MFC: ACCELERATING MULTI-PHASE **FLOW SIMULATION**

Spencer Bryngelson

Georgia Institute of Technology

OpenACC Summit **September 14, 2021**

with J.Spratt, M. Rodriguez, B. Leback, S. Ethier

WHAT IS MFC

Multi-component flow code (MFC)

- Physics/numerics
 - Multi-phase compressible Navier-Stokes
 - Handle interfaces/shocks via "capturing"
 - Finite vol., 5th-order-accurate in space
 - Some fun features
 - Sub-grid multiphase dynamics
 - Elastic/viscoelastic models
- HPC
 - F90 w/ Python frontend
 - MPI domain decomp.
 - Parallel I/O, Lustre file system, etc.
 - Good scaling!

l'm open source! <u>mfc-caltech.github.io</u>

MFC IN CPU ACTION

Kidney stone ablation

Wall-attached bubble collapse

humpback whales

Schmidmayer, Bryngelson et al. (2020), Bryngelson and Colonius (2020), Maeda et al. (2018), Meng (2016)

3

WHAT IS EXPENSIVE?

WHAT IS EXPENSIVE?

- 71% High-order-accurate WENO reconstruction
- I 3% HLLC Riemann solve

These algorithms have

- High operation counts
- Low-medium memory reuse

WHY OPENACC?

- Easy
 - Method complicated, don't know a priori if speed-up significant
 - Code long/complicated, directives helpful
- Portable
 - New supercomputers not exclusively Nvidia
 - CUDA Fortran dying
 - Only acceptable alternative is OpenCL
- Fast
 - Can be competitive with CUDA/OpenCL

KEY RESULTS

- In 3 days, team of 4 able to
 - Port core solver functionality to OpenACC kernels
 - Remove all disk-device transfers
 - Maintained MPI functionality (Nvidia MPS, CUDA-aware MPI)
- Speed-ups (on Oak Ridge Summit)
 - 300X speedup (*IxVI00* vs *I CPU core*)
 - 60X speedup node-wise (8x V100 vs 40x CPU cores)

WENO KERNEL PROFILE

WHAT COULD BE BETTER?

Main

- Multi-node jobs
 - Better documentation of required MPI wrappers/env. variables
 - Lots of difficulty running multi-node MPI+OpenACC on XSEDE

computers

- Profiling MPI jobs
- Fortran derived types + OpenACC data handling

(tesla:deepcopy partial fix, Nvidia only?)

- - (MI 100?)
- appropriate

<u>Auxiliary</u> Compatibility with gcc compilers Support for non-Nvidia GPUs

Heuristic for when OpenACC is not

QUESTIONS?