NNNNNNNNN PRINCETON
@ PPPU s w UNIVERSITY

On the Road to Code Portability

Stéphane Ethier

Princeton Plasma Physics Laboratory
OpenACC Summit 2021
September 14, 2021

Magnetic

Confinement Fusion

I X This is'our main mission (https://www.pppl.gov/about/pppl-glance)
* Deuterium plasma heated to 100 Million degrees!

* Device wall must be kept at a few 100s degrees
¢ Strong magnetic field confines the hot plasma

e Large gradients of temperature and density lead to
interesting physics that can be studied with:

* Magnetohydrodynamics codes, for fluid-like
‘plasma and magnetic field evolution

‘Kinetic codes, Particle-in-Cell (PIC) or mesh-based,

for velocity-dependent physics, such as turbulence
and wave-particle resonances

Specific to fusion community: Gyrokinetics!

https://www.pppl.gov/about/pppl-glance

* We study pretty much everything
related to plasmas

— Space plasmas
— heliophysics
— Plasma propulsion
— Industrial plasmas
e Plasma processes in microchips
fabrication is a hot topic!

* There is a strong need for 6D PIC
codes that can simulate these
processes with all the chemistry
that is involved

Jean-Paul Booth (Laboratoire de Physique des Plasmas (LPP) - Ecole Polytechnique)

Ported to GPU using OpenACC during
the June 2019 Princeton Hackathon

5D gyrokinetic PIC code

To study microturbulence in the
“core” plasma of tokamaks

~10,000 lines of FORTRAN + some C
MPI + OpenMP parallelism

All particle routines now running on
GPU (most time-consuming parts)

Charge accumulation (memory Weixing Wang (P.l.) Stéphane Ethier, Chenhao
scatter operation) on the grid Ma, Min-Gu Yoo, Ed Startsev, Reuben
requires fast atomic updates on GPU Budiardja (mentor, ORNL) and inputs from

Mathew Colgrove (Nvidia)

GTS Speed up on P9+V100 (Traverse)

Higher is better

30
25
2 20
T 15
8 10
(V]
5
0 _
AN A
IR NIE\ S N R SN R R S S
<0 BN & AN
X7 e/ o . &7 o7 x5 Q7
S AR X X R &
C O QO\ &

m 4MPI

m 4 MPIl per GPU
m 2 MPIl per GPU
= 1 MPIl per GPU

9)

Low Temperature Plasma PIC (LTP-PIC)

Ported to GPU with OpenACC during
the June 2020 Princeton Hackathon

Full 6D PIC code to study low
temperature plasmas for industrial
applications (including propulsion)

Written in C with MPI+OpenMP
hybrid parallelism

Also highly dependent on fast
atomic operations on GPU

Ported Mersenne Twister pseudo-
random number generator to GPU

Studied GPU performance of Hypre

solver,

Electron Current Density (A/mA2)

s o
2 B
g 8
g8 8

 ,0.0‘ (Cm)
10

10

20 20

[+ D

111.6 (microseconds)

Team Members: Andrew Tasman Powis (Princeton
U./PPPL), Johan Carlsson (Radiasoft LLC), Alex
Khanales (PPPL), Arjun Agarwal (PPPL summer
student)

Mentors: Stéphane Ethier (PPPL), Mathew Colgrove
(NVIDIA), Mozhgan Chimeh (NVIDIA)

OpenACC Summit 2021

LTP-PIC Particle Routine Acceleration with GPUs

Node to hode comparison

Relative speedup of particle
routines with 4x NVIDIA V100
GPUs on Traverse against:

* Traverse CPU: 32 cores/node
IBM POWERSs

* Stellar: 96 cores/node Intel
Cascade Lakes (Xeon 6248R)

D) 9/14/2021
S

Push

Interp

I Traverse-CPU
[Stellar

Average

5D, full-device gyrokinetic PIC code
to study edge physics in tokamaks

The simulation domain can include
the magnetic separatrix, magnetic
axis and the biased material wall

Requires 10 to 100X more particles
than delta-f “core” plasma codes
Originally written in Fortran 90

