
More Science. Less programming.

OPENACC BOF at SC21

https://www.openacc.org/events/openacc-birds-feather-bof-sc21
Tuesday, November 16, 2021 | 5:15 to 6:45 PM CST | Online

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

OpenACC BOF @ SC21

▪ Welcome and OpenACC Organizational Update – Jack Wells, NVIDIA (5 Minutes)
▪ OpenACC Specification Update – Jeff Larkin, NVIDIA (7 Minutes)
▪ Compiler Implementations

▪ HPE Updates: Barbara Chapman, HPE (6 minutes)
▪ GCC Updates: Catherine Moore, Siemens (6 minutes)

▪ Porting Scientific Applications with OpenACC: Real-world Use Cases (7 minutes)
o On the Road to Code Portability – Stéphane Ethier, PPPL
o Can Fortran’s ‘do concurrent’ Replace Directives for Accelerated Computing? Ron

Caplan (Predictive Science)
▪ Training and Education, Julia Levites, NVIDIA (7 minutes)
▪ Questions, General Discussion from the BOF. (45 minutes)

Tuesday, Nov 16, 2021

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

https://www.openacc.org/events/openacc-birds-feather-bof-sc21

3

Technical Committee Update

▪ OpenACC 3.2 is out!!
▪ Error Handler
▪ Initialize/Shut Down individual devices from runtime API
▪ Acc Wait Any
▪ Asynchronous Structured Data Regions
▪ Many clarifications and reorganizations

▪ LLVM Upstreaming
▪ Community effort to upstream CLACC and FLACC Efforts
▪ Participation to-date by several vendors, labs, and universities
▪ Must more help is needed!

Activities since SC20

Error Handler
▪ Developer or Tool may register an Error Callback
▪ From the error callback:

▪ Inspect/Diagnose the issue
▪ Clean-up and/or checkpoint as-needed
▪ Gracefully shutdown

▪ No error recovery, only inspection
▪ Great Side Effect: Significantly improved definition of error conditions throughout

the specification!

Improved Device Initialization

// Initialize all devices of the

// default type

acc_init(acc_device_default);

// Initialize individual device via

// the pragma

#pragma acc init \

device_type(acc_device_default) \

device_num(0)

Before 3.2
// Initialize just device 0 of

// default type

acc_init_device(acc_device_default, 0);

// Initialize individual device via

// the pragma

#pragma acc init \

device_type(acc_device_default) \

device_num(0)

Version 3.2

Wait Any
#pragma acc data copyin(list[0:10])
{
int queues[10];
for (int i=0; i < 10; i++)
{
// Do some unbalanced operation on several queues
#pragma acc enter data copyin(list[i].member[0:list[i].size]) async(i)
// Put the queue number in the queues list, the index and queue number
// do not need to match, like they do here.
queues[i] = i;

}
int next;
// Look for queue that is ready to process
while ((next = acc_wait_any(10,queues)) >= 0)
{
// Remove this queue from consideration next time around
queues[next] = acc_async_sync;
// Process work dependent on above
#pragma acc parallel loop
{
for (int j=0; j < list[i].size; j++)
{
// do stuff

}
}

}
}

With acc_wait_any it’s
possible to poll asynchronous
work queues and find a queue
that’s ready now.

Useful for load-imbalances
and other unpredictable
timings.

Modeled after MPI_Waitany
and similar APIs.

Asynchronous Structure Data Regions
// Mark this entire data region as asynchronous on queue 0
#pragma acc data copy(A[0:N]) async(0)
{
// Execution MAY continue here before data allocation and
copies complete

// This region MUST wait on queue 0 to ensure data is ready or
enqueue itself
// in queue 0 as well.
#pragma acc parallel loop async(1) wait(0)
for (int i=0; i < N; i++) { ; }

// Since the data region MUST NOT copy or deallocate A until
the parallel
// region has finished, this wait is necessary.
#pragma acc wait(1) async(0)

}
// Execution MAY continue here before data copies and

deallocation occurs

// It's necessary to wait on queue 0 before operating on A to
ensure the device

// has finished any data operations.

#pragma acc wait(0)

Previously structured data
regions had to be
synchronous, in part due to
data allocation.

Now data operations at the
beginning and end of data
regions can be made
asynchronous.

Please be sure you
understand the ramifications.

LLVM Upstreaming

▪ The CLACC and FLACC efforts to create OpenACC compilers are being
upstreamed.

▪ Monthly telecom with collaborators.
▪ We need more help!

▪ Review patches
▪ Create patches
▪ Create test cases

Bringing OpenACC to Clang and Flang

	OPENACC BOF at SC21
	OpenACC BOF @ SC21
	Technical Committee Update
	Error Handler
	Improved Device Initialization
	Wait Any
	Asynchronous Structure Data Regions
	LLVM Upstreaming

