with GPUs
Node to node comparison

Relative speedup of particle
routines with 4x NVIDIA V100
GPUs on Traverse against:
• Traverse CPU: 32 cores/node

IBM POWER9s
• Stellar: 96 cores/node Intel

Cascade Lakes (Xeon 6248R)

9/14/2021 7

Our flagship exascale-worthy code XGC
• 5D, full-device gyrokinetic PIC code

to study edge physics in tokamaks
• The simulation domain can include

the magnetic separatrix, magnetic
axis and the biased material wall

• Requires 10 to 100X more particles
than delta-f “core” plasma codes

• Originally written in Fortran 90
• Uses a multi-level MPI + OpenMP

hybrid parallel algorithm on CPU
• Always the first PPPL code ported to

new HPC hardware

9/14/2021 OpenACC Summit 2021 8

C.S. Chang (PI), S. Ku, R. Hager, A. Scheinberg, R.M.
Churchill, S. Ethier, B. Sturdevant, A. Mollen, A.
Sharma, S. Klasky, J. Choi, E. D’Azevedo, S. Sreepathi,
M. Adams, M. Shephard

XGC during the “Titan” years

• Original GPU port of XGC on Titan used CUDA Fortran (parKcle rouKnes) and
OpenACC (collisions)

• Implemented by then postdoc Stephen AbboX at OLCF, Eisung Yoon at RPI
(collisions), Ed D’Azevedo, Pat Worley (ORNL), Mark Adams (LBNL), S-H Ku, R.
Hager, S. Ethier, J. Lang (PPPL)

• On each Titan node: 1 MPI task, 16 OpenMP threads, 1 K20X, 6GB GDDR5
• Concurrently pushed electrons (for 40-60 subcycling steps) on GPU and ions on

CPU
• In the collision rouKne each OpenMP thread would launch a GPU kernel on a

different stream using OpenACC “async(stream)”

9/14/2021 OpenACC Summit 2021 9

Mixing OpenMP on CPU and OpenACC

10

nthreads = omp_get_max_threads()
!$omp parallel do private(ith,node,…) num_threads(nthreads)

do ith=1,num_mesh_pts

call f_collision_single_sp_body(ith, grid, st, df, …)
enddo
...

ithread = omp_get_thread_num(); istream = ithread + 1

!$acc enter data create(Ms) async(istream)
!$acc kernels async(istream) &
!$acc& pcopyin(mesh_Nvr1,mesh_Nvz1,cs_mesh_r_half,tmp_vol,mesh_dz) present(Ms)
!$acc loop independent collapse(2) gang private(k_eff, EK, EE, vpic_ierr0)

do index_J=1, mesh_Nvr1

do index_dz=0, mesh_Nvz1-1
!$acc loop independent vector

do index_jp=1, mesh_Nvr1
r=cs_mesh_r_half(index_J)
...

enddo ! index_jp
enddo !index_J_dz

enddo
!$acc end kernels
!$acc wait(istream)

LOTS OF
WORK!!
Loops over
velocity grid

LOOP OVER
MESH
POINTS

Upcoming exascale systems forced us
to rethink our approach

• XGC is the main code in the ECP-WDMApp project
• It needs to run on the exascale systems on Day 1
• CUDA Fortran and OpenACC “not” available
• Decision: Let somebody else figure out the details

– We opted for Kokkos as the interface to the various hardware
– Kokkos has many different GPU backends: CUDA, HIP, SYCL, OpenMPTarget, …
– Using Cabana library from ECP-CoPA project (https://github.com/ECP-copa/Cabana)
– We are rewriting the code in C++ to avoid complex Fortran interfaces (carried out by

Aaron Scheinberg, Jubilee Development)

9/14/2021 OpenACC Summit 2021 11

Research supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

https://github.com/ECP-copa/Cabana
https://www.jubileedevelopment.com/services

For our OpenACC FORTRAN and C codes OpenMP target
offload seems to be the most portable soluDon

• Would love to keep using OpenACC!!!
• Compiler developers seem to be puing most of their efforts on OpenMP target

offload though
• ImplementaKons are not stable yet and good performance is hard to achieve

– GEM Fortran code (also part of ECP-WDMApp) moving to OpenMP
• On top of it, use of the new “descrip7ve” model is being encouraged (mainly by

Nvidia and NERSC right now…)
– Similar to choice between !$acc kernels and !$acc parallel

9/14/2021 OpenACC Summit 2021 12

Let’s hope that the other vendors/compiler
developers will follow suit!

PRESCRIPTIVE

#ifdef TARGET_GPU

#pragma omp target teams distribute

reduction(max:error)

#else

#pragma omp parallel for reduction(max:error)

#endif

for(int j = 1; j < n-1; j++) {

#ifdef TARGET_GPU

#pragma omp parallel for reduction(max:error)
#endif

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25f * (A[j][i+1] +

A[j][i-1] + A[j-1][i] + A[j+1][i]);

error = fmaxf(error, fabsf(Anew[j][i]-
A[j][i]));

}

}

DESCRIPTIVE (more freedom to the
compiler)
#pragma omp target teams loop
reduction(max:error)

for(int j = 1; j < n-1; j++) {

#pragma omp loop reduction(max:error)

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25f * (A[j][i+1] +
A[j][i-1] + A[j-1][i] + A[j+1][i]);

error = fmaxf(error, fabsf(Anew[j][i]-
A[j][i]));

}

}

h"ps://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-loop

Can make a big difference
in performance!

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html

Last words

• Have we achieved code portability?
– Not quite but we’re trying…
– New hardware always brings new challenges to implementers/compiler developers

• For both OpenACC and OpenMP, specification does not equal implementation!

• “omp target teams loop” seems like a good way to give flexibility to the compiler
developers to implement to best performing version of OpenMP offload directives

• I think it’s time for the languages themselves to be serious about supporting
parallelism and offloading to GPU. Implementation is lagging though.
– Fortran2008 “DO CONCURRENT”
– DPC++ à C++20xx?

• Kokkos is a good alternative for C++ code but OpenACC and OpenMP still great for
FORTRAN and C

Thank you!

Work supported by the U.S. Department of Energy, Office of Science, Office of
Fusion Energy Sciences, and has been authored by Princeton University under
Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