Uses a multi-level MPI + OpenMP
hybrid parallel algorithm on CPU

Always the first PPPL code ported to
new HPC hardware

C.S. Chang (Pl), S. Ku, R. Hager, A. Scheinberg, R.M.
Churchill, S. Ethier, B. Sturdevant, A. Mollen, A.
Sharma, S. Klasky, J. Choi, E. D’Azevedo, S. Sreepathi,
M. Adams, M. Shephard

D)

XGC during the “Titan” years

Original GPU port of XGC on Titan used CUDA Fortran (particle routines) and
OpenACC (collisions)

Implemented by then postdoc Stephen Abbott at OLCF, Eisung Yoon at RPI
(collisions), Ed D’Azevedo, Pat Worley (ORNL), Mark Adams (LBNL), S-H Ku, R.
Hager, S. Ethier, J. Lang (PPPL)

On each Titan node: 1 MPI task, 16 OpenMP threads, 1 K20X, 6GB GDDR5

Concurrently pushed electrons (for 40-60 subcycling steps) on GPU and ions on
CPU

In the collision routine each OpenMP thread would launch a GPU kernel on a
different stream using OpenACC “async(stream)”

9/14/2021 OpenACC Summit 2021

INANDIANNN DI n
SOREASRsIC Y

AP ABETIS ST el N
AL LRSS Ry

10

PO TS SES XIS
e S T S T
A e ol SIS RS
(Y v, AT B AL A YA e S v
(Mg g Y A 8 S BRSNS N TATISIS
AR e RS ERRISSRSR
AT o o RS S S KRR
Yavy Y4y 1 -} SCESEORIAS KIS AVAV.
as MRy Aavavey AV s e A e AN e i gAY B L VA T Lyt
S aasay e v avaararar T AN AN A N A e rara S sffvaVATAT AV
RO, R S S N N S N SRR R RS R DK
Y AvAvAY, (A U e oAy RS R R SR PR K
A AVav A iy AVATAYE ALY AVAV i ai v AT s SRS AN NN WADSIIS
I RN AT VYA Ay BT\ YAV AV YAy
B A A AANSI SISO, K] SRR ROV AN AT vi AV v LY
A ISR SRRSO DA ARSI S NAIN
A e e SO ANV AT COORREOROIR ARPEROBOOE
e R S S) A 2V Rl e AT R P VAR A g e YA YAV
SRR Rk sk skt SNSRI ISIASI AL
e e S S AT
% A o YA AT B U A VAT Ay oLy v g 20 A Ay g g et et
R A A A e P B S B N A AYA A B e o v
A RS AN AN A VA VA P TANS TATAYAYAv T N S M S S S s v A vavy Y A Sy e A R e e
N A g A PV A W VAVATATA VAV AV N S S0 S AN o S vt o A VA AV Vv A VAVAY 0 R o
N I P e P v VA A VAVAYATAS VA (A AN S K v S iy v gy Ay AVASA v A A S e
S O I R R R e A e A S o S S A e
e PP e A v L g ATAVAAN b AT DA A At Tt e e 4 ey A AT Y § VAV AV AR AN TS =
A T A A R e A T T T T L et A AP A) A Tav AV AV A S A
A T A A e e e P b s P S A VAN A A N 7
S A S K S R S R S AT A T K R S IR AT
A bl T A e e b A A R AN T AN AN S oV Y2
b A R A e e e i gy e) AR L AN N AN Ve
R RS RS S S IS St PRI T 2N vy
X IR S S S S S S S A I e S RTINS
T e e e B S RN AN R
K S R S S A S I S S A R R K]
e s e e e A S NN
N S A S e e A S A A K ISR R IR N R RINRRN
R R R S SIS 2 D P RIS KR
I g A VAVAVL S, YA i R S SIANTASRIAK RN KN
e S S s i B S SRS NSRS
A S o S R Ry
AR A A e e A A S
AV — (IZAVZA V) TS
SN SENESSSESERSRS =SSl SRS ORISR S
TR DA e PR
KK , AR

