
Can Fortran’s `do concurrent’ replace
directives for accelerated computing?

OpenACC BoF

Ronald M. Caplan, Miko Stulajter, and Jon A. Linker

www.predsci.com

Introduction

• Directives are popular for parallelization on CPUs & GPUs

• Standard languages have begun to add
features that compilers can use to parallelize code without directives:
• C++17’s Standard Parallel Algorithms and Fortran’s do concurrent

CONS
• Not always supported
• Spec more fluid than language,

so may need re-writes
• Can make code harder to read

(e.g. deep copy, device type
optimizations, etc.)

PROS

• Easier to write than low-level APIs
• Performance can be similar to low-

level APIs
• Portability
• Minimal code interference

GOAL: Test the current status of being able to replace directives
with do concurrent for accelerated computing

Test Code Description

Integrates the spherical surface heat equation on a
logically rectangular non-uniform grid with a finite
difference scheme which includes:

● Vector/array operations
● Stencil operations
● Reduction operations

● MPI (CUDA/RoCm-aware)
● Atomics
● Multi-GPU
● Derived types
● Function calls in loops

Does NOT have:

8 million point
real-world problem
is used for testing

Computational Environment

• All CPU runs have similar performance for all compilers

• nvfortran runs faster on GPU than gfortran

Baseline Performance Results

Implementation: Fortran’s `do concurrent’
● Introduced in
Fortran 2008

● Indicates loop can
be run with out-of-
order execution

● Can be used as hint
to the compiler that
loop may
be parallelizable

● Current specification
has no support for
reductions,
atomics, device
selection,
conditionals, etc.

Implementation: Code Versions

OG !$ std!$
std

Experimental version represents "ideal" situation of
having no directives

Serial Original New Experimental

• Utilized -03 and -march=<ARCH> for all compilers

• gfortran:

• CPU: -fopenacc and/or -ftree-parallelize-loops=<N>
• GPU: -fopenacc -foffload=nvptx-none -fopenacc-dim=::128

• nvfortran:

• CPU: -mp or -acc=multicore
• GPU: -stdpar=gpu and/or -acc=gpu -gpu=cc<XY>,cuda<X>.<Y>
• Note: managed memory is enabled by default when using stdpar!

(can turn off with -gpu=nomanaged)

• ifort:

• CPU: -fopenmp
• GPU: No support for NVIDIA GPUs

Implementation: Compiler Options

Results: nvfortran

Results: gfortran

Results: ifort

• Compatibility (GPU):

• Currently only nvfortran has do concurrent support for GPUs

• Using do concurrent loses gfortran GPU support for now…
… but may gain Intel GPU support with planned update to ifort

• Relying on unified memory is possible performance loss (but not here)

• Portability (CPU):

• CPU multi-core parallelization was retained
(except for Experimental code on ifort)

• nvfortran and ifort have direct support of do concurrent on
CPUs, while gfortran relies on auto-parallelization

• Implicit reductions with do concurrent not supported everywhere

Discussion

• Performance:

• Comparable performance between stdpar and directives on CPUs/GPUs

• Summary:

• do concurrent allows cleaner code and increases “future-proofiness”

• nvfortran allowed us to eliminate all directives!

• … but using a combination of directives and do concurrent yields
better cross compiler/hardware compatibility

Discussion Continued

Summary/Future

github.com/predsci/POT3D
(spec.org/hpc2021)

Next step:

Multi-GPU with MPI (CUDA/RoCm-aware), atomics, static arrays

arxiv.org/abs/2110.10151

So? Can Fortran's do concurrent replace directives for
accelerated computing?

YES! ...
… with (1) nvfortran, (2) NVIDIA GPUs, (3) for some codes (like ours)

It works!
(with some !$acc)