vpic_

LOOP OVER

le_sp_body(ith, grid, st, df, .) MESH

LOTS OF
WORK!!
Loops over
velocity grid

ithread + 1

index

istream

collapse(2) gang private(k_eff, EK, EE,
_J>}
-Jp

mesh_Nvrl

_dz

te(ith,node,..) num_threads(nthreads)
1, mesh_Nvrl

dex

dex_J_dz

_jp=

n

iva
0, mesh_Nvzl-1

cs_mesh_r_half(

_thread_num(Q)
dex
in

1s10N_S1ng

1
in
r

get_max_threads()
(mesh_Nvrl,mesh_Nvzl,cs_mesh_r_half,tmp_vol,mesh_dz) pr

_mesh_pts

O
O
<<
c
©
Q
O
o
c
©
>
o
@)
c
o
o
=
=
Q
Q
O
6o
=
2
=

dex

omp_
1,num
f_coll
omp_get
in
dex_J
in
do
enddo

enddo

do
!$acc loop independent vector
enddo
$acc end kernels
I$acc wait(istream)

ith

call
kernels async(istream) &
in

do

$omp parallel do pr
do

$acc& pcopy
I$acc loop independent

enddo
thread
I$acc enter data create(Ms) async(istream)

nthreads
I$acc

|
i

%)

%)

Upcoming exascale systems forced us

to rethink our approach

XGC is the main code in the ECP-WDMApp project —_~
It needs to run on the exascale systems on Day 1 > }\
—
CUDA Fortran and OpenACC “not” available E \(L ! ‘
~

Decision: Let somebody else figure out the details
EXASCAHLE COMPUTING PROJECT
— We opted for Kokkos as the interface to the various hardware
— Kokkos has many different GPU backends: CUDA, HIP, SYCL, OpenMPTarget, ...
— Using Cabana library from ECP-CoPA project (https://github.com/ECP-copa/Cabana)

— We are rewriting the code in C++ to avoid complex Fortran interfaces (carried out by
Aaron Scheinberg, Jubilee Development)

Research supported by the Exascale Computing Project (17-SC-20-5C), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

9/14/2021 OpenACC Summit 2021 11

https://github.com/ECP-copa/Cabana
https://www.jubileedevelopment.com/services

For our OpenACC FORTRAN and C codes OpenMP target

offload seems to be the most portable solution

* Would love to keep using OpenACC!!!

 Compiler developers seem to be putting most of their efforts on OpenMP target
offload though

* Implementations are not stable yet and good performance is hard to achieve
— GEM Fortran code (also part of ECP-WDMApp) moving to OpenMP

* On top of it, use of the new “descriptive” model is being encouraged (mainly by
Nvidia and NERSC right now...)

— Similar to choice between ! $acc kernelsand !$acc parallel

6} 9/14/2021 OpenACC Summit 2021 12

Let’s hope that the other vendors/compiler

developers will follow suit!

PRESCRIPTIVE

#ifdef TARGET_GPU
#pragma omp target teams distribute
reduction(max:error)
#else
#pragma omp parallel for reduction(max:error)
#endif
for(int j = 1; j < n-1; j++) {
#ifdef TARGET_GPU
#pragma omp parallel for reduction(max:error)
#endif
for(C int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25F * (C A[jI[i+1] +
A[JI10-11 + A[J-110i] + A[J+11[PD);
error = fmaxf(error, fabsf(Anew[j][i]-
ALFI0IDD;
}

DESCRIPTIVE (more freedom to the

compiler)

#pragma omp target teams loop
reduction(max:error)

for(int j = 1; j < n-1; j++) {
#pragma omp loop reduction(max:error)
for(int i = 1; i <m-1; i++) {

Anew[j][i] = 0.25fF * (C A[jI[i+1] +
A[JI0-1]1 + A[3-11[1]1 + A[J+11[iDD;
error = fmaxf(error, fabsf(Anew[j][i]-
A[FI01D);
}
}

Can make a big difference
in performance!

¥ https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-loop

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html

* Have we achieved code portability?
— Not quite but we’re trying...
— New hardware always brings new challenges to implementers/compiler developers

e For both OpenACC and OpenMP, specification does not equal implementation!

* “omp target teams loop” seems like a good way to give flexibility to the compiler
developers to implement to best performing version of OpenMP offload directives

* | think it’s time for the languages themselves to be serious about supporting
parallelism and offloading to GPU. Implementation is lagging though.

— Fortran2008 “DO CONCURRENT”
— DPC++ =2 C++20xx?

» Kokkos is a good alternative for C++ code but OpenACC and OpenMP still great for
FORTRAN and C

Thank you!

Work supported by the U.S. Department of Energy, Office of Science, Office of
Fusion Energy Sciences, and has been authored by Princeton University under
Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

